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Abstract

Raman spectroscopy as a process analytical technology tool was implemented for the

monitoring and control of ethanol fermentation carried out with Saccharomyces

cerevisiae. The need for the optimization of bioprocesses such as ethanol production,

to increase product yield, enhanced the development of control strategies. The con-

trol system developed by the authors utilized noninvasive Raman measurements to

avoid possible sterilization problems. Real-time data analysis was applied using partial

least squares regression (PLS) method. With the aid of spectral pretreatment and

multivariate data analysis, the monitoring of glucose and ethanol concentration was

successful during yeast fermentation with the prediction error of 4.42 g/L for glucose

and 2.40 g/L for ethanol. By Raman spectroscopy-based feedback control, the glu-

cose concentration was maintained at 100 g/L by the automatic feeding of concen-

trated glucose solution. The control of glucose concentration during fed-batch

fermentation resulted in increased ethanol production. Ethanol yield of 86% was

achieved compared to the batch fermentation when 75% yield was obtained. The

results show that the use of Raman spectroscopy for the monitoring and control of

yeast fermentation is a promising way to enhance process understanding and achieve

consistently high production yield.
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1 | INTRODUCTION

The inevitable depletion of fossil fuel sources, the rapidly increasing world-

wide energy consumption accompanied by environmental pollution and

global warming are all driving forces for finding alternative sources of

energy.1-4 During the last decade, numerous research and development

have been focused on biomass-based energy production, as a potential

renewable and environmentally sustainable energy source.5-7 One of the

most promising alternative biofuel is bioethanol, considered as the cleanest

liquid fuel mostly used in the transportation sector.8 Bioethanol can be

produced from feedstock with a wide range of high sugar (e.g., sucrose,

fructose, or glucose) content through biotechnological process.9,10

The most commonly employed microorganism for ethanol

fermentation is Saccharomyces cerevisiae, due to its robust and highly
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efficient ethanol production capability and high tolerance to the end-

product ethanol.11-14 Although bioethanol production has been greatly

improved over the past decades, yeast fermentation technology still has

challenges. The most important factor is focusing on the optimization of

the technology to increase product yield and to ensure high-quality

products. The use of process analytical technology (PAT) outlined by the

U.S food and drug administration (FDA) which is about identifying, mon-

itoring, and controlling critical process parameters, can increase effi-

ciency, improve quality, and reduce costs.15,16

Generally, the S cerevisiae ethanol production is characterized as a

complex system, exhibiting nonlinear and dynamically changing pro-

cesses, furthermore, it is affected by several critical process parame-

ters such as temperature, pH, dissolved oxygen, cell density, the

concentration of the substrate (sugar), or the end-product (ethanol).17

However, receiving information about these key cultivation parame-

ters, conventionally manual sampling and traditional offline analysis

are used. Unfortunately, sampling is always a critical point of the pro-

cess due to the risk of contamination. Offline analysis is time-consum-

ing, requires sample preparation, and specific analytical skills

(e.g., HPLC). In addition, the feedback to the process is hard to per-

form, which makes difficult to meet the demand for automation and

continuous process control.

Therefore, there is a growing need in the fermentation process to

find suitable sensors to monitor and control critical process parame-

ters in real-time. Over the last years, many techniques have been

studied and developed for real-time bioprocess monitoring by using

spectroscopic methods, such as UV–visible, mid- and near-infrared

(MIR/NIR), fluorescence, and Raman spectroscopy.18-21 Among these

spectroscopic technologies, Raman spectroscopy is a challenging, but

a very promising technique for applications in bioprocess monitoring.

Main advantages are weak interference of water, not destructive,

simultaneous determination of various components and no sample

pretreatment requirements. However, Raman measurements are dis-

turbed by light-scattering on solid particles as well as bubbles, or cells

in a turbid system. The removal of particulate matter by filtration in a

by-pass allowed Shaw et al.22 the use of Raman spectroscopy for the

online monitoring of glucose and ethanol concentration during a fer-

mentation process. Wang et al.23 used a filter tube around the inline

probe to prevent the scattering on the particles in the turbid system

during wine fermentation.

When using an immersion probe without filtration, cells and solid

particles increase the noise in the spectra by not desired light scatter-

ing, which can be decreased with the use of an internal standard. Nor-

malization of the spectra using the water stretching band at

1627 cm−1 24 or sulfate S O stretching band at 980 cm−1 25 allowed

the quantitative monitoring of ethanol production by S cerevisiae using

simple data analysis methods (e.g., linear regression). Another method

is to use multivariate data analysis such as partial least squares (PLS)

regression for the determination of glucose and ethanol concentration

in the presence of cells.26,27

The development of specific probes made new possibilities in the

monitoring of bioprocesses. The immersion probes coupled with optic

cable allowed the monitoring of fermentation process inline.24,28

Noninvasive glucose measurements in biological systems are generally of

high interest. Demand has emerged for noninvasive monitoring of yeast

fermentation to avoid possible sterilization problems and biofilm forma-

tion on the probe tip. A large-aperture Raman probe was developed by

Shalk et al.29 and the design of the probe enabled noninvasive inline

measurements of glucose and ethanol through the bioreactor glass wall.

Besides the real-time monitoring of ethanol production, the grow-

ing demand for ethanol leads to the need for the development of

advanced control strategies. The method developed by �Avila et al.,27

the multivariate control chart analysis was efficient for detection of

possible faults caused due to variation in the temperature, contamina-

tion, and modification in the substrate of the process. Raman spec-

troscopy was capable of providing information about the state of

fermentation processes in real-time. However, there is no example

found in the literature for the control of carbon source (sugar, for

example, glucose) concentration, which is a critical parameter during

yeast fermentation. High glucose concentrations may inhibit glucose

utilization and decrease ethanol fermentation efficiency.30 Neverthe-

less, with the control of glucose concentration, there is a possibility to

minimize substrate inhibition and improve the production of ethanol.

In this study, the advantages of noninvasive inline Raman spectro-

scopic measurements were utilized to develop feedback control sys-

tem of glucose concentration to improve ethanol production. For this

purpose, a PLS calibration model was developed, which enabled real-

time quantitative analysis of glucose and ethanol during S cerevisiae

fermentation. However, to decrease the scattering effect of cells (not

desired) and the intensity change caused by the noninvasive measure-

ments, the pretreatment of the spectra were necessary using different

normalization methods.

2 | EXPERIMENTAL

2.1 | Cultivation parameters

Commercial baker's yeast (Lesaffre, Hungary) of species S cerevisiae

was used as the inoculum for the fermentation process. A fermenta-

tion volume of ~100 mL was used and 0.28 g compressed yeast in an

active form was added to the reactor. The culture medium contained

0.4 g/L (NH4)2HPO4, 2 and 1 g/L MgSO4. The initial glucose concen-

tration was 160 g/L. Using a control system described in the next sec-

tion, the process conditions were set to 30�C and 150 rpm. The pH

was kept constant at 4.0 through the automatic addition of 1 M

NaOH. The feed solution contained glucose at high concentration

(300 g/L) and the same salt concentrations as the culture medium.

2.2 | Bioreactor and control system

Experiments were performed in a computer-controlled laboratory

reactor system (see Figure 1) developed earlier.31 The control of tem-

perature, stirrer, and the dosing system of the 150 mL jacketed glass

reactor were performed by a Stardom FCN-type programmable logic

controller (PLC) manufactured by Yokogawa Electric Corporation
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(Tokyo, Japan). The temperature of the reactor was controlled by a

PID controller manipulating the temperature of the circulating oil in

the jacket of the reactor. To maintain the homogeneity of the reactor

an Eurostar power control-visc type stirrer (IKA-Werke GmbH &

Co. KG, Staufen, Germany) was used. The dosing system contained a

Harvard 33 type syringe pump (Instech Laboratories, Inc., Plymouth

Meeting, PA), furthermore, the pH was monitored by a combined glass

electrode (DO 9403 T-R1 made by Delta Ohm S.r.L., Padua, Italy) and

controlled using 1 M NaOH solution.

The reactor, containing an inspection window inserted in the

jacket of the reactor, is suitable for inline noninvasive Raman mea-

surements. Spectra were collected during the fermentation through

the reactor wall by a Labram type Raman spectrometer manufactured

by Horiba Jobin Yvon (France) connected with optic fiber and a long

focus Raman probe. The focal point of the Raman probe was adjusted

manually immediately behind the inner side of the reactor wall, mini-

mizing the influence of scattering due to the solid particles (cells).

Real-time Raman spectra were acquired between 1,438–162 cm−1. A

300 mW diode laser (785 nm) was used for excitation and the

scattered light was detected by an air-cooled CCD. Exposure time

was 60 s per spectrum with four accumulations. A computer program

(RamanCommII), developed by the authors31 written in Visual Basic

with a two-way communication function, was used to trigger the

Raman measurements and exchange data between the PLC and the

MATLAB evaluation software using a TCP/IP based connection (see

Figure 1). The PLC controlled the concentration in the reactor by

F IGURE 1 Hardware, software, and communication network of the control system based on real-time Raman spectrometry

F IGURE 2 Reference Raman spectra
of water, medium (containing only salts),
medium with 160 g/L glucose and
medium with 81.6 g/L ethanol acquired
from the reactor (through the glass). The
spectra are shown without any
preprocessing
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using the results of real-time Raman data processing (data_analysis.

mat) based on the PLS regression model. The in-house MATLAB pro-

gram developed by the authors31 was used for real-time spectrum

evaluation resulting in ethanol and glucose concentration values

simultaneously during yeast fermentation.

The feedback control of glucose concentration was achieved with

PID control using only proportional gain. The proportional gain was tuned

manually and there was no need to adapt the gain over the course of the

fermentation. When the concentration of glucose decreased below the

setpoint (100 g/L), the 300 g/L glucose feed solution was dosed into

the reactor using a syringe pump. Yokogawa Fast/Tools supervisory con-

trol and data acquisition (SCADA) software package were applied to dis-

play, store and export the data of the process.

2.3 | Raman analysis

PLS regression method was used during the real-time analysis of Raman

spectra. The calibration dataset was prepared using MATLAB PLS Tool-

box. Calibration points were obtained from five batch and two fed-batch

experiments. The fed-batch experiments were performed to extend the

applicability of the calibration data set for the control of glucose concen-

tration. Samples were taken from the reactor for offline HPLC measure-

ments resulting in 100 reference data points. The acquired spectra

contained 1,000 variables in the range 1,438–162 cm−1. To reduce the

effect of the noninvasive measurements (signals of the glass wall of the

reactor, Figure 2) on data analysis 622 variables between

1,173–373 cm−1 were included in the PLS model. The spectra were

preprocessed using baseline correction (Automatic Whittaker Filter,

λ = 10,000, p = 0.005), standard normal variate (SNV) transformation,

normalization (area = 1, range: 992–972 cm−1) and mean centering. To

correct the intensity change of the spectra, there was a need for the use

of an internal standard. For this purpose, the S O stretching peak at

980 cm−1 was used for the normalization of the spectra.

2.4 | Reference method

Offline high-performance liquid chromatography (HPLC) measure-

ments provided reference data for the validation of real-time Raman

analysis. Throughout the fermentation process, samples of 2 mL were

taken and centrifuged at 4500 rpm (Microcentrifuge 320a, Mechanika

Precyzyjna, Poland) for 10 min at room temperature. The supernatant

was filtered through a 0.45 μm syringe filter (Millipore® Millex® LCR

HPLC Syringe Filters, Merck KGaA, Germany) and stored immediately

at −18�C. The ethanol and glucose concentrations in the samples

were determined using HPLC equipped with Shimadzu RID-10A dif-

ferential refractive index detector and BIO-RAD (Bio-Rad, Hercules,

CA) Aminex HPX-87H (300 × 7.8 mm) cation-exchange column. The

column temperature was 65�C. Sulfuric acid (5 mM) was used as elu-

ent with 0.5 mL/min flow rate. The thawed supernatants of the cen-

trifuged and filtered fermentation samples were diluted to 1:20 with

the distilled water before injection. The sample volume was 40 μL.

3 | RESULTS AND DISCUSSION

3.1 | Noninvasive Raman analysis and spectral
pretreatment

The feasibility of noninvasive Raman measurements was evaluated

using the reference spectra of water, medium, medium containing

160 g/L glucose, and medium containing 81.6 g/L ethanol, which

F IGURE 3 Concentration profiles of one batch (a) (data for other
batch fermentation is not shown) and two fed-batch experiments (b,
c). The feed solution was added to the reactor in small volumes
(5–10 mL) and samples were taken after each feeding. The designed
setting of glucose concentration was performed to increase the
variability of the reference points to obtain a robust calibration model
for Raman measurements
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corresponds to 100% relative yield, presumed 0.51 g ethanol is pro-

duced from 1 g glucose. The characteristic peaks of glucose and etha-

nol can be distinguished using an acquisition time of 60 s and four

accumulations. The water and the reactor glass had large interference

on the spectra shown in Figure 2. Thus, the wavenumber region

below 373 cm−1 and above 1,173 cm−1 were removed before data

analysis. The excluded part of the spectra contains no relevant infor-

mation regarding ethanol and glucose concentration.

The intensity of Raman spectra was sensitive to the position of

the probe (distance and the detection angle in relation to the inspec-

tion window), thus the Raman signal intensity originating from the

reactor glass changed between each fermentation. Therefore, a spec-

tral treatment was necessary to correct the intensity change. After

baseline correction, SNV was performed, which is a path-length varia-

tion correction method like normalization, to limit the spectral inten-

sity variation. Besides the reactor glass the light scattering on the cells

and particles caused intensity change during the fermentation, thus

normalization using an internal standard was chosen. Internal standard

of the S O stretching mode at 980 cm−1 was selected for the correc-

tion of intensity change from light scattering. Sulfate is always added

to growth media for the synthesis of sulfur proteins. However, the

amount of sulfate utilized by the cells is negligible compared to the

initial concentration (5 g/L). Baseline correction, SNV, and normaliza-

tion were followed by mean centering to complete the pretreatment

of spectra.

3.2 | Calibration of the PLS model

During the development of the PLS model for quantification of glu-

cose and ethanol, noninvasive inline monitoring of five batch and two

fed-batch fermentation were performed. An example of glucose and

ethanol concentration during batch fermentation is shown in

Figure 3a. The fed-batch experiments were used to increase the

variability (glucose concentration and matrix) of the reference points,

which ensured good predicting capabilities without built-in correla-

tions. The feeding of the first reactor (Figure 3b) was performed at

18 and 48 hr maintaining the glucose concentration between 108 and

168 g/L. To increase the number of the reference data under 100 g/L

glucose concentration, the second reactor (Figure 3c) was fed only

once at 46 hr. The feeding was accomplished with the dosing of

~50 mL feed solution into the reactor in several installments. Samples

were taken from the reactor after each section for offline HPLC analy-

sis. A total of 100 data points were used in model development from

the batch (59 data points) and fed-batch experiments (41 data points).

In the model development, the ideal number of latent variables

(LV) was selected considering the values of root-mean-square error of

cross-validation (RMSECV) obtained by cross-validation of the calibra-

tion data. Venetian blinds cross-validation was applied with eight

splits and four LVs were chosen based on the results. The measured

and predicted data shown in Figure 4, correlated highly for glucose

and ethanol concentration. The root-mean-square error of calibration

(RMSEC) (glucose: 5.21 g/L; ethanol: 3.18 g/L) and the RMSECV (glu-

cose: 6.65 g/L; ethanol: 3.64 g/L) were also calculated.

3.3 | Monitoring of glucose and ethanol
concentration

The PLS model was proved to be well applicable to the inline monitor-

ing of yeast fermentation. For the real-time analysis of the spectra, a

MATLAB program (data_analysis.mat) was developed. The concentra-

tions of glucose and ethanol calculated from the Raman spectra over-

lapped with the HPLC reference values shown in Figure 5. The

model's predictive performance was quantified using root-mean-

square error of prediction (RMSEP), which proved to be 4.42 g/L for

glucose and 2.40 g/L for ethanol. After 60 hr, the glucose depleted in

F IGURE 4 Correlation between predicted and measured data during PLS regression for glucose (a) and ethanol (b) concentration. Calibration
data set is indicated with grey circles and the test data set is indicated with red diamonds. Test data are acquired from monitoring of an
independent fermentation process

HIRSCH ET AL. 5 of 8



the cell culture indicating the end of the fermentation and the ethanol

concentration was 57.33 g/L.

3.4 | Control of glucose concentration

The aim of the closed-loop feedback control of yeast fermentation

was to maintain the glucose concentration at 100 g/L (set point) by

automatic feeding a solution containing 300 g/L glucose. For the con-

trol of glucose concentration based on Raman analysis, a control sys-

tem (described before, see Figure 1) with proportional setting was

applied. The concentration of glucose calculated from the Raman

spectra was the input of the controller, meanwhile, the output of the

controller was the feeding rate of the syringe pump. If the glucose

concentration decreased below the set point (100 g/L), the PLC

directed the syringe pump to increase the dose with a calculated

speed. The actual volume and feeding rate were calculated by the PLC

using initial parameters (medium volume, concentration of feed solu-

tion, syringe diameter) and control parameters (proportional setting).

The glucose and ethanol concentration calculated from the

Raman spectra followed the values of offline measurements accu-

rately within the whole feeding period. The Raman-based glucose

concentration shows greater deviation after 60 hr, because of the

(not desired) light scattering on the cells and solid particles. None-

theless, the control of the glucose concentration was accurate and

the glucose concentration was controlled successfully in the range

of 95.69–100.95 g/L with an average of 98.08 g/L for 67.6 hr (from

24.4 until 92 hr), which shows the feasibility of Raman-based glu-

cose control during yeast fermentation (Figure 6). Lower ethanol

concentration was achieved during the glucose control (40.10 g/L),

due to the dilution effect of the feeding.

F IGURE 5 Monitoring of yeast
fermentation using noninvasive inline
Raman analysis. Glucose and ethanol
concentrations were calculated from
Raman spectra in real-time and reference
data were obtained from HPLC
measurements. HPLC, high-performance
liquid chromatography

F IGURE 6 Feedback control of
glucose concentration based on real-time
Raman analysis. Glucose and ethanol
concentrations were calculated from
Raman spectra in real-time and reference
data were obtained from HPLC
measurements. Dosing of the feed
solution started at 24.4 hr to maintain the
glucose concentration at 100 g/L. HPLC,

high-performance liquid chromatography
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There was no significant ethanol production after 60 hr due to the

inhibition effect of ethanol on yeast cell culture, thus the ethanol yield

was calculated at this time (Table 1). The control of glucose concen-

tration and the continuous feeding of the concentrated feed solution

resulted in 86% ethanol yield, which is higher compared to the batch

fermentation (75%). With the use of Raman spectroscopy, there is a

possibility for better process optimization to increase ethanol produc-

tion during yeast fermentation.

4 | CONCLUSION

This work demonstrates the use of noninvasive Raman spectroscopy

as a useful tool for the inline monitoring and control of ethanol fer-

mentation using S cerevisiae. Raman measurement using a noninvasive

probe was used to decrease the risk of contamination, furthermore,

there was no need to autoclave or disinfect the probe.

Reference data was obtained from five batch and two fed-batch

fermentations. The designed setting of glucose concentration during

fed-batch experiments resulted in a good calibration data set for

acquiring a robust model. The pretreatment of the spectra before

analysis proved to be essential in case of noninvasive measurements.

The normalization using standard normal variate and an internal stan-

dard decreased the effect of intensity changes due to noninvasive

measurements (through inspection window) and light scattering on

cells. PLS regression was successfully applied for the monitoring of

glucose and ethanol concentration. For the validation of the PLS

model, batch fermentation was performed with prediction error of

4.42 g/L for glucose and 2.40 g/L for ethanol. The real-time determi-

nation of glucose concentration with good accuracy made it possible

to implement a control strategy to improve production yield

Thus, Raman spectroscopy-based closed-loop feedback control of

glucose concentration was accomplished and the control of glucose con-

centration at 100 g/L was successful dosing a 300 g/L feed solution into

the reactor with a control system developed by the authors. The glucose

concentration was maintained in the range of 95.69–100.95 g/L for

67.6 hr. The control of glucose concentration at 100 g/L resulted in

higher ethanol yield (86%) compared to batch fermentation (75%). The

implementation of Raman spectroscopy for the monitoring and control of

ethanol fermentation could improve ethanol production by understanding

the process and maintaining optimal parameters. The Raman-based

control of the glucose concentration can improve the ethanol production

processes by enhancing glucose utilization and increasing ethanol fermen-

tation efficiency.
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