
1Mitochondrial Diseases and Therapy  | www.smgebooks.com
Copyright  Bai P.This book chapter is open access distributed under the Creative Commons Attribution 4.0 
International License, which allows users to download, copy and build upon published articles even for commercial 
purposes, as long as the author and publisher are properly credited. 

Gr   upSM
Poly-(ADP-ribose) Polymerases and 

Mitochondria

ABSTRACT
Mitochondrial function is crucial to respond adequately to extracellular stress stimuli that is 

regulated by a complex network of signal transduction pathways. Poly (ADP-ribose) polymerase 
(PARP) activation has been shown to hamper mitochondrial activity and certain pathologies 
associated with mitochondrial dysfunction are advanced by PARP activation. Recent studies 
have shown that PARP inhibition leads to mitochondrial biogenesis. However, there are still 
many open questions about the role of PARPs in mitochondrial regulation, such as the existence 
of intra-mitochondrial PARP activity or the involvement of mitotropic factors. Hereby, we give 
an overview of our current knowledge on the impact of PARPs on mitochondrial processes with 
special attention to these debated issues and the practical applicability of PARP inhibition to treat 
diseases associated with mitochondrial dysfunction.

PARPS AND PARYLATION
Poly (ADP-ribose) polymerases (PARPs) or diphtheria toxin-type ADP-ribose transferases 

(ARTDs) are multidomain proteins composing a protein family of 17 members in humans and 16 
in mice [1]. PARPs are predominantly nuclear enzymes, originally identified as DNA repair factors, 
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but now it is evident that there is more than that about PARPs. PARPs are involved in numerous 
cellular processes that are vital for the maintenance of cellular homeostasis. The majority of 
these processes are related to cellular stress response [2], such as the regulation of cell death in 
oxidative stress-related pathologies, as well as metabolic, immune and transcriptional regulation 
[3]. PARP enzymes are composed of functionally distinct domains sharing an evolutionarily 
conserved catalytic domain that shows structural homology to other ADP-ribosyl transferase 
proteins [4-6]. Besides, other domains of PARPs are responsible for protein-protein interactions, 
protein-nucleic acid interactions, and protein-metabolite interactions [5,6].

Activated PARPs bind and cleave substrate NAD+ into nicotinamide and ADP-ribose (ADPR) 
then covalently attach one or more ADPR units to themselves or other acceptors performing 
mono-, oligo- or poly (ADP-ribosyl)ation (PARylation) [2]. PARylation is an evolutionarily 
conserved posttranslational modification of proteins that may alter the conformation of acceptors 
or disrupt protein–nucleic acid and protein–protein interactions, hence PARylation impacts the 
biochemical or physiological properties of proteins [2]. PARP-1 constitutes the major PARP 
activity of cells (85-90%), followed by PARP-2 with 10-15% [7], while the other PARPs show 
insignificant contribution. The first recognized triggers of PARP activation were single or double 
strand breaks in DNA [4]. PARP-1, PARP-2 and PARP-3 are indeed activated by DNA damage, 
however, the activity of these PARPs is also influenced by posttranslational modifications and 
signal transduction pathways [3,4,8,9]. PAR has a short half-life since it is rapidly degraded to 
ADPR by enzymes such as poly (ADP-ribose) glycohydrolase (PARG) that can cleave the bonds 
of the PAR polymer. There are different PARG isoforms in most cellular compartments [10]. 
Furthermore, PAR levels in the cells are also regulated by ADP-ribosyl acceptor hydrolase 3 
(ARH3), ADP-ribosyl lyase and macrodomain-containing proteins [4,6,10,11].

EFFECTS OF PARP ACTIVATION ON MITOCHONDRIAL FUNCTION
Regulation of mitochondrial activity is carried out by a complicated network of signal 

transduction pathways that determine mitochondrial adaptation to stress, therefore these 
pathways are crucial for cell survival. PARP-1 and PARP-2 have been shown to interfere with 
mitochondrial activity in response to oxidative stress or nutrient availability.

PARP activation (mostly exerted by PARP-1) hampers mitochondrial oxygen consumption 
and discharges mitochondrial membrane potential [12,13]. PARP-1 activation leads to 
electron transport chain uncoupling and superoxide production [13] by reducing the activity 
of mitochondrial complex I [14], NADH-oxidase, and NADH Q1-reductase [15]. As a result, 
mitochondrial architecture becomes disorganized and mitochondrial transition pores (MTPs) open 
[13]. Subsequently, molecules such as cardiolipin, apoptosis inducing factor (AIF), cytochrome 
c or caspases escape mitochondria [13,16,17]. Mitophagy, a process during which damaged 
portions of the mitochondria are eliminated, is also negatively affected by PARP-1 activation 
[18]. PARP activation depletes cellular NAD+ and ATP levels, thus leading to mitochondrial energy 
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catastrophe. ATP levels were supposed to be reduced as a result of the cells’ attempt to replenish 
NAD+ through the energy intensive function of nicotinamide mononucleotide adenylyltransferase 
(NMNAT) and phosphoribosyl pyrophosphate synthetase (PPS) [17]. However, there are other 
theories that may explain the reduction in ATP upon PARP activation. For example, NUDIX 
pyrophosphatases can convert ADPR, the end product of PAR hydrolysis, to AMP [19]. Increases 
in AMP levels block mitochondrial adenine nucleotide translocator (ANT) [19] preventing ATP 
disposal. Furthermore, PARP-1 overactivation limits ADP availability, therefore adenylate kinase 
capacity to synthesize ATP from ADP is hampered [20].

PAR may be present outside the nucleus, where PAR can bind to mitochondria and induce 
mitochondrial dysfunction and cell death [21]. According to recent findings, this can be prevented 
by Iduna, a cytoplasmic E3-ubiquitin ligase which binds the PAR polymer and thereby provides 
protection against PAR-induced mitochondrial damage [21]. Moreover, Iduna contributes to 
the cytoplasmic degradation of PARylated proteins (PARP-1 or other) by directing them to the 
proteasome [22]. Hexokinase (HK) is essential in maintaining the coupling between glycolysis and 
mitochondrial oxidation [23]. PAR binding to HK leads to the release of HK from the mitochondrial 
surface disrupting the coupling of glycolysis and mitochondrial oxidation [24,25]. Finally, it is of 
note that the release of the cell death inducer AIF from the mitochondria requires the binding of 
PAR to AIF [26].

HIF-1 and HIF-2 promote the adaptation to hypoxia by triggering transcriptional programs 
involved in the regulation anaerobic metabolic pathways (such as glycolysis), while inhibiting 
oxygen dependent mitochondrial oxidation [27]. It has been reported that HIF1-mediated 
inhibition of mitochondrial complex II and IV in deferoxamine-induced hypoxia requires PARP-
1 activation [28] and PARP-1-induced free radical production [29,30,31]. PARP-1 inhibition 
suppresses HIF-1 activation [30,32]. PARP-1 also interacts with HIF-2 and facilitates the 
expression of genes regulated by HIF-2 [33]. Taken together, PARP-1 activation promotes the 
activation of HIF-1 and HIF-2 supporting the downregulation of mitochondrial activity.

INTRAMITOCHONDRIAL PARP ACTIVITY AS A NEGATIVE 
REGULATOR OF MITOCHONDRIAL FUNCTION

PARP activity may exist inside the mitochondria, however, it has been a long-debated issue. 
Nevertheless, there is consensus about the presence of PAR-degrading activity in mitochondria 
that is mostly attributed to ARH3 [34]. There are early reports identifying PARylated proteins 
in isolated rat liver mitochondria [35,36] that are highly debated. It is of note though, that the 
different studies [35,36] did not agree in the proteins identified with a PAR antibody, therefore 
further investigations are needed to verify these findings. 

Despite the fact that intramitochondrial PARylation is not accepted widely, it is clear that 
overexpression of PARP-1 in mitochondria leads to increased mitochondrial PARylation 
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accompanied by decreased mitochondrial output, but preserved glycolytic flux [34]. Taken 
together, additional data is required to determine the presence of mitochondrial PARP activity. 
However, it seems that PARylation of mitochondrial proteins have a profound negative effect on 
mitochondrial oxidative phosphorylation and probably affect NAD+ levels inside the mitochondria 
and consequently the activity of mitochondrial NAD+-dependent enzymes.

Nonetheless, it is worth mentioning recent research evidence pointing towards the existence 
of mitochondrial PARP-1 that is probably a key regulator of cellular processes and is catalytically 
activated by DNA damage. These provocative results show that despite the originally described 
concept, 10 minutes after H2O2 exposure in human monocytes PARP-1 activation occurs exclusively 
in mitochondria and nuclear PARylation follows only later [37]. Moreover, the authors explored 
that phosphorylation by protein kinase A (PKA) regulates mitochondrial PARP-1 activity in early 
stage of oxidative stress as a result of a β-adrenoreceptor signaling. Intramitochondrial PARP-1 
activation coincided with damage in mitochondrial DNA [37]. The gradual increase in oxidative 
injury and PARP-1 activity results in mitochondrial electron transport defect and mitochondrial 
dysfunction and cell death within 24 hours after exposure [37].

As mentioned previously, PARP-1 is a DNA repair protein that facilitates nuclear DNA repair 
by recognizing DNA strand breaks and promotes the recruitment of DNA repair enzymes to the 
damaged DNA sequences. It is an intriguing question that whether intramitochondrial PARP-1 
activity plays a similar role in the repair of mitochondrial DNA. In a recent study Szczesny et al. 
[38] went after this question and found that mitochondrial PARP-1 interacts with two DNA base 
excision repair (BER) enzymes (EXOG and DNA polymerase gamma) which are localized inside 
the mitochondria. This interaction exists under normal conditions, but oxidative stress induced 
a marked increase in the PARylation of these mitochondrial DNA repair enzymes. However, 
PARylation negatively affected their capacity in the repair of mitochondrial DNA and therefore 
in the maintenance of mitochondrial DNA integrity. Taken together, this study demonstrated a 
striking phenomenon that in contrast to the pivotal positive role that PARP-1 represents in nuclear 
DNA repair, mitochondrial PARP-1 is a negative regulator of mitochondrial DNA repair thus 
mitochondrial DNA integrity. Since mitochondrial DNA integrity affects mitochondrial protein 
transcription and mitochondrial homeostasis [39,40], PARP-1 may also act as a regulator of these 
functional mitochondrial processes. The fact that PARP inhibition induces the mitochondrial 
sirtuin, SIRT3, also point towards the existence of a major NAD+-consuming, possibly PARP 
activity in mitochondria [41]. Table 1 summarizes the known mitochondrial proteins interacting 
with PARPs.
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Table 1: Mitochondrial proteins interacting with members of the PARP family.

POSITIVE PARP-MEDIATED REGULATORS OF MITOCHONDRIAL 
ACTIVITY

Signal transduction pathways react to environmental stimuli and translate them into 
mitochondrial regulation. PARP-1 is known to modulate the action of the phosphatidyl-inositol 
3-kinase (PI3K)–Akt–glycogen synthase kinase-3 (GSK3) and AMP activated kinase (AMPK) 
pathways [43]. It has been shown that PARP inhibition preserves mitochondrial membrane 
potential under stress conditions [43] by increasing the activity of PI3K [44] and Akt [43-45]. 
Besides, PARP-1 activation enhances the activity of the energy sensor AMPK [46-48], thereby 
inducing mitochondrial function and facilitating autophagy [46,47].

PARPs can also regulate mitochondrial function through modulating transcription. Human 
sirtuins (SIRT1–7) are NAD+-dependent protein deacetylases [49]. Therefore a decrease in cellular 
NAD+/NADH ratio can activate sirtuins [4,49]. PARPs have been shown to modulate nuclear SIRT1 
and the mitochondrial SIRT3 action. Activation of both sirtuins boost mitochondrial activity by 
deacetylating target proteins involved in mitochondrial function. SIRT1 activation leads to a more 
efficient mitophagy, mitochondrial unfolded protein response and, as a result, the preservation 
of mitonuclear protein balance [50]. SIRT1 and PARP-1 compete for the same NAD+ pool. PARP-1 
shows higher affinity for NAD+ as compared to SIRT1, therefore PARP-1 activation can limit SIRT1 
activity [4]. Hence, depletion or genetic deletion of PARP-1 increases nuclear NAD+ levels [51-53], 
that results in enhanced SIRT1 activity and better mitochondrial output, improved performance of 

Name Interaction PARylation Reference
ATP synthase subunit beta,
mitochondrial PARP-2 ? [42]

CPS gi PARP-1? X [35]

Cytochrome c oxidase subunit Va PARP-1 ? X [36]

dihydrolipoamide dehydrogenase PARP-1 ? X [35]

F1F0 ATPase, b subunit PARP-1 ? X [36]

F1F0 ATPase, g subunit PARP-1 ? X [35]

L-lactate dehydrogenase PARP-1 ? [42]
Malate dehydrogenase,
mitochondrial PARP-1 ? [42]

Mitofilin (mitochondrial inner membrane protein) PARP-1 ? X [36]

OTC hi PARP-1? X [35]

Voltage-dependent anion channel-1 PARP-1 ? X [36]
75 kDa Glucose regulated protein / mitochondrial heat-
shock protein-70 PARP-1 ? X [36]

60 kDa Heat-shock protein / mitochondrial precursor 60 
kDa chaperone PARP-1 ? X [36]

EXOG PARP-1 X [38]

DNA polymerase γ PARP-1 X [38]
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the mitochondrial unfolded protein response and mitonuclear protein balance in skeletal muscle 
and brown adipose tissue [53]. In turn, SIRT1 can deacetylate and hence inhibit PARP-1 [4].

Another PARP, PARP-2 also impacts SIRT1 activity. Silencing or deletion of PARP-2 resulted 
in enhanced SIRT1 activity and therefore increased mitochondrial biogenesis in multiple in vitro 
studies [54-57].

Activation of NRF-1 and NRF-2 results in increased mitochondrial activity by inducing 
the expression of such important mitochondrial genes as cytochrome c and mitochondrial 
transcription factor A [58]. To do so, NRFs interact with cofactors PGC-1α and PGC-1β and bind 
to its consensus DNA sequences called antioxidant response elements [58]. PARP-1 forms a 
complex with NRF1 by binding to and PARylating the DNA binding domain of NRF1 [59]. This 
complex binds to the promoter region of the human cytochrome c gene and promotes cytochrome 
c expression [59]. Besides, PARP-1 has also been reported to act as a transcriptional coactivator 
for NRF-2 [60].

MITOCHONDRIAL DISEASES MEDIATED BY PARPS

In case of diseases associated with mitochondrial damage, boosting of mitochondrial 
biogenesis is a therapeutic option that stabilizes mitochondrial energy production and restores 
mitochondrial biosynthetic pathways. As mentioned previously, PARP activation has a negative 
effect on mitochondrial function, therefore several pathologies associated with mitochondrial 
dysfunction are concomitant with or advanced by PARP activation. Hence, pharmacological 
inhibition or genetic deletion of PARP-1 or PARP-2 alleviates mitochondrial dysfunction thereby 
provides protection against these pathologies. DNA damage-induced PARP activation followed 
by mitochondrial dysfunction and cell death underlies several diseases primarily through 
determining the mode of cell death (apoptosis, necrosis or parthanatos) [2]. 

PARP activation is also a significant feature in diseases associated with mild, however long-
term mitochondrial dysfunction. There is a strong likelihood that the impairment of PARP-
mediated pathways contribute to the pathogenesis of metabolic disorders, cancer, and aging. 
Moreover, PARP-1 is implicated in metabolic regulation, wherein it mediates central and 
peripheral circadian rhythm oscillations and the function of endocrine glands (e.g. pancreas) or 
it is involved in the signal transduction events following hormone action (e.g. incretins) [2,61].

PERSPECTIVES
PARP activation interferes with several pathways that impact on mitochondrial function, and 

seems to contribute to the pathology of numerous diseases. These diseases involve metabolic 
dysfunctions, aging and even cancer, all of which represent a huge public health issue. Therefore, 
a better understanding of the connection of PARPs and mitochondria promises therapeutic 
potential and calls for further investigation.
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