
The Performance of Multi-Path TCP with Overlapping Paths
Lajos Zongor, Zalán Heszberger, Alija Pašić, János Tapolcai

MTA-BME Future Internet Research Group and MTA-BME Information Systems Research Group
Budapest University of Technology and Economics (BME), Hungary

{zongor,heszi,pasic,tapolcai}@tmit.bme.hu

ABSTRACT
Turning the Internet into a multi-path environment could solve
many difficulties network operators are facing today. There are al-
ready solutions to configure an IP network to offer multiple partially
disjoint paths towards the destination. In this demo, we focus on the
performance of how MPTCP can distribute the traffic along these
paths. When the routes are not fully disjoint their throughput could
be limited by some bottleneck links. Because of this dependency
finding the maximal throughput in MPTCP may call for solving a
complex maximization problem. Through constructing an exam-
ple network as an illustrative model of real network conditions,
we show, how complicated the underlying optimization problem
MPTCP may face, and through measurements, demonstrate how
the various congestion mechanisms deal with finding a solution.

1 INTRODUCTION
Offering a selection of forwarding paths to the end-users of the
Internet, who in turn monitor, control, and optimize their sending
rate along these paths in an end-to-end fashion, would improve end-
to-end reliability, security, and latency by allowing users to avoid
congested links, and even provide some control to applications
to meet their performance requirements [1, 4, 5]. The promising
technique to allow end-systems to influence path selection securely
is tagging [3]. Tags are some short identifiers that are part of the
header and can be used to control the route of the packet. The
identifier has no global meaning, and the routing is deterministic,
meaning that packets with the same tag always routed along the
same path towards the destinations. There are many proposals to
implement tagging: either as a shim protocol header or overloading
specific bits in the IP header field [3], or through the hashing used
in equal-cost multi-path routing (ECMP) [4].

Another mechanism that is readily available for multi-path In-
ternet is Multi-Path TCP (MPTCP) [1], which could end-to-end
monitor, control, and optimize the sending rate along these paths.
MPTCP extends TCP so that a single connection can be striped
across multiple sub-flows, each being a TCP session along a unique
path. MPTCP became a part of Linux, iOS, and OSx operating sys-
tems since 2013, and presents the same socket interface as TCP.
The primary use case of MPTCP is when the host is connected

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SIGCOMM Posters and Demos ’19, August 19–23, 2019, Beijing, China
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6886-5/19/08. . . $15.00
https://doi.org/10.1145/3342280.3342328

s

v1

v2 v3

v4

d

40

80

60

(a) The network

Path 1: (x1)

Path 2: (x2)

Path 3: (x2)

(b) The paths

0

5050
0

50

x1x2

x
3

(c) The throughput constraints

Figure 1: Illustration of the network topology

to the internet through multiple wireless networks; such as both
Wi-Fi and cellular networks. However, in this use case the delay
and bandwidth characteristics of the paths used by MPTCP are
mostly independent. In this paper, we are mainly focusing on how
MPTCP behaves if there are common bottleneck links along the
paths MPTCP is running on. We set up a carefully constructed
model of networking environments, where the paths are competing
for the same resources, and thus sending more packets to one path
degrades the throughput on the other. In the demo, we attempt to
compile stirring networking scenarios where finding the optimal per-
formance is a challenging optimization task. In the rest of the paper,
we explain one use-case of the demo in detail, where the efficiency
of some MPTCP congestion control mechanisms is demonstrated in
searching for the optimal throughput by balancing the transmission
rate between paths whose characteristics depend on each other.

2 METHODOLOGY
2.1 Setup
Fig. 1a shows the network we have constructed to measure the
MPTCP performance. Fig. 1b shows the three paths the MPTCP
at node s can select to communicate with node d . The capacities
are written next to the links unless they are the default 100. Let xi
denote the throughput of the ith path for i = 1, 2, 3. In this case Path
1 and Path 2 have a common link s − v1 with capacity 40, which
means we have the following inequality x1 + x2 ≤ 40. Similarly we
have x2 +x3 ≤ 60, x1 +x3 ≤ 80. Informally speaking we have three
bottleneck links corresponding to each pair of paths. It means the
MPTCP load balancer is facing a multidimensional optimization
problem with the following objective function max x1 + x2 + x3.
Solving the above linear program we get the following optimal so-
lution x1 = 10, x2 = 30, and x3 = 50, which is 90 altogether. In the

1

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Repository of the Academy's Library

https://core.ac.uk/display/228401186?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1145/3342280.3342328

SIGCOMM Posters and Demos ’19, August 19–23, 2019, Beijing, China Lajos Zongor, Zalán Heszberger, Alija Pašić, János Tapolcai

0 0.5 1 1.5 2 2.5 3 3.5 4
0

20

40

60

80

Time [s]

Ba
nd

w
id
th

(M
bp

s)

(a) The rate of each flow with CUBIC (100ms)

0 0.5 1 1.5 2 2.5 3 3.5 4
0

20

40

60

80

Time [s]

Ba
nd

w
id
th

(M
bp

s) Path 1
Path 2
Path 3
Total

(b) The rate of each flow with OLIA (100ms)

0 0.1 0.2 0.3 0.4 0.5
0

20

40

Time [s]

Ba
nd

w
id
th

(M
bp

s)

(c) The rate of each flow (10ms)

Figure 2: MPTCP throughput with CUBIC and OLIA congestion control algorithms measured with tshark.

measurement setup we are interested in whether the MPTCP conges-
tion mechanism can find the optimal throughput or not. Note that the
above problem is a convex optimization, therefore, there is a single
(global) maximum. Convex optimization is often solved with some
type of gradient descent method, which is an iterative approach
always stepping towards the gradient (also called steepest descent).
On the other hand, MPTCP controls the rate of each TCP path
together to find the largest total throughput. In the above settings
the simplest greedy approach to increase the rates independently
would give a suboptimal solution.

2.2 Measurement
Weused version 0.94 of theMultipath TCP linux kernel, andMininet
for the network simulation. To make MPTCP use preselected paths
in the model network a tagging mechanism is used by applying 3
different tags on the packets of the subflows corresponding to the 3
different paths. We modified the ndiffports [4] path-manager to tag
each subflow. The exact tags and the number of subflows is given
as an argument for our path-manager module. We used the default
MPTCP scheduler, and run themeasurements with three congestion
control algorithms: CUBIC (the default in Linux), and LIA (Linked
Increase algorithm) [6] and OLIA (Opportunistic Linked Increase
Algorithm) [2].For traffic generation we used iperf, and captured
the data stream by tshark at the destination node. Then we filtered
the captured packets based on the tags, to determine how did the
MPTCP protocol split them among the subflows.

3 RESULTS
Fig. 2 shows our measurement results, where an MPTCP connec-
tion was established with Path 2 as default shortest path (with the
shortest round trip time) and Path 1 and Path 3 as additional routes
to the destination node. Note that the default shortest path has a
maximal capacity of 40 Mbps. The figure shows the throughput of
each flow sampled with 10 or 100ms by tshark at the receiver side.
Fig. 2(a) shows that MPTCP-CUBIC first increases the transmission
rate on the default shortest path (Path 2) reaching the capacity
of the bottleneck link (s,v1), and subsequently increases the rate
along Path 1 and 3 up to the corresponding bottleneck capacities:
60 Mbps on Path 1 at 0.05s and 80 Mbps on Path 3 at 0.15s. At this
point, we have a Pareto optimal solution as none of the TCP rates
can be increased independently. On the other hand, decreasing the
rate of Path 2 by x would increase the rate for both Path 1 and 3 by

2x altogether. In the next 3 seconds, using its default congestion
control algorithm the MPTCP is capable of finding the optimal
throughput by rearranging the bandwidth on the different paths.
Note that in case of CUBIC there is no interaction between the
individual TCP congestion control actions. The success of MPTCP
is likely due to the sawtooth nature of the TCP: when there is a
packet drop along Path 2, the rate is reduced, meanwhile there is a
chance to increase the rate on Path 1 or 3, see Fig. 2(c). At that point,
the rate cannot be increased on Path 2, but can be on either of the
paths. Intuitively speaking MPTCP does not stick in a deadlock but
can “shake down” into rates giving the optimal throughput.

In our experiments, the default (CUBIC) congestion control algo-
rithm always reached the optimum; however, later, the throughput
was unstable for short periods. The more stable LIA never could
reach the optimum, while OLIA was able to reach the optimum in
many measurements, but only if Path 2 was the default shortest
path among the three. See Fig. 2(b) for an example where it did not
find the optimum. Note that OLIA had the slowest convergence
time: it took 20 sec in the above example network to reach the
optimum, but after that the throughput was stable.

4 CONCLUSIONS
In this demo, we set up a network topology and multiple routes be-
tween a source-destination pair, where MPTCP must perform a so-
phisticated optimization process to achieve the optimal throughput.
We demonstrate that certain congestion mechanisms of MPTCP are
capable of converging to the optimal solution while others cannot.
The success of CUBIC is most likely stemming from the asynchro-
nous controlling actions at the individual TCP paths inherently
eventuating the required gradient optimization over the flows.

ACKNOWLEDGEMENTS
The research leading to these results was partially supported by
the High Speed Networks Laboratory (HSNLab). Project no. 123957,
129589, 124171, 128062 and 124171 has been implemented with the
support provided from the National Research, Development and
Innovation Fund of Hungary, financed under the FK_17, KH_18,
K_17, K_18 and K_17 funding schemes respectively. The research
report in this paper was also supported by the BME-Artificial In-
telligence FIKP grant of EMMI (BME FIKP-MI/SC). Z. Heszberger
was supported by the János Bolyai Fellowship of the Hungarian
Academy of Sciences.

2

The Performance of Multi-Path TCP with Overlapping Paths SIGCOMM Posters and Demos ’19, August 19–23, 2019, Beijing, China

REFERENCES
[1] O. Bonaventure, M. Handley, and C. Raiciu. 2012. An Overview of Multipath

TCP. Usenix ;login: magazine 37, 5 (Oct. 2012).
[2] R. Khalili, N. Gast, M. Popovic, and J.-Y. Le Boudec. 2013. MPTCP Is Not Pareto-

Optimal: Performance Issues and a Possible Solution. IEEE/ACM Transactions on
Networking 21, 5 (Oct 2013), 1651–1665.

[3] Murtaza Motiwala, Megan Elmore, Nick Feamster, and Santosh Vempala. 2008.
Path Splicing. In ACM SIGCOMM. 27–38.

[4] C. Raiciu, S. Barre, C. Pluntke, A. Greenhalgh, D. Wischik, and M. Handley. 2011.
Improving datacenter performance and robustness with multipath TCP. In ACM
SIGCOMM CCR, Vol. 41. 266–277.

[5] Ashish Vulimiri, P. Brighten Godfrey, Radhika Mittal, Justine Sherry, Sylvia
Ratnasamy, and Scott Shenker. 2013. Low Latency via Redundancy. In CoNEXT.

[6] D. Wischik, C. Raiciu, A. Greenhalgh, and M. Handley. 2011. Design, Implemen-
tation and Evaluation of Congestion Control for Multipath TCP. In Proc. USENIX
NSDI. Berkeley, CA, USA, 99–112.

3

	Abstract
	1 Introduction
	2 Methodology
	2.1 Setup
	2.2 Measurement

	3 Results
	4 Conclusions
	References

