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Motivated by situations with temporal evolution and spatial symmetries both singled out, we
develop a new 2+1+1 decomposition of spacetime, based on a nonorthogonal double foliation. Time
evolution proceeds along the leaves of the spatial foliation. We identify the gravitational variables
in the velocity phase-space as the 2-metric (induced on the intersection Σtχ of the hypersurfaces of
the foliations), the 2+1 components of the spatial shift vector, together with the extrinsic curvature,
normal fundamental form and normal fundamental scalar of Σtχ, all constructed with the normal
to the temporal foliation. This work generalizes a previous decomposition based on orthogonal
foliations, a formalism lacking one metric variable, now reintroduced. The new metric variable
is related to (i) the angle of a Lorentz-rotation between the nonorthogonal bases adapted to the
foliations, and (ii) to the vorticity of these basis vectors. As a first application of the formalism,
we work out the Hamiltonian dynamics of general relativity in terms of the variables identified as
canonical, generalizing previous work. As a second application we present the unambiguous gauge-
fixing suitable to discuss the even sector scalar-type perturbations of spherically symmetric and
static spacetimes in generic scalar-tensor gravitational theories, which has been obstructed in the
formalism of orthogonal double foliation.

I. INTRODUCTION

The modern theory of gravitation, general relativity
(GR) has been successfully tested multiple times on the
Solar Sytem scale. When confronted with observations
on both galactic scales and beyond, agreement with pre-
dictions can however be reached only at the price of in-
troducing dark matter and dark energy, neither of them
identified or detected by other means than gravitational.
Lacking indications on manifestations of these forms of
matter in the Standard Model interactions, they could be
included in the gravitational sector, either as geometric
modifications arising from possible higher-order dynam-
ics or as an excess of fields representing gravity beyond
the metric tensor, possibly including scalars, vectors, 2-
form fields or even a second metric. As a rule, the physi-
cal metric couples to these in a nonminimal way, opposed
to dark matter/dark energy models, which are coupled
minimally. The simplest such model, of a single scalar
field complementing the metric has been studied exten-
sively, both from the desire to explain dark matter / dark
energy or in order to study inflation.

The most generic single scalar-tensor model described
by second order differential equations (hence avoiding Os-
trogradski instabilities) for both the metric and the scalar
field has been proposed by Horndeski [1] and rediscov-
ered in a modern context in connection with generalized
galileons [2].

While allowing for higher order than two, certain be-
yond Horndeski models could guarantee that the propa-
gating degrees of freedom (d.o.f.) still evolve according to
a second order dynamics. Indeed, an effective field the-
ory (EFT) of cosmological perturbations has been worked
out by Gleyzes et al. [3, 4], based on (a) a Lagrangian
depending on the lapse function and some geometrical
scalar quantities emerging in the Arnowitt-Deser-Misner

(ADM) decomposition on the flat Friedmann-Lemâıtre-
Robertson-Walker (FLRW) background and (b) the uni-
tary gauge, allowing to absorb the scalar field perturba-
tion by an adequate time coordinate choice (the lapse is
then associated with the corresponding constant scalar-
field hypersurfaces). The linear perturbation equations
contain time derivatives at second order, although spa-
tial derivatives could be of higher order (in the Horndeski
subclass the latter are also of second order). A general-
ization for two scalar fields representing dark matter and
dark energy has been advanced in Ref. [5]. Another
generalization has been discussed in Ref. [6], referring
to perturbations of a spherically symmetric and static
background, treated similarly.
These theories should obey the requirements of

(A) stability, guaranteed by the avoidance of both
scalar ghosts (no negative kinetic term in the sec-
ond order Lagrangian governing the evolution of
linear perturbations) and Laplacian instabilities
(no negative sound speed squared),

(B) agreement with Solar System tests, notably the
Vainshtein mechanism suppressing the propagation
of the fifth force inside the Solar System (no L5

contribution to the Horndeski Lagrangian) [7–9],

(C) agreement with weak lensing observations (con-
straints from deviations from the Newtonian law
and light bending by simultaneous fitting of x-ray
and lensing profiles of galaxy clusters) [10].

The recent detections of gravitational waves from 10
coalescing binary black holes and one neutron star merger
by the LIGO Scientific Collaboration and Virgo Collab-
oration [11–17] have added new constraints. On the one
hand, the mass of the graviton has been severely con-
strained by testing a massive dispersion relation [18].
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Then a wide family of dispersion relations [19] were
tested, disruling [13] Lorentz-violation, Hořava-Lifsic the-
ories, certain extra dimensional, multifractal theories,
doubly special relativity and setting an even harder con-
straint on the graviton mass at 5.0×10−23 eV/c2[20]. On
the other hand the small difference in the arrival time of
the gravitational waves from a neutron star coalescence
[16] and accompanying γ−radiation confirmed that the
tensorial gravitational modes propagate with the speed
of light within −3× 10−15 and +7× 10−16 accuracy [21].
By exploring previously existing analyses on the Lapla-
cian stability and ghost avoidance in Horndeski theories
[22, 23], from these constraints the L5 contribution has
been disruled once again, together with the kinetic term
dependence of L4 [24–26]. A slightly less restrictive con-
dition emerged for the beyond Horndeski models. Fur-
ther, three of the five parameters appearing in the effec-
tive theory of dark energy were severely constrained by
combining the gravity wave results with galaxy cluster
observations [27].

The stability of spherically symmetric, static space-
times has been discussed for both the odd [28] and even
modes [29] of the perturbations in Horndeski theories,
also for the odd modes in the beyond Horndeski theories
[6]. The latter relied on a double foliation of spacetime
along orthogonal spatial and temporal leaves, developed
in Refs. [30, 31]. Three independent background dy-
namical equations were identified and the conditions for
avoidance of ghosts and Laplacian instabilities of the odd
mode perturbations established.

The formalism of the orthogonal double foliation relies
on the extensive use of adapted metric variables, which
bear the role of canonical coordinates and on embed-
ding variables (extrinsic curvatures, normal fundamental
forms and normal fundamental scalars of the 2-surfaces
generated by the intersection of the foliations), some of
them emerging as canonical momenta, others as pure spa-
tial derivatives of the coordinates. The odd sector of
perturbations of spherically symmetric, static spacetimes
has been analyzed in terms of these quantities [6].

Spacetime perturbations can also be discussed through
other decomposition techniques, including: (I) the first
order system of 70 coupled differential equations for 50
independent variables of the black hole perturbation for-
malism à la Chandrasekhar [32], based on the Newman-
Penrose formalism (an 1+1+1+1 decomposition); (II)
the formalism based on the numerous variables arising
from a 2+1+1 decomposition based on kinematical quan-
tities (optical scalars), supplemented by the electric and
magnetic projection of the Weyl tensor [33, 34]; (III) a
(2+1)+1 decomposition based on the introduction of the
quotient space defined by the orbits of a rotational Killing
vector [35, 36]; (IV) a temporal foliation followed by a
further 2+1 slicing to deal with axisymmetric and sta-
tionary configurations [37], generalized later on for a 2+1
foliation of a hypersurface with arbitrary causal charac-
ter [38, 39], a technique also employed in Ref. [40] for
identifying a hyperbolic system in the constraint struc-

ture, rewritten in terms of the 2+1 decomposition of the
extrinsic curvature of the hypersurfaces explored previ-
ously in the orthogonal double foliation formalism of Ref.
[30]; (V) the standard metric perturbation formalism, ex-
plored in a spherically symmetric, static setup in Refs.
[28, 29]. The advantage of the orthogonal double foliation
formalism over the first two consist in its substantially re-
duced number of variables. A comparison with the third
and fourth has been presented in [30]. The third relies
heavily on the use of a Killing vector, which is not a
necessity for the orthogonal double foliation. Although
the fourth approach contains the same number of metric
variables (9), it does not employ all geometric quantities
playing an essential role in Refs. [30, 31]. In particular,
Ref. [38] introduces a second fundamental form combin-
ing a set of dynamical and nondynamical variables ex-
plored in Refs. [30, 31], a normal fundamental form but
no normal fundamental scalar. Finally, the advantage
over the metric perturbation formalism is the canonical
(geometrodynamical) interpretation of the variables.1

The simplicity of the orthogonal double foliation of
Refs. [30, 31] however required to waste one gauge d.o.f.
for imposing the orthogonality requirement after the per-
turbation. This hampered the discussion of the even
modes, carrying an arbitrary function of time, hence los-
ing their physical interpretation [6].

It is the purpose of the present paper to lift the condi-
tion of orthogonality of the two foliations in order to re-
cover the full power of gauge fixing and open the way for
the discussion of the even mode perturbations in generic
scalar-tensor theories on a spherically symmetric, static
background, complementing the similar discussion of the
odd sector.

The paper is organized as follows. In Sec. II we de-
velop the new 2+1+1 decomposition of the spacetime B
based on two nonorthogonal foliations, one of them tem-
poral (St, characterized by constant t), the other one
spatial (Mχ, with constant χ). This generalizes the for-
malism of the orthogonal double foliation of spacetime,
developed in Refs. [30, 31], by allowing for a 10th metric
function N . We adapt suitable bases to both foliations,
then give the evolutions along the ∂/∂t and ∂/∂χ con-

1 Other spacetime decomposition techniques are also known. Ap-
plying the formalism developed in the seminal monograph [41],
a 2+2 breakup of the field equations was advanced in Ref. [42]
with the aim of identifying the gravitational d.o.f. in the so-called
conformal two-structure (the latter representing the information
on how the family of selected 2-surfaces is embedded in a 3-
surface). For the discussion of the initial value problem Ref. [43]
developed the 2+2 decomposition of spacetime in detail, based
on space-like 2-surfaces {S} rigged by a dyad basis given by their
two mutually orthogonal normals (and the respective orthogonal
3-foliations). Then the covariant derivatives of these normals
were decomposed in terms of the extrinsic curvatures of {S},
the induced connection of the timelike 2-surface {T} spanned by
the dyad basis and the curvature tensor of {T}. The Einstein
equations were decomposed accordingly.
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gruences (tangent to Mχ and St, respectively) in both
bases. Two of the basis vectors (tangent to the inter-
section Σtχ of St and Mχ) are common in both bases,
while the other two pairs are related by a Lorentz rota-
tion with angle φ = tanh−1 (N/N), where N is the lapse
function. Another geometric interpretation of the 10th
metric function arises as the vorticity of the basis vec-
tors orthogonal to both the hypersurface normals (of the
same basis) and to Σtχ. This is shown here through the
discussion of the algebras of each basis vectors and in the
discussion of the vorticities in the two Appendices.

In Sec. III we characterize the embedding in terms
of extrinsic curvatures, normal fundamental forms and
normal fundamental scalars of the hypersurface normals,
also introduce the 2+1 decomposed form of the curva-
ture of their congruences (their nongravitational accel-
erations). For the basis vectors orthogonal to them we
introduce similar quantities. We establish the intercon-
nections among all those geometric quantities. In Sec.
IV we also derive their connection with the time- and
χ-derivatives of the metric functions. This enables us to
select those geometric variables, which bear a dynamical
role, e.g., connected to canonical momenta.

As a first application, we present the Hamiltonian for-
malism of general relativity in the 2+1+1 decomposed
form in Sec. V. We derive the canonical momenta, then
the Hamiltonian and diffeomorphism constraints and the
boundary terms of the action, all in terms of canonical
data defined on Σtχ. We recover previous results of Ref.
[31] applying for the orthogonal double foliation in the
vanishing N limit. The nonorthogonality of the folia-
tions also generates new terms.

Then, in Sec. VI we explore the diffeomorphism gauge
freedom for fixing the perturbations on the static and
spherically symmetric background of beyond Horndeski
theories in an unambiguous way. This result opens up
the possibility for the discussion of the even sector of the
perturbations. Although the unambiguous gauge fixing
is different from the one employed for the odd sector in
Ref. [6], the results of the stability analysis presented
there are unaffected, as the two sectors decouple.

In Sec. VII we present our conclusions. Two Appen-
dices are devoted to discuss the consequences of the hy-
persurface orthogonality of the normal basis vectors and
the interpretation of the vorticities of the complemen-
tary basis vectors in terms of the geometric quantities
introduced in the main body of the paper.

We use the abstract index notation throughout the
paper. Latin and greek indices, respectively, denote
4-dimensional spacetime and 3-dimensional spatial ab-
stract indices. Boldface lower- and uppercase indices dif-
ferentiate among 2-dimensional and 4-dimensional basis
vectors, respectively. 4-dimensional quantities will carry
a distinguishing tilde sign, while 3-dimensional quanti-
ties a overhat (or reversed overhat) sign. Tensors defined
both on the full spacetime and on lower-dimensional (hy-
per)surfaces carry Latin indices, the latter obeying the
required projection conditions. Quantities defined on the

background in a perturbational setup carry an overbar.
Round or square brackets on indices denote symmetriza-
tion or antisymmetrization, respectively.

II. THE NONORTHOGONAL 2+1+1

DECOMPOSITION OF SPACETIME

Let B be a 4-dimensional manifold with metric g̃ab of
Lorentzian signature. We assume the manifold admits
both a timelike and a spacelike foliation. In this section
we generalize the formalism of [30, 31] by dropping the
orthogonality requirement of the foliations St (with con-
stant time coordinate t) and Mχ (with constant space
coordinate χ).
On the tangent space of the doubly-foliable spacetime

B we introduce the bases eA = {∂/∂t, ∂/∂χ,Ei} (with
Ei some basis elements of the tangent space of Σtχ) and
its dual eB =

{
dt, dχ,Ej

}
on the respective cotangent

space.
Let na be the (timelike) unit normal to St, while m

a

the (spacelike) unit normal to both na and Σtχ. With
them we introduce the basis fA = {n,m, Fi} adapted
to St (with Fi basis elements of the tangent space of
Σtχ) and its dual fB =

{
n̄, m̄, F j

}
. The (spacelike) unit

normal to Mχ is la, while ka denotes the (timelike) unit
normal to both la and Σtχ. The basis adapted to Mχ

is gA = {k, l, Gi} (where Gi are basis elements of the
tangent space of Σtχ), with g

B =
{
k̄, l̄, Gj

}
its dual.

For simplicity one can chose coordinate basis vectors
Ei = Fi = Gi = ∂/∂yi. From the causal character of the
basis vectors and from the duality relations we get

n̄a = −na , m̄a = ma ,

k̄a = −ka , l̄a = la .

A. The induced metric

The 4-metric g̃ab can be decomposed in two equivalent
ways

g̃ab = −nanb +mamb + gab , (1)

g̃ab = −kakb + lalb + gab . (2)

As usual g̃ba ≡ δba, while the mixed form of the induced
metric gab projects to Σtχ. With this projection, both
covariant derivatives and Lie derivatives along a congru-
ence V a of any 4-dimensional tensor T̃ a1...ar

b1...br
could be

projected onto Σtχ:

DaT̃
a1...ar

b1...bq
≡ gcag

a1

c1
...gar

cr
gd1

b1
...g

dq

bq
∇̃cT̃

c1...cr
d1...dq

, (3)

LVT̃
a1...ar

b1...bq
≡ ga1

c1
...gar

cr
gd1

b1
...g

dq

bq
L̃VT̃

c1...cr
d1...dq

. (4)

We note that whenever T̃ a1...ar

b1...bq
is a projected object

onto Σtχ, the expression DaT̃
a1...ar

b1...bq
is exactly the co-

variant derivative in Σtχ (which annihilates gab), while



4

LVT̃
a1...ar

b1...bq
describes an evolution along the congruence

V a (it represents the partial derivative with respect to
the adapted coordinate v, thus V = ∂/∂v, where v could
be either t or χ). Otherwise they become but notations,
as they fail to obey the Leibniz rule [30]).

B. Evolutions in the fA basis

The first two elements of the coordinate basis eA,
representing evolution vectors can be generically decom-
posed in the fA basis as

(
∂

∂t

)a

= Nna +Na +Nma , (5)

(
∂

∂χ

)a

= Mma +Ma +Mna . (6)

Here Na and Ma (N and M) are the components of
the 3-dimensional shift vectors along (orthogonal to) Σtχ,
while N and M represent lapse type functions of the re-
spective evolutions. Together with the 3 independent
components of gab there seem to be 11 gravitational vari-
ables at this stage, but their number will be reduced to
10. Indeed, the duality relation 〈dt, ∂/∂χ〉 = 0 implies
M = 0, which in turn implies through Eq. (6) that ∂/∂χ
is tangent to St, see also Fig. 1.

�
χ

 
t

Σ
tχ

ℬ

(
∂

∂t )
a

(
∂

∂χ )
aM

a

Nn
a

Mm
a

N
a

$m
a

FIG. 1: The decomposition of the temporal and radial evo-
lution vectors in the fA basis. (For visualization purposes a
negative N was chosen.)

From the rest of the duality relations
〈
eB, eA

〉
= δBA

one gets

n̄ = Ndt ,

m̄ = Ndt+Mdχ ,

F j = N jdt+M jdχ+ Ej . (7)

As ∂/∂t is timelike and Na spacelike, the inequalities

N2 −N 2 > gabN
aN b ≥ 0

hold, while ∂/∂t lying in the future light cone implies
N > 0.
We conclude this subsection by giving in Table I the

algebra of the basis vectors fA. As expected from the
Frobenius theorem, the basis vectors {m,Fi} span the
tangent space of St, while from the dual form of the
Frobenius theorem the fourth basis vector na turns out
vorticity-free (also shown explicitly in Appendix A). The
same type of reasoning yields that ma has vorticity (as
the component along ma of the [n, Fj] bracket is non-
vanishing, hence the vectors {n, Fi} do not span a hy-
persurface). This vorticity is given in Appendix B and
disappears together with N in the orthogonal foliation
limit employed in Refs. [30, 31]. Hence the vorticity of
the basis vector ma is generated by the nonorthogonality
of the two foliations.

C. The role of the 10th metric variable

The new element in the formalism as compared with
that of Refs. [30, 31] is the shift component N , which
reestablishes the number of gravitational variables as 10,
equivalent to the 4-metric variables.
Straightforward calculations employing also the rest of

the duality relations
〈
fB, fA

〉
= δBA =

〈
gB, gA

〉
and Eqs.

(7) lead to the relation between the two adapted bases

(
k̄
l̄

)
=

(
c −s

−s c

)(
n̄
m̄

)
,

(where s = sinhφ, c = coshφ) and

(
ka

la

)
=

(
c s

s c

)(
na

ma

)
, (8)

thus in the form of a Lorentz-rotation. Its angle is defined
by

N = N tanhφ . (9)

This represents the second geometric interpretation of
the 10th metric variable (beyond the vorticity of m).

D. Evolutions in the gA basis

With the Lorentz rotations given in the previous sub-
section it is easy to express the evolution vectors in the
gA basis:

(
∂

∂t

)a

=
N

c
ka +Na , (10)

(
∂

∂χ

)a

= M (−ska + cla) +Ma . (11)
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[n,m]a [n, Fj]
a [m,Fj]

a

na 1
M

[
∂χ (lnN)− 1

M
M j∂j (lnN)

]
∂j (lnN) 0

ma 1
MN

[
−∂tM + ∂χN +N j∂jM −M j∂jN

]
M
N
∂j

(
N

M

)
∂j (lnM)

F a
i

1
MN

(
−∂tM

i + ∂χN
i +N j∂jM

i −M j∂jN
i
)

1
N

[
∂jN

i − N

M
∂jM

i
] ∂jM

i

M

TABLE I: The algebra of the basis vectors fA. The components of the brackets enlisted in the first line along the vectors in
the first column are given.

�
χ

 
t

Σ
tχ

ℬ

(
∂

∂t )
a

N

$
k

a

$Ml
a

−&Mk
a

N
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M
a

(
∂

∂χ )
a

FIG. 2: The decomposition of the temporal and radial evo-
lution vectors in the gA basis. (For visualization purposes a
negative s was chosen.)

Remarkably, the evolution vector ∂/∂t has no component
along l, hence it is tangent to Mχ, see also Fig. 2.
Further exploring the duality relations one gets

k̄ = −Msdχ+
N

c
dt ,

l̄ = Mcdχ ,

Gj = N jdt+M jdχ+ Ej = F j . (12)

The algebra of the basis vectors gA is presented in Table
II. Again, from the Frobenius theorem, the basis vectors
{k,Gi} span the tangent space of Mχ and from its dual
form the fourth basis vector la turns out vorticityfree.
The vector ka however has vorticity (as the component
along ka of the [l, Gj] bracket is nonvanishing). This vor-
ticity is given in Appendix B and again disappears with
N in the orthogonal foliation limit employed in Refs.
[30, 31]. Hence the vorticity of the basis vector ka is
also generated by the nonorthogonality of the two foli-
ations. Finally we note that in the orthogonal foliation
limit N → 0 the algebras given in Tables I-II coincide
and the vorticities of the basis vectors disappear.

III. CODIMENSION-2 EMBEDDING OF Σtχ

In this section we introduce a series of geometrical
quantities characterizing the embedding of Σtχ and we
analyze their relationship with various coordinate deriva-
tives of the metric variables.
We have defined a total of four normals to the sur-

face Σtχ, two pairs taken from the bases fA and gA,
respectively. With each of them we define an extrinsic
curvature, as follows:

Kab ≡ Danb =
1

2
Lngab ,

Lab ≡ Dalb =
1

2
Llgab ,

K∗
ab ≡ Dakb =

1

2
Lkgab ,

L∗
ab ≡ Damb =

1

2
Lmgab . (13)

All these tensors are symmetric, as shown in the Appen-
dices A and B.
With the two normals to the hypersurfaces we define

the normal fundamental forms of Σtχ as follows:

Ka ≡ gcam
d∇̃cnd = gcam

d∇̃dnc ,

La ≡ −gcakd∇̃cld = −gcakd∇̃dlc . (14)

Their second expressions arise from the hypersurface-
orthogonality of the basis vectors na and la, as proven
in Appendix A. It is easy to prove that they are related
as

La = Ka +Daφ . (15)

By contrast, for the vectors ka and ma (which have
vorticity) the similarly defined quantities

K∗
a ≡ gdal

c∇̃ckd ,

L∗
a ≡ −gdanc∇̃cmd (16)

do not share this interchangeability property. Similarly,
one can prove

L∗
a = K∗

a +Daφ . (17)

The differences K∗
a − La and L∗

a − Ka give the non-
vanishing components of the vorticities of ka and ma,
respectively, as demonstrated in Appendix B.
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[k, l]a [k,Gj]
a [l, Gj]

a

ka
{
∂t

(
s

N

)
−N j∂j

(
s

N

)
+ s

N

[
∂t ln (MN)−N j∂j ln (MN)

]
∂j

(
ln N

c

)
− N

c
2M

∂j

(
scM
N

)

+ 1
cM

[
∂χ ln

(
N
c

)
−M j∂j ln

(
N
c

)]}

la 1
MN

[
−∂t (cM) +N j∂j (cM)

]
0 ∂j ln (cM)

Ga
i

1
MN

[
−∂tM

i + ∂χN
i −M j∂jN

i +N j∂jM
i
]

c

N

(
∂jN

i
)

s

N
∂jN

i + 1
cM

∂jM
i

TABLE II: The algebra of the basis vectors gA. The components of the brackets enlisted in the first line along the vectors in
the first column are given.

For the hypersurface-orthogonal vectors na and la nor-
mal fundamental scalars

K ≡ mdmc∇̃cnd ,

L ≡ kdkc∇̃cld (18)

can be defined. The corresponding quantities for the ba-
sis vectors ka and ma are

K∗ ≡ ldlc∇̃ckd ,

L∗ ≡ ncnd∇̃cmd . (19)

Finally the two timelike vector congruences have
the curvatures (nongravitational 3-dimensional acceler-
ations):

α̂a ≡ nb∇̃bna = aa −maL∗ , (20)

α̂∗
a ≡ kb∇̃bka = a

∗
a − laL , (21)

the second set of expressions representing their 2+1 de-
composed form with the 2-dimensional acceleration com-
ponents:

aa ≡ gcan
b∇̃bnc ,

a
∗
a ≡ gcak

b∇̃bkc . (22)

Similarly, the spacelike congruences la and ma have the
3-dimensional curvatures:

β̌a ≡ lb∇̃bla = ba + kaK∗ , (23)

β̌∗
a ≡ mb∇̃bma = b

∗
a + naK , (24)

with the 2-dimensional “acceleration” components:

ba ≡ gdal
c∇̃cld ,

b
∗
a ≡ gdam

c∇̃cmd . (25)

With the above-introduced quantities the 2+1+1 de-
composition of the covariant derivatives of the normals
to Σtχ in the bases they belong is

∇̃anb = Kab + 2m(aKb) +mambK + nambL∗

−naab , (26)

∇̃alb = Lab + 2k(aLb) + kakbL+ lakbK∗

+labb , (27)

∇̃akb = K∗
ab + laK∗

b + lbLa + lalbK∗ + kalbL
−kaa∗b , (28)

∇̃amb = L∗
ab + naL∗

b + nbKa + nanbL∗ +manbK
+mab

∗
b . (29)

For deriving Eqs. (26), (27) we have also employed the
second equalities (14). The structure of Eqs. (28), (29)
is slightly different due to the vorticities of the vectors
ka and la.
The geometric quantities defined in this subsection are

not all independent. This should be obvious as the two
bases are related by a Lorentz-rotation. By tedious but
straightforward algebra we expressed all starry quantities
in terms of unstarred ones and φ (or N ). For example
the extrinsic curvatures defined with the basis vectors of
the two bases are related by a rotation matrix with angle
ψ = arccos (1/ coshφ) as:

(
K∗

ab

L∗
ab

)
=

(
1/c s/c
−s/c 1/c

)(
Kab

Lab

)
. (30)

The geometric quantities characterizing the embedding
are summarized on Fig. 3 while the full set of interde-
pendencies are given them in Table III.
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FIG. 3: The geometric embedding variables.

Note that the notations were introduced such that in
the particular case N = 0 all starry quantities transform
into the corresponding unstarred ones (e.g., K∗

ab becomes
Kab). Further, as in that case the vorticities of the basis
vectors ka and ma vanish, La = Ka (as explored in Refs.
[30, 31]) follows.
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K∗
ab =

1
c
(Kab + sLab) L∗

ab =
1
c
(Lab − sKab)

K∗
a = Ka + s

c
(aa + ba) L∗

a = La + s

c
(aa + ba)

K∗ = 1
c
(K − sL) + 1

c
2 (la − sna) ∇̃aφ L∗ = 1

c
(sK+ L) + 1

c
2 (sla + na) ∇̃aφ

a
∗
a = aa + s

c
(Ka − La) = aa − s

c
Daφ b

∗
a = ba + s

c
(La −Ka) = ba + s

c
Daφ

TABLE III: The relations among starred and unstarred geometric quantities characterizing the embedding of Σtχ.

IV. KINEMATICS AND GEOMETRIC

EMBEDDING

In this section we establish the relations of the
temporal and spatial derivatives of the metric vari-
ables {gab, Ma, M} to the geometric quantities{
Kab, Ka, K

}
,

{
Lab, La, L

}
,

{
K∗ab, K∗

a, K∗
}

and{
L∗ab, L∗

a, L∗
}

characterizing the embedding. These
will be used later in the derivation of the Hamiltonian
formulation of GR from the Einstein-Hilbert action.
Bearing in mind that both the coordinate derivatives

along time and χ and the extrinsic curvatures are pro-
jected Lie derivatives, we find for the extrinsic curvature
in the two bases

Kab =
1

N

[
1

2
∂tgab−D(aNb)

]
− s

Mc

[
1

2
∂χgab−D(aMb)

]
,

L∗
ab =

1

M

[
1

2
∂χgab −D(aMb)

]
(31)

and

Lab =
s

N

[
1

2
∂tgab−D(aNb)

]
+

1

Mc

[
1

2
∂χgab−D(aMb)

]
,

K∗
ab =

c

N

[
1

2
∂tgab −D(aNb)

]
, (32)

respectively. Only L∗
ab is free from time derivatives of the

induced metric, hence nondynamical.
In order to establish the relation of the rest of the

geometric variables with time and χ-derivatives of the
metric variables we employ the following identity holding
for all vectors VI for which g̃ (VI, VJ) =constant:

g̃(VA, ∇̃VB
VC) = g̃ ([VA, VB] , VC)

−g̃(VC, ∇̃VA
VB). (33)

First we apply this identity for the case VB = VC,
such that the last term vanishes. Then for the ba-
sis vectors fA and gA perpendicular to Σtχ the left-

hand sides are the accelerations α̂a = g̃
(
fA, ∇̃nn

)
fA
a ,

α̂∗
a = g̃

(
gA, ∇̃kk

)
gAa , β̌a = g̃

(
gA, ∇̃ll

)
gAa and β̌∗

a =

g̃
(
fA, ∇̃mm

)
fA
a . Calculating the right-hand sides by

exploring the specific components of the Lie brackets
given in Tables I and II and comparing the resulting ex-
pressions with the decompositions given in Eqs. (20),

(21), (23) and (24) we obtain the 2-dimensional acceler-
ations as projected covariant derivatives

aa = Da (lnN) ,

b
∗
a = −Da (lnM) ,

ba = −Da ln (cM) ,

a
∗
a = Da

(
ln
N

c

)
, (34)

while the normal fundamental scalars emerge as

K =
1

MN
[∂tM − ∂χN −NaDaM +MaDaN ] ,

L∗ = − 1

M
[∂χ (lnN)−MaDa (lnN)] ,

L = −S − 1

cM

[
∂χ ln

(
N

c

)
−MaDa ln

(
N

c

)]
,

K∗ =
1

MN
[∂t (cM)−NaDa (cM)] , (35)

with

S = ∂t

(
s

N

)
−NaDa

(
s

N

)

+
s

N
[∂t ln (MN)−NaDa ln (MN)] (36)

(an expression which vanishes for orthogonal foliations).

Next we apply the identity (33) for nb∇̃bma =

g̃
(
fA, ∇̃nm

)
fA
a and lb∇̃bka = g̃

(
gA, ∇̃lk

)
gAa , respec-

tively, obtaining for the Σtχ projections

L∗
a = Ka +

M

N
Da

(N
M

)
, (37)

K∗
a = La −

N

c2M
Da

(
scM

N

)
. (38)

These can be also derived from the expressions given in
Table III together with Eqs. (15) and (34). Now we have
everything at hand to derive the relation of the normal
fundamental forms and metric derivatives. For this we
rewrite

Ka = −gab [m,n]b − L∗
a ,

La = −gab [k, l]b −K∗
a ,

employ the algebras of the basis vectors fA and gA given
in Tables I and II, respectively, together with Eqs. (37)
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and (38), to obtain

Ka =
1

2MN

(
∂tM

a − ∂χN
a −N bDbM

a +M bDbN
a
)

−M

2N
Da

(N
M

)
,

La =
1

2MN

(
∂tM

a − ∂χN
a −N bDbM

a +M bDbN
a
)

+
N

2c2M
Da

(
scM

N

)
,

K∗a =
1

2MN

(
∂tM

a − ∂χN
a −N bDbM

a +M bDbN
a
)

− N

2c2M
Da

(
scM

N

)
,

L∗a =
1

2MN

(
∂tM

a − ∂χN
a −N bDbM

a +M bDbN
a
)

+
M

2N
Da

(N
M

)
. (39)

Note that the metric derivatives are related to the normal
fundamental vectors, rather then forms.
From the results of this and of the previous section

we can conclude that the independent metric variables
with dynamical role are {gab, Ma, M} while the embed-
ding variables

{
Kab, Ka, K

}
carry information about

their temporal evolution. The extrinsic curvature L∗
ab be-

ing the only one, which contains no time derivatives, it
plays a nondynamical role. Hence we chose the variables
emerging in the fA basis as independent,

{
Kab, Ka, K

}

representing momenta, while
{
L∗ab, L∗

}
merely spatial

derivatives. All other embedding variables can be ex-
pressed in terms of this set.

V. HAMILTONIAN FORMALISM IN GENERAL

RELATIVITY

In this section we present the 2+1+1 decomposed
Hamiltonian formalism in general relativity. As discussed
earlier, we employ the fA basis in the decomposition.

A. The 2+1+1 decomposition of the

Einstein-Hilbert action

We define the 2-dimensional Riemann tensor Rabcd of
the metric induced in Σtχ as

RabcdV
b = (DcDd −DdDc)Va , (40)

which written in terms of the geometric quantities aris-
ing in the 2+1+1 decomposition and of the 4-dimensional
Riemann tensor leads to the following Gauss-type iden-
tity:

Rabcd = giag
j
bg

k
c g

l
dR̃ijkl+2

(
L∗
a[cL

∗
d]b −Ka[cKd]b

)
. (41)

The extrinsic curvatures are those appearing in the fA
basis. Twice contracting this leads to

R = gikgjlR̃ijkl+(L∗)
2−K2−L∗

abL
∗ab+KabK

ab . (42)

The first term on the right-hand side is decomposed as

gikgjlR̃ijkl = R̃+ 2
(
njnl −mjml

)
R̃jl

−2nimjnkmlR̃ijkl , (43)

where

minjnkmlR̃ijkl = Kk (2L∗
k +Kk)− (L∗)

2
+ (K)

2

+L̃mL∗+L̃nK−DiNDiM

NM
,

njnlR̃jl = −K lbKbl − L∗L∗ − 2KbKb − (K)
2

+(L∗)
2 − L̃nK − L̃nK− L̃mL∗

+
DbD

bN

N
+
DbNDbM

NM
,

mjmlR̃jl = −L∗lbL∗
bl + 2KlL∗l − (L∗)

2
+ (K)

2

+KK + L̃nK − L̃mL
∗ + L̃mL∗

−
(
DbD

bM

M
+
DbMDbN

NM

)
. (44)

In order to prove the above expressions we have explored
the useful identities

∇̃aa
a =

DaD
aN

N
+
DaNDaM

NM
, (45)

∇̃ab
∗a = −

(
DaD

aM

M
+
DaMDaN

NM

)
, (46)

and

∇̃an
a = K +K , ∇̃am

a = L∗ − L∗ . (47)

With these the twice contracted Gauss relation becomes2

R = R̃−K2 −KabK
ab + (L∗)

2
+ L∗

abL
∗ab − 2KbKb

−2K (K +K) + 2L∗ (L∗ − L∗)

−2L̃n (K +K) + 2L̃m (L∗ − L∗)

+2

[
DaD

aN

N
+
DaD

aM

M
+
DaMDaN

NM

]
. (48)

Noting that
√−g̃ = NM

√
g the Einstein-Hilbert action

SEH =

∫
dt

∫
dχ

∫

Σtχ

d2xLG ,

LG =
√
−g̃R̃ (49)

2 By suitably transforming the Lie derivatives this expression be-
comes identical with the one obtained for orthogonal double fo-
liations, Eq. (A1) of Ref. [31], after correcting the coefficient of
(

L∗
ab
L∗ab −KabK

ab
)

from −3 to +1 in the latter.
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can be 2+1+1 decomposed as follows:

LG
[
{gab,Ma,M};

{
Kab,Ka,K

}
;
{
L∗ab,L∗

}
;{N,Na,N}

]

= NM
√
g
{
R +KabK

ab +K2 − (L∗)
2 − L∗

abL
∗ab

+2KaKa + 2K (K +K)− 2L∗ (L∗ − L∗)

+2L̃n (K + K)− 2L̃m (L∗ − L∗)− 2
[
N−1DaD

aN

+M−1DaD
aM + (NM)

−1
DaMDaN

]}
. (50)

This form of the action is ready to be employed in the
Legendre transformation.

B. The Legendre transformation

The action (50) has to be further transformed in order
to derive the canonical momenta. By employing

L̃n (K +K) = ∇̃a [n
a (K +K)]− (K +K)

2
,

L̃m (L∗ − L∗) = ∇̃a [m
a (L∗ − L∗)]− (L∗ − L∗)

2
,

we rewrite it in a form explicitly containing all boundary
terms (total divergences):

LG = NM
√
g
{
R+KabK

ab −K2 − 2KK+ 2KaKa

−L∗
abL

∗ab + L∗2 − 2L∗L∗ + 2(NM)−1DaMDaN

−2∇̃a

[
α̂a − β̌∗a − naK +maL∗

]}
. (51)

This contains expressions of the metric variables
{gab,Ma,M}, geometric quantities

{
Kab,Ka,K

}
con-

taining their time derivatives, purely spatial derivatives{
L∗ab,L∗

}
[see Eqs. (31),(32)]; the lapse and shift com-

ponents {N,Na,N} and total divergences. The latter
do not contribute to the dynamics, hence can be omitted
when calculating the canonical momenta:

πab =
∂LG

∂ġab
=

√
gM

[
Kab − gab (K +K)

]
,

pa =
∂LG

∂Ṁa
= 2

√
gKa ,

p =
∂LG

∂Ṁ
= −2

√
gK . (52)

With them we rewrite the Lagrangian density once
again with the aim to manifestly obtain the Liouville-
form. This is achieved by transforming (the double
of) the terms quadratic in the set

{
Kab,Ka,K

}
in the

Lagrangian density into expressions linear in the time
derivatives of {gab,Ma,M}. After extensive calculations
we obtain

LG = πabġab + paṀ
a + pṀ −HG

+LG
t + LG

χ + LG
D , (53)

where

HG = NHG
⊥ +NaHG

a +NHG
N (54)

is the vacuum gravitational Hamiltonian density in GR, a
linear combination of the products of the Lagrange mul-
tipliers {N,Na,N} with the Hamiltonian constraint3:

HG
⊥ =

√
g
{
M

(
−R− 3L∗abL∗

ab + L∗2 +KabK
ab

+2KaKa −K2 − 2KK
)
+ 2gab∂χL

∗
ab

−2MaDaL
∗ − 4L∗

abD
aM b + 2DaDaM

}
,(55)

(“angular”) diffeomorphism constraints along Σtχ:

HG
a = −2

√
g
{
Db

[
Kb

aM −Mgba (K +K)
]
+KDaM

+KaML∗ + ∂χKa −M bDbKa −KbDaM
b
}
, (56)

and along ma (“radial” diffeomorphism constraint):

HG
N = −2

√
g
[
M

(
L∗K − L∗

abK
ab
)
+MDaKa

+2KaDaM − ∂χK +MaDaK] , (57)

respectively, finally the terms

LG
t = 2∂t [

√
gM (K +K)] ,

LG
χ = 2∂χ [

√
g (NL∗ −NaKa −NK)] ,

LG
D = −2

√
gDa

[
MDaN +N b (MKa

b −MaKb)

+NMaL∗ +N (MKa −MaK)] (58)

are boundary contributions. Employing the inverses

Kab =
1

M
√
g

(
πab − π

2
gab

)
− p

4
√
g
gab ,

Ka =
1

2
√
g
pa ,

K =
1

4
√
g

(
p− 2π

M

)
, (59)

of Eqs. (52) and introducing Lie derivatives by remem-
bering that the momenta are tensor densities4, all ex-
pressions can be rewritten in terms of the set of canon-
ical coordinates {gab,Ma,M} and canonical momenta{
πab, pa, p

}
as follows:

HG
⊥ =

√
g
[
−M

(
R+ 3L∗abL∗

ab − L∗2
)
+ 2DaDaM

+2gab (∂χ − LM)L∗
ab

]
+

1

M
√
g

(
πabπ

ab − π2

2

)

+
M√
g

(
1

2
pap

a +
1

8
p2 − πp

2M

)
, (60)

HG
a = −2Dbπ

b
a + pDaM − (∂χ − LM) pa , (61)

HG
N = 2L∗

abπ
ab − 2paDaM −MDap

a (62)

− (∂χ − LM) p .

3 This expression reproduces Eq. (13a) of Ref. [31] after correcting
the misprints in the signs of the second and third term.

4 For an arbitrary tensor density F = f
√
g (where f is a tensor)

its Lie derivative along Ma is LMF = Da (FMa).
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The constraints (60) and (61) fully agree with the re-
spective ones of Ref. [31], while the last constraint (62)
is new, emerging only in the nonorthogonal double folia-
tion.
Similarly, the boundary terms emerge as:

LG
t = −∂t

(
π +

Mp

2

)
,

LG
χ = ∂χ

[
2
√
gNL∗ −Nap

a +N
( π

M
− p

2

)]
,

LG
D = −Da {2

√
g (MDaN +NMaL∗)

+N b

[
2πa

b −
(
π +

Mp

2

)
gab −Mapb

]

+N
[
Mpa +Ma

( π

M
− p

2

)]}
. (63)

Unlike the constraints, the boundary terms on the spatial
infinity are modified by new terms proportional to N .
Following the same steps, the time derivatives of the

canonical coordinates can be expressed from Eqs. (31),
(35) and (39) as follows:

ġab =
N

M
√
g

[
2πab −

(
π +

Mp

2

)
gab

]

+LNgab +
N
M

(∂χ − LM) gab ,

Ṁa =
MN√
g
pa + (∂χ − LM)Na +MDaN −NDaM ,

Ṁ =
MN

4
√
g

(
p− 2π

M

)
+ LNM + (∂χ − LM)N . (64)

These are but the evolution equations of the canonical
coordinates, thus half of the canonical equations. Note
that all of them contain terms with N , the rest of the
terms agreeing with those derived for the orthogonal case
in Ref. [31].

C. Canonical equations

In order to simplify the presentation, we introduce the
notations gA ≡ {gab,Ma,M} for the set of canonical co-
ordinates, πA ≡

{
πab, pa, p

}
for the canonical momenta,

and y =
{
y1, y2

}
for the coordinates adapted to Σtχ.

The 2+1+1 decomposed Hamiltonian identified in the
previous subsection is

HG =

∫
dχ

∫
dyHG (χ, y) . (65)

Time derivatives of the canonical variables emerge as
functional derivatives of the Hamiltonian:

ġA =
δHG

δπA (χ, y)
, (66)

π̇A = − δHG

δgA (χ, y)
. (67)

It can be verified that Eq. (66) reproduces the set of
equations of motion (64). Next we calculate Eq. (67) in
detail. Lengthy but straightforward computations lead
to the second set of canonical equations:

π̇ab = NSab +NVab −NM
√
gL∗(L∗ab − L∗gab)

+
√
g
[
MDaDbN − gabMDcDcN

−gab (DcN) (DcM) + gab(∂χ − LM)(NL∗)
]

+LNπ
ab −

[Nπab

M2
(∂χ − LM) +Np(aDb)

]
M

+

[
πab

M
(∂χ − LM) +Mp(aDb)

]
N

+
N
M

(∂χ − LM)πab , (68)

ṗa = NVa − 2
√
g[L∗

baD
bN +Da(NL∗)] + LNpa

−2N
M

Dbπba +
2N
M2

πbaD
bM

+

(
pgab −

2

M
πab

)
DbN , (69)

ṗ = NS +NV − 2
√
g(L∗L∗ +DaD

aN) + LNp

+N
(

2

M
πabL∗

ab −Dap
a

)
− 2paDaN . (70)

Here Sab and S are

Sab = − 2

M
√
g

(
πa

cπ
bc − π

2
πab

)

+
1

2M
√
g

(
πcdπ

cd − π2

2

)
gab

− M

4
√
g
gab

(
πp

M
− pcp

c − p2

4

)

+
1

2
√
g

(
pπab +Mpapb

)
, (71)

S =
1√
gM2

(
πabπ

ab − π2

2

)

− 1

2
√
g

(
pap

a +
p2

4

)
, (72)

while Vab, Va, and V represent the tensorial, vectorial,
and scalar projections of the force term of the (s+ 1)-
dimensional scalar curvature potential, given in Ref. [31]:

Vab = −M√
g
(
Gab + 2L∗acL∗b

c − L∗L∗ab
)

+
M

2

√
g
(
3L∗cdL∗

cd − L∗2
)
gab

+
√
g
(
gacgbd − gabgcd

)
(∂/∂χ− LN)L∗

cd

+
√
g(DaDbM − gabDcDcM) , (73)
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Va = −2
√
g
(
DbL∗

ba −DbL
∗
)
, (74)

V =
√
g(R+ L∗

abL
∗ab − L∗2) . (75)

The canonical equations given by Eqs. (64) and (68-70)
are the generalizations of Eqs. (29a-30c) of Ref. [31]
for the case of nonorthogonal double foliation of the 4-
dimensional spacetime.

VI. GAUGE TRANSFORMATIONS AND

FIXING IN PERTURBATIONS OF

SPHERICALLY SYMMETRIC, STATIC BLACK

HOLES IN GENERIC SCALAR-TENSOR

THEORIES

In GR the perturbations of the spherically symmetric,
static spacetime have been discussed both for the odd
[44] and for the even parity sectors [45]. The 10 met-
ric functions were analyzed by employing a 2+1+1 de-
composition based on the temporal and radial direction
and a further decomposition of the metric perturbation
into spherical harmonics and its derivatives. As result of
the choice of polar coordinates, 8 metric perturbations
survived, however suitably adapting the remaining dif-
feomorphism freedom, the odd sector has been expressed
in terms of 2, the even sector in terms of 4, respectively
[44].
When we consider generic scalar perturbations of

spherically symmetric, static black holes in those scalar-
tensor gravitational theories, which avoid Ostrogradsky
instabilities, an additional scalar variable pops in, further
complicating the gauge choice. We address this problem
in this section.
All background quantities will be denoted by an over-

bar and the respective perturbed quantities will be writ-
ten as N = N̄ + δN , etc. Due to the high degree of sym-
metry of the background we could assume both the tem-
poral and spatial evolutions perpendicular to Σtχ (hence
N̄a = M̄a = 0), the foliations perpendicular (N̄ = 0) and
radial unitary gauge (φ̄ = φ̄ (χ)), thus the scalar depend-
ing only on the radial coordinate χ. Hence the perturbed
metric to first order becomes

ds2 = −
(
N̄2 + 2N̄δN

)
dt2 + 2M̄δNdtdχ

+2δNadtdx
a + (ḡab + δgab) dx

adxb

+2δMadx
adχ+

(
M̄2 + 2M̄δM

)
dχ2 , (76)

while the scalar field changes as

φ = φ̄ (χ) + δφ . (77)

Helmholtz-like decompositions on spherically symmet-
ric background hold for both vectors:

Va = D̄aVrotfree + Eb
aD̄bVdivfree , (78)

where Eab =
√
ḡ εab is the 2-dimensional Levi-Civita

tensor (having zero projections outside the surfaces of

transitivity of the SO(3) symmetry), with εab the 2-
dimensional alternating symbol (with the sign convention
εθϕ = 1 when polar coordinates are adapted). A similar
decomposition holds for any symmetric tensor on spheri-
cally symmetric background into scalar, rotationfree and
divergencefree parts:

Sab = Sba = ḡabSscalar + D̄aD̄bSrotfree

+
1

2

(
Ec

aD̄cD̄b + Ec
bD̄cD̄a

)
Sdivfree . (79)

The scalar and rotationfree parts in the above decompo-
sitions compose the even sector under parity transforma-
tions, while the divergencefree parts form the odd sector.
These sectors decouple. We decompose all metric per-
turbations as follows

δNa = D̄aP + Eb
aD̄bQ , (80a)

δMa = D̄aV + Eb
aD̄bW , (80b)

δgab = ḡabA+ D̄aD̄bB (80c)

+
1

2

(
Ec

aD̄cD̄b + Ec
bD̄cD̄a

)
C .

In consequence the odd sector contains the variables:

Q,W,C , (81)

while the even sector is composed of the variables:

P, V,A,B, δN, δN , δM, δφ . (82)

Next we proceed to fix the gauge in an unambiguous
manner. For this we need the transformation of the met-
ric and scalar perturbations under diffeomorphisms. The
transformed quantities will carry an overhat and they
arise as

Lξg̃ab = δg̃ab − δ̂g̃ab , Lξφ = δφ− δ̂φ , (83)

where the vector ξa is also decomposed into even and odd
contributions

(
ξt, ξχ, ξa = D̄aξ + EbaD̄bη

)
, (a = θ, ϕ) . (84)

The transformed quantities were given in Ref. [6] as:



12

δ̂N = δN − N̄ ξ̇t − N̄ ′ξχ , (85a)

δ̂N = δN − N̄2

2M̄
ξt

′
+
M̄

2
˙ξχ , (85b)

δ̂M = δM + M̄ ′ξχ + M̄ξχ′ , (85c)

P̂ = P − N̄2ξt + ξ̇ , (85d)

Q̂ = Q+ η̇ , (85e)

V̂ = V + M̄2ξχ + ξ′ − 2

χ
ξ , (85f)

Ŵ = W + η′ − 2

χ
η , (85g)

Â = A+
2

χ
ξχ , (85h)

B̂ = B + 2ξ , (85i)

Ĉ = C + 2η , (85j)

δ̂φ = δφ− φ̄′ξχ . (85k)

Here an overdot and a comma denote time derivative
and χ-derivative, respectively. It is immediate to con-
sume the radial diffeomorphism d.o.f. for maintaining
the radial unitary gauge after the perturbation kicks in,

hence δ̂φ = 0 (e.g. we chose the χ coordinate on the
perturbed spacetime such that constant χ-hypersurfaces

and constant φ̂-hypersurfaces coincide) and

ξχ =
δφ

φ̄′
. (86)

Then we consume the angular diffeomorphisms by ren-
dering the transformation of the 2-metric to a conformal

transformation, hence B̂ = 0 = Ĉ. This is achieved by
the choices

ξ = −B
2
, η = −C

2
. (87)

The last, temporal diffeomorphism was employed in Ref.
[6] to reinforce the perpendicularity of the two foliations,

hence δ̂N = 0 and

ξt =

∫
dχ

2M̄

N̄2

(
δN +

M̄

2
ξ̇χ

)
+ F (t, θ, ϕ) , (88)

which introduced there an arbitrary function depending
on all variables, but the radial one. This did not affect
the analysis of the odd sector, as the function F emerged

only in the even sector variables δ̂N and P̂ , hampering
the physical interpretation of the perturbations. By ex-
ploring the freedom of the nonorthogonality of the two
foliations however we do not have to chose ξt in this in-

convenient way. Indeed, we could fix P̂ = 0, achieved
by

ξt=
P + ξ̇

N̄2
. (89)

Therefore the analysis of the even sector perturbations
can be carried out unambiguously. In summary, with the
gauge choice advanced in this section, the remaining odd
sector variables

Q̂, Ŵ (90)

are identical with the ones employed in Ref. [6], while the
dynamics of the even sector perturbations is described in
terms of the variables

V̂ , Â, δ̂N, δ̂N , δ̂M . (91)

Note that another unambiguous gauge fixing for spher-
ically symmetric, static black hole perturbations in Horn-
deski theories (based on a decomposition into spherical
harmonics) has been advanced in Ref. [29], however that
choice prefers to cancel the perturbation of the 2-metric
rather than preserving the radial unitary gauge. We sum-
marize the various available gauge choices in Table IV.
The closest to the Regge-Wheeler gauge is the one devel-
oped here, which also ensures the radial unitary gauge.

VII. CONCLUDING REMARKS

Supplementing existing spacetime decomposition tech-
niques, in this paper we have developed the decomposi-
tion along nonorthogonal double foliations. Suppressing
the orthogonality requirement of the formalism of Ref.
[30], applied successfully in Ref. [6] for the analysis of
the odd sector perturbations of beyond-Horndeski theo-
ries, but making impossible the similar discussion of the
even sector, the latter restriction is lifted. The devel-
opment of the 2+1+1 nonorthogonal decomposition for-
malism followed closely its orthogonal counterpart. The
metric has tensorial, vectorial and scalar contributions
respective to the intersections of the leaves Σtχ. The 2-
metric gab, radial shiftM

a and radial lapseM are canon-
ical coordinates, supplemented by the 2-projection Na,
radial projectionN of the temporal shift, and the tempo-
ral lapse N . With two nonorthogonal foliations, there are
two different adapted bases. We gave the temporal and
radial evolutions in terms of the bases associated with
both foliations.
The metric variable N , absent in the orthogonal dou-

ble foliation formalism, has been found as being related
to (i) the Lorentz rotation with angle φ = tanh−1 (N/N),
among these bases, and (ii) the vorticity of the basis vec-
tors orthogonal to both the hypersurface normals (of the
same basis) and to Σtχ. In the orthogonal limit of van-
ishing N , the bases coincide and all basis vectors become
hypersurface-orthogonal. The 10th metric variableN has
been reintroduced as a nonorthogonality measure of the
formalism.
Then the codimension-2 embedding of Σtχ has been

characterized in terms of extrinsic curvatures, normal
fundamental forms and normal fundamental scalars de-
fined for its normals for both bases and their network of
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odd perturbations even perturbations
vanishing physical vanishing physical nonvanishing, nonphysical

RW Ĉ = 0 Q̂, Ŵ B̂ = P̂ = V̂ = 0 δ̂N, δ̂N , δ̂M, Â

KMS Ĉ = 0 Q̂, Ŵ B̂ = P̂ = Â = 0 δ̂N, δ̂N , δ̂M, V̂ , δ̂φ

KGT Ĉ = 0 Q̂, Ŵ B̂ = δ̂φ = 0 δ̂M, Â, V̂ δ̂N, δ̂N , P̂

GKG Ĉ = 0 Q̂, Ŵ B̂ = P̂ = δ̂φ = 0 δ̂N, δ̂N , δ̂M, Â, V̂

TABLE IV: Comparison of the various gauge choices from the literature for the odd and even sector perturbations (all tran-
scribed in the notations of this paper). In the absence of the scalar field and employing a decomposition into spherical harmonics
and their derivatives, Regge and Wheeler (RW) have adopted a unanimous gauge choice leaving 2 odd and 4 even sector metric
perturbations [44]. Their approach has been generalized for Horndeski theories by Kobayashi, Motohashi, and Suyama (KMS),
resulting in the same 2 variables for the odd sector [28] and 5 for the even sector (these include the scalar field perturbation)
[29]. Only 3 out of 4 metric perturbation variables correspond to those of the Regge-Wheeler choice. In the orthogonal double
foliation formalism, Kase, Gergely, and Tsujikawa (KGT) have employed the Regge-Wheeler gauge for the odd sector and
additionally the radial unitary gauge [6]. The price to pay for the orthogonality of the foliations was an arbitrary function
of time appearing in 3 of the even sector metric perturbation variables (nevertheless the even sector was beyond the scope
of that paper). In our paper (GKG) we advance another unambiguous gauge choice for scalar-tensor gravity, containing the
Regge-Wheeler gauge for the odd sector and all variables corresponding to the even sector analysis of Regge and Wheeler, with
an additional one (the even sector part of the metric perturbation δMa). This resulted from imposing the radial unitary gauge,
which adapts the χ-coordinate to absorb the scalar field perturbation.

interrelations established. The study of the kinematics
of the canonical data indicated that the basis containing
the normal to the spatial hypersurfaces is more advan-
tageous, as the embedding variables contain fewer time
derivatives. Hence we explored the quantities related to
this basis in the remaining part of the paper.
As a first application of the spacetime decomposition

along a nonorthogonal double foliation we derived the
general relativistic vacuum Hamiltonian dynamics in a
fashion similar to Ref. [31], first 2+1+1 decomposing
the curvature scalar in this formalism (and correcting
the coefficients in the respective previous result), then
giving both the canonical coordinates gA and the canon-
ical momenta πA in terms of the introduced geometri-
cal quantities. Their dynamics has been worked out as
canonical equations involving the Hamiltonian and dif-
feomorphism constraints. The expressions derived repro-
duced all terms emerging in the orthogonal double foli-
ation formalism, supplemented by new terms containing
N .
In Appendix C of Ref. [31] it has been shown that

the further 2+1 decomposition employed in the canon-
ical 3+1 ADM formalism leads to the 2+1+1 Hamil-
tonian formalism with orthogonal double foliation pre-
sented there. By relaxing the orthogonality of the folia-
tions, with a similar technique, the Hamiltonian formal-
ism presented here can also be derived. Notably explor-
ing the 2+1 decompositions of the 3-dimensional shift

N̂a = Na +Nma (92)

and of the diffeomorphism constraint

ĤG
a = HG

a +HG
Nma (93)

the vacuum GR gravitational Hamiltonian density (54)
emerges. Similarly with the 2+1 decomposition of the

induced 3-metric (A1) and of the 3-dimensional canonical
momentum

π̂ab = πab +Mp(amb) +
M

2
pmamb (94)

inserted in the respective equations of the standard ADM
approach the 2+1+1 decomposed action (53)-(58) and
Hamiltonian equations of motion (64) and (68)-(70) of
this paper follow. Hence the 2+1+1 decomposition and
the variational principle commute.
As compared to the treatment of Ref. [31] a new con-

straint emerged due to nonorthogonality, the radial dif-
feomorphism constraint. With this we reestablished the
full constraint structure of general relativity, adapted to
the nonorthogonal double foliation. In a canonical quan-
tum gravity theory the diffeomorphism constraints must
annihilate the physical states. Singling out the radial
diffeomorphism constraint through the 2+1 decomposi-
tion of the 3-dimensional diffeomorphism constraint may
turn useful in midisuperspace models [46–48], where in-
tegration over the angular sector is carried out and the
relevant diffeomorphism constraint is exactly HG

N .
In the last section we proceeded with the second appli-

cation of our newly developed formalism, the gauge fixing
of generic scalar-tensor gravitational theories. As com-
pared to Ref. [6] an unambiguous gauge fixing has been
achieved. This includes restricting the perturbation of
the 2-metric to a conformal transformation, freezing the
evolution of the scalar field by ensuring the radial uni-
tary gauge both before and after the perturbation, and
suppressing the even modes of the 2-dimensional shift
perturbation. This last step was not possible with the
previous assumption of orthogonal double foliation, ex-
plored in Ref. [6].
Our work opens up the perspective for discussion of

the perturbations of spherically symmetric, static black
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holes in the effective field theory approach of scalar-
tensor gravitational theories in the radial unitary gauge,
with the inclusion of both the even and odd sectors.
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Appendix A: Consequences of the hypersurface

orthogonality of the basis vectors {n, l}

We denote the spatial and Lorentzian 3-metrics in-
duced on the St and Mχ hypersurfaces, respectively as

ĝab = mamb + gab , (A1)

ǧab = −kakb + gab . (A2)

The basis vectors na (la) being orthogonal to the St (Mχ)
hypersurfaces, the dual form of the Frobenius theorem
guarantees the vanishing of their 3-dimensional vortici-
ties:

ω̂
(n)
ab ≡ ĝc[aĝ

d
b]∇̃cnd = 0 , (A3)

ω̌
(l)
ab ≡ ǧc[aǧ

d
b]∇̃cld = 0 . (A4)

These can be further 2+1 decomposed as

0 = D[anb] +m[ag
d
b]m

c
(
∇̃cnd − ∇̃dnc

)
, (A5)

0 = D[alb] + kcgd[akb]

(
∇̃cld − ∇̃dlc

)
, (A6)

the contraction of which with ma and ka, respectively
leading to the second type of expressions of the normal
fundamental forms, given in Eqs. (14).
Projecting Eqs. (A5) and (A6) to Σtχ confirms the

vanishing of the 2-dimensional vorticities:

ω
(n)
ab ≡ D[anb] = 0 , (A7)

ω
(l)
ab ≡ D[alb] = 0 , (A8)

and symmetry of the extrinsic curvatures

Kab ≡ Danb = D(anb) = Kba ,

Lab ≡ Dalb = D(alb) = Lba , (A9)

which could also be directly checked from the first Eq.
(7) and the second Eq. (12), giving the normals

na = −N∇̃at ,

la = Mc∇̃aχ . (A10)

Inserting these into the definitions (A9) manifestly sym-
metric expressions arise.

Appendix B: Consequences of the vorticity of the

basis vectors {k,m}

We introduce 3-dimensional metrics, which are orthog-
onal to the basis vectors ka and ma, respectively:

ĥab = lalb + gab , (B1)

ȟab = −nanb + gab . (B2)

These metrics are defined on 3-manifolds which are not
hypersurfaces, but rather the manifolds formed by the
integral curves of the vector fields ka and ma. The 3-
dimensional vorticity tensors of ka andma do not vanish,
as they are not hypersurface-orthogonal:

ω̂
(k)
ab ≡ ĥc[aĥ

d
b]∇̃ckd 6= 0 , (B3)

ω̌
(m)
ab ≡ ȟc[aȟ

d
b]∇̃cmd 6= 0 . (B4)

Their 2+1 decomposition leads to

ω̂
(k)
ab = gc[ag

d
b]∇̃ckd + l[ag

d
b]l

c
(
∇̃ckd − ∇̃dkc

)
, (B5)

ω̌
(m)
ab = gc[ag

d
b]∇̃cmd + gd[anb]n

c
(
∇̃cmd − ∇̃dmc

)
.(B6)

Projecting Eqs. (B5) and (B6) to the Σtχ surfaces leads
to the 2-dimensional vorticities:

ω
(k)
ab ≡ D[akb] = 0 , (B7)

ω
(m)
ab ≡ D[amb] = 0 , (B8)

which (as both ka and ma are orthogonal to the surface
Σtχ) vanish due to the dual form of the Frobenius theo-
rem. Alternatively, these can be proved directly through
the relations

ka = Ms∇̃aχ− N

c
∇̃at ,

ma = N
s

c
∇̃at +M∇̃aχ , (B9)

emerging from the second Eq. (7) and the first Eq. (12).
With them the symmetry of the extrinsic curvatures K∗

ab

and L∗
ab can be readily checked.
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ω̂
(k)
ab gbc = 0 ω̌

(m)
ab gbc = 0

ω̂
(k)
ab lb = 1

2
Daφ− s

2c
(aa + ba) ω̌

(m)
ab nb = 1

2
Daφ+ s

2c
(aa + ba)

TABLE V: The 3-dimensional vorticity components in terms of φ (or N ).
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FIG. 4: The nonvanishing vorticity components of the basis
vectors.

Hence the 3-dimensional vorticities reduce to:

ω̂
(k)
ab = l[ag

d
b]l

c
(
∇̃ckd − ∇̃dkc

)
,

ω̌
(m)
ab = −n[ag

d
b]n

c
(
∇̃cmd − ∇̃dmc

)
, (B10)

having nonvanishing components only along the normals
of the two hypersurface families. These nonvanishing vor-
ticity components of the basis vectors are also indicated
on Fig. 4.
By exploring the definitions (14) and (16) we get

the expressions of the starry quantities K∗
a and L∗

a in
terms of normal fundamental forms and nonvanishing 3-
dimensional vorticity components:

K∗
a = La − 2ω̂

(k)
ab l

b ,

L∗
a = Ka + 2ω̌

(m)
ab nb . (B11)

By exploring the results given in Table III, by straight-
forward algebra we can express the 3-dimensional vortici-
ties in terms of the 10th metric variable, as given in Table
V.
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[5] L. Á. Gergely and S. Tsujikawa, Effective field theory
of modified gravity with two scalar fields: Dark en-
ergy and dark matter, Phys. Rev. D 89, 064059 (2014)
[arXiv:1402.0553 [hep-th]].

[6] R. Kase, L. Á. Gergely, and S. Tsujikawa, Effective
field theory of modified gravity on spherically symmet-
ric background: leading order dynamics and the odd
mode perturbations, Phys. Rev. D 90, 124019 (2014)
[arXiv:1406.2402 [hep-th]].

[7] R. Kimura, T. Kobayashi, and K. Yamamoto, Vainshtein

screening in a cosmological background in the most gen-
eral second-order scalar-tensor theory, Phys. Rev. D 85,
024023 (2012) [arXiv:1111.6749 [astro-ph.CO]].

[8] R. Kase and S. Tsujikawa, Screening the fifth force in
the Horndeski’s most general scalar-tensor theories, J.
Cosmol. Astropart. Phys. 08 (2013) 054 [arXiv:1306.6401
[gr-qc]].

[9] K. Koyama, G. Niz, and G. Tasinato, Effective theory
for the Vainshtein mechanism from the Horndeski action,
Phys. Rev. D 88, 021502(R) (2013) [arXiv:1305.0279
[hep-th]].

[10] J. Sakstein, H. Wilcox, D. Bacon, K. Koyama, and R.
C. Nichol, Testing Gravity Using Galaxy Clusters: New
Constraints on Beyond Horndeski Theories, J. Cosmol.
Astropart. Phys. 07 (2016) 019 [arXiv:1603.06368 [astro-
ph.CO]].

[11] LIGO Scientific and Virgo Collaborations, Observation of
Gravitational Waves from a Binary Black Hole Merger,
Phys. Rev. Lett. 116, 061102 (2016) [arXiv:1602.03837
[gr-qc]].

[12] LIGO Scientific and Virgo Collaborations, GW151226:
Observation of Gravitational Waves from a 22-Solar-
Mass Binary Black Hole Coalescence, Phys. Rev. Lett.

http://arxiv.org/abs/1404.6495
http://arxiv.org/abs/1304.4840
http://arxiv.org/abs/1402.0553
http://arxiv.org/abs/1406.2402
http://arxiv.org/abs/1111.6749
http://arxiv.org/abs/1306.6401
http://arxiv.org/abs/1305.0279
http://arxiv.org/abs/1603.06368
http://arxiv.org/abs/1602.03837


16

116, 241103 (2016) [arXiv:1606.04855 [gr-qc]].
[13] LIGO Scientific and Virgo Collaborations, GW170104:

Observation of a 50-Solar-Mass Binary Black Hole Co-
alescence at Redshift 0.2, Phys. Rev. Lett. 118, 221101
(2017) [arXiv:1706.01812 [gr-qc]].

[14] LIGO Scientific and Virgo Collaborations, GW170608:
Observation of a 19-Solar-Mass Binary Black Hole
Coalescence, Astrophys. J. Lett. 851, L35 (2017)
[arXiv:1711.05578 [astro-ph.HE]].

[15] LIGO Scientific and Virgo Collaborations, GW170814: A
Three-Detector Observation of Gravitational Waves from
a Binary Black Hole Coalescence, Phys. Rev. Lett. 119,
141101 (2017) [arXiv:1709.09660 [gr-qc]].

[16] LIGO Scientific and Virgo Collaborations, GW170817:
Observation of Gravitational Waves from a Binary Neu-
tron Star Inspiral, Phys. Rev. Lett. 119, 161101 (2017)
[arXiv:1710.05832 [gr-qc]].

[17] LIGO Scientific and Virgo Collaborations, GWTC-
1: A Gravitational-Wave Transient Catalog of Com-
pact Binary Mergers Observed by LIGO and Virgo
during the First and Second Observing Runs, (2018)
[arXiv:181112907 [astro-ph.HE]].

[18] LIGO Scientific and Virgo Collaborations, Tests of Gen-
eral Relativity with GW150914, Phys. Rev. Lett. 116,
221101 (2016) [arXiv:1602.03841 [gr-qc]].

[19] S. Mirshekari, N. Yunes, and C. M. Will, Constraining
Lorentz-violating, Modified Dispersion Relations with
Gravitational Waves, Phys. Rev. D 85, 024041 (2012)
[arXiv:1110.2720 [gr-qc]].

[20] LIGO Scientific and Virgo Collaborations, Tests of
General Relativity with the Binary Black Hole Sig-
nals from the LIGO-Virgo Catalog GWTC-1, (2019)
[arXiv:1602.03837 [gr-qc]].

[21] LIGO Scientific and Virgo Collaborations, Fermi
Gamma-ray burst monitor, and INTEGRAL, Gravita-
tional Waves and Gamma-Rays from a Binary Neutron
Star Merger: GW170817 and GRB170817A, Astrophys.
J. Lett. 848, L13 (2017).

[22] T. Kobayashi, M. Yamaguchi, and J. Yokoyama, General-
ized G-inflation: Inflation with the most general second-
order field equations, Prog. Theor. Phys. 126, 511–529
(2011) [arXiv:1105.5723 [hep-th]].

[23] A. De Felice and S. Tsujikawa, Conditions for the cosmo-
logical viability of the most general scalar-tensor theories
and their applications to extended Galileon dark energy
models, J. Cosmol. Astrophys. Phys. 1202, 007 (2012)
[arXiv:1110.3878 [gr-qc]].

[24] T. Baker, E. Bellini, P. G. Ferreira, M. Lagos, J. Noller,
and I. Sawicki, Strong constraints on cosmological gravity
from GW170817 and GRB 170817A, Phys. Rev. Lett.
119, 251301 (2017) [arXiv:1710.06394 [astro-ph.CO]].

[25] J. M. Ezquiaga and M. Zumalacárregui, Dark Energy
after GW170817: Dead ends and the road ahead, Phys.
Rev. Lett. 119, 251304 (2017) [arXiv:1710.05901 [astro-
ph.CO]].

[26] P. Creminelli and F. Vernizzi, Dark Energy after
GW170817 and GRB170817A, Phys. Rev. Lett. 119,
251302 (2017) [arXiv:1710.05877 [astro-ph.CO]].

[27] J. Sakstein and B. Jain, Implications of the Neu-
tron Star Merger GW170817 for Cosmological Scalar-
Tensor Theories, Phys.Rev.Lett. 119, 251303 (2017)
[arXiv:1710.05893 [astro-ph.CO]].

[28] T. Kobayashi, H. Motohashi and T. Suyama, Black hole
perturbation in the most general scalar-tensor theory

with second-order field equations I: The odd-parity sec-
tor, Phys. Rev. D 85, 084025 (2012) [arXiv:1202.4893
[gr-qc]].

[29] T. Kobayashi, H. Motohashi and T. Suyama, Black hole
perturbation in the most general scalar-tensor theory
with second-order field equations II: the even-parity sec-
tor, Phys. Rev. D 89, 084042 (2014) [arXiv:1402.6740
[gr-qc]].
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