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Abstract 

A number of computer-generated models of water, methanol and ethanol are considered at room 

temperature and ambient pressure, and also as a function of temperature (for water and ethanol), 

and the potential model (for water only). The Laplace matrices are determined, and various 

characteristics of this, such as eigenvalues and eigenvectors, and the corresponding Laplace 

spectra are calculated. It is revealed how the width of the spectral gap in the Laplace matrix of H-

bonded networks may be applied for characterising the stability of the network. A novel method 

for detecting the presence percolated network in these systems is also introduced.  

 

 

 

 

1. Introduction  

Network theory is a useful tool for analyzing complex systems. In a complex system, 

there are large numbers of components that interact with each other. Networked structures appear 

in a wide variety of different contexts, such as technological (large communication systems, 

Internet, telephone networks), transportation-related, social phenomena and biological systems 

[1-10]. In these studies of networks where large systems of interactions are mapped into graphs, 

vertices and edges are usually recognized as the primarily building blocks. Given a graph we can 
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associate several matrices which record information about vertices and how they are 

interconnected. 

Over the past several years considerable attention has been focused on studying complex 

networks. A large number of concepts have been introduced for classifying network structures, 

for example degree distribution, path length, clustering, percolation, the small world property, 

spectral density of graph, ring structures, etc. During the last years it has become clear that the 

Laplacian eigenvalues and eigenvectors play an important role in revealing the multiple aspects 

of the characteristics of network structure and dynamics, like spanning trees, resistance distances 

and community structures [11-22]. 

There are several example of application of network science concepts in chemistry and 

physical chemistry, too [23-33]. Hydrogen-bond (HB) connectivity and strength and 

directionality influence the anomalous properties of water and other H-bonded liquids and liquid 

mixtures. It is widely accepted that water prefers to form a complicated three-dimensional 

percolated network [34-36]. On the other hand, bulk methanol and ethanol form (mostly) chain-

like clusters [38,39]. Recently we have applied well known graph theoretical concepts for 

revealing basic units of the network structure in liquid water at room temperature, in water-

methanol mixtures at different temperatures [40,41], and in formamide [42]. We found that 

methanol molecules prefer to form non-cyclic entities, whereas water molecules favour to build 

rings and the number of cyclic entities in the mixtures is increasing as the temperature is 

decreasing.  

Several authors have already used the properties of the spectral density of adjacency 

and/or Laplace matrices calculated for H-bonded networks, in order to characterise more deeply 

the H-bonded structure in pure liquids and liquid mixtures [24-30,33] . In the current study, we 

investigate spectral properties of the hydrogen bond network in liquid water, as well as in simple 

alcohols methanol and ethanol at different temperatures. At present, we focus mainly on 

producing some metrics that could provide estimates as to how far our systems are from a 

percolation transition. Establishing such metrics would be extremely helpful for identifying 

percolating/non-percolating systems without lengthy ‘self-avoiding walk’ type computations on 

large particle configurations. 

 



2. Network theory background and calculation details 

2.1 Network Spectra 

The structure of complex networks mentioned above can be completely described by the 

associated adjacency (A), combinatorial Laplace (L) matrices. The adjacency matrix is defined 

by Aij=1 if an edge (bond) exists between the nodes numbered i and j and Aij=0 otherwise. The 

Laplace matrix can be defined as follows:  

ijijiij AkL      (1) 

where ki  is the number of  (hydrogen) bonded neighbors of particle ‘i’. 

 

The spectrum of a graph is the set of eigenvalues of its corresponding matrices (A, L).  

The properties of eigenvalues and eigenvectors of these matrices are related to the inherent 

properties of networks. The eigenvalues of adjacency matrices were investigated in more detail in 

the past than the eigenvalues of the Laplacian matrices. However, it has already been shown that 

the solution of the diffusion and flow problems on networks (spreading diseases, random walks, 

navigated random walks [1-9]) is related to the Laplacian spectra.    

There are many interesting results known about Laplacian matrices. L is positive 

semidefinite and has nonnegative eigenvalues. Furthermore, 0 is always an eigenvalue of L and 

the multiplicity of the eigenvalue 0 is equal to the number of connected components of the graph. 

Many authors have studied the relationship between the eigenvector corresponding to the second 

smallest eigenvalue (2) and the graph structure; well documented reviews can be found in the 

literature [11-15]. 2 can also be called as the ‘spectral gap’, since its value provides directly the 

difference (the ‘gap’) between the smallest (always zero, if the graph is connected) and the 

second smallest eigenvalues (Fiedler eigenvalue). One of the frequently used theorems connected 

to the second smallest positive eigenvalue of a Laplacian is known as the Cheeger inequality 

[22]: 

2

2
 ≤ ℎ(𝐺)  ≤ √22     (2) 

where h(G) is the Cheeger constant of a graph G. h(G) is defined by the following equation 

ℎ(𝐺) = min
𝐸(𝑆,𝑆𝑐)

min (𝑣𝑜𝑙(𝑆),𝑣𝑜𝑙(𝑆𝑐))
  (3) 



Here S, Sc are two non-empty subsets of G, vol(S) is the sum of the edges, and E(S,Sc) is the sum 

of the edges within S and Sc. This inequality is related to the minimum number of edges such 

that, when removed, cause the graph to become disconnected (‘non-percolated’ in the world of 

H-bonded networks) [11-14]. h(G)  (or a similar derived quantity like 2*nhb) can therefore serve 

as possible metrics to measure the ‘distance’ from the percolation transition.  

Methods for the identification of the percolation transition in pure liquid and liquid 

mixtures have already been described in several works.  One of the most widely used forms relies 

upon the cluster distribution (ns) which deviates from a power law form and decreases much 

faster with s than nss
-2.19 

[43], as it is expected for random percolation on a 3D cubic lattice. The 

so-called Fiedler eigenvalue has been extensively studied in diverse application areas, including 

biology, neuron science, spectral clustering technique, etc… [18-22, 43-45]. 

  It has already been shown that the presence of near-zero eigenvalues generally indicates 

the existence of strong communities, or nearly disconnected components [10,14]. Another 

prominent feature for the eigenvalue problem of the L matrix is revealed by the structure and 

localization of components of the eigenvectors. We can characterize these eigenvectors (λj) by 

using the inverse participation ratio (I), as defined by the following equation 


i

jij VI 4
  (4) 

where Vji is the i-th element of the j-th eigenvector. It has already been also shown that ‘I‘ ranges 

from the minimum value of  1/N,  corresponding to the eigenvector distributed equally on all 

nodes, to a maximum of 1 for a vector with only one nonzero component.    

Similarly, we can characterize the average localization of the i-th node (NPR , nodes 

participation ratio): 


j

jii VD 4
   (5) 

where the summation is over the i-th components of the eigenvectors. Note that Di is 1 in the case 

particle ‘i’ is a monomer. 

 

 

 



 

2.2 Computer-generated structural models 

Most structures considered here have been prepared in-house, for the purpose of the present 

investigations. All of the molecular dynamics simulations, using rigid non-polarisable water 

models (SPC [44], SPC/E [43], TIP3P [45], TIP4P [46]), have been performed by the 

GROMACS simulation package [50] (version 5.1.1). The leap-frog algorithm has been used for 

integrating Newton's equations of motion, with a time step dt=1 fs, at the experimental density of 

water at 298 K, with N=2048 water molecules. We performed additional simulation using the 

polarizable Amoeba [47] water model, with the same simulation parameters, using the Tinker 

(version 8.4) code [49]. The simulation length was about 5 ns, after a 1 ns equilibration period. 

We calculated the Laplace spectra of the H-bonded network from 100 configurations, taken 

equidistantly over the last 5 ns. The Laplace spectra of the H-bonded network from an AIMD 

simulation [48] (N=1024, T=315 K, BLYP-D3) was calculated for only a single frame, which 

was the last step of a 10 ps simulation. 

 

3. Results and discussion 

3.1 Laplace spectra 

Fig. 1 depicts the Laplace spectra of the investigated graphs for pure methanol and ethanol. For 

ethanol we also show how the spectra change as a function of temperature. The spectra of 

methanol and ethanol has several well-defined peaks (λ= 0,5,1, 1.5, 2,…). Since these are rather 

characteristic features we investigated the possible explanation of these peaks. The spectra of 

Inverse participation ratio (IRP) for methanol and ethanol are showed in supplementary material. 

It is clear from this figure that the IRP has a well defined minima (more delocalized eigenvector) 

at 1 and 2. 

In these liquid  the most largest structural units are the linear (brainched) chains. We know  

[15,16,18]  an exact solution of the Laplace spectra of a linear chain (2-2*cos(i/l) where i=1,2,.. 

l and l is the length of the chain). This spectra has a well defined value at 1 and 2 . It is also 

known, that if the system consists of disjoint subsystem (like in methanol and ethanol), than the 

Laplace spectra of the system is the union of the Laplace spectra of its constituents.  

  

 



 

Fig 1. Laplace spectra of H-bonded networks in liquid methanol (a) and ethanol (b) at different 

temperatures. On the right side we showed the Laplacian spectra in a smaller range near to 0.0.  

 

 
a. 

 

 
b. 

 

 

We can conclude from the investigation of the behavior of the spectra at low λ value that 

these spectra do not indicate any recognizable gap (i.e. a value of the second eigenvalue that is 

clearly distinct from zero). It follows from these results that liquid methanol and ethanol do not 

form percolated networks (not even at low temperature); this is in good agreement with previous 

results [38,39]. In order to prove this statement more precisely, we investigated the distribution of 

the inverse participation ratio (IPR) for the 0 eigenvalue. As mentioned earlier, the number of 0 

eigenvalues equals to the number of connected components in the network. If the IPR of one of 

the eigenvalues is small  (in the order of 1/N) it means that the network consists of N nodes 

(molecules) ) We can reach this conclusion also by investigating the right side (large cluster size) 

of the cluster size distributions. Fig. 2 shows the IPR for liquid ethanol, together with their 

corresponding cluster size distributions. 
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Fig. 2. Cluster size distributions and Inverse Participation ratios (IPR) of the ‘0’ eigenvalue for 

ethanol(a) and (SPC/E)(b) water at different temperatures. 

 

 
a. 

 
a. 

 
b. 

 
b. 

 

The IPR distributions for liquid ethanol (Fig 2. b) have well defined maxima around 0.007-

0.01, which corresponds approximately to association with 10-15 ethanol molecules bonded 

together via H-bonds. From the investigation of the cluster size distribution for liquid ethanol 

(Fig. 2, a) we can also conclude that there is not any percolated network in the system (no bump 

at large cluster size) and that the average cluster size is approximately 10-15. 

The IPR distributions for liquid water have well defined maxima around 5*10
-4

 that 

correspond to delocalization over the entire network. This agrees well with the conclusion from 

the cluster size distribution, namely that liquid water does have a percolated network.  
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Fig 3. Laplace spectra of the H-bonded network in liquid water (SPC/E model at different 

temperatures). On the right side the same Laplacian spectra are shown for a narrow range of 

small eigenvalues.  

 

  
 

We present the Laplace spectra for water (SPC/E model) at different temperatures in Fig. 3. 

We can clearly detect a well-defined gap at some low eigenvalue that becomes smaller as 

temperature increases. The presence of near-zero eigenvalues indicates the existence of strong 

communities or nearly disconnected components. We can use the position of the first peak 

(according to the Cheeger inequalities, see eq.2 ) of these graphs as metrics for describing the 

“distance” (number of bonds that need to be broken) from the percolation transition. Further 

maxima appear in this figure that become better defined at lower temperatures. Investigation of 

the IPR and the cluster size distribution (shown in Fig 2.) also revealed that in these systems we 

have percolated networks. It should be noted that similar Laplace spectra can be obtained from 

several types of classical and ab initio models of liquid water, as represented in Fig 4. (most data 

are shown for room temperature). Characteristic properties of different water models are 

presented in Table 1. We can conclude that the widest spectral gap is found for the Amoeba, 

while the smallest one is for the TIP3P model. These values are correlated well with their average 

H-bond number. 

 

 

Fig 4. Laplace spectra of H-bonded networks in liquid water using different water model. (a) 

SPC, SPC/E, TIP4P, TIP3P, and Amoeba at 298 K; (b) AIMD simulation at 315 K. 
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Table 1. Characteristics of the H-bonding network for various water models.  

 

 T(K) nhb 2 2*nhb 

SPC/E(43) 298 3.174 0.050 0.159 

 268 3.340 0.060 0.200 

 253 3.426 0.062 0.212 

 243 3.489 0.065 0.227 

 233 3.551 0.071 0.252 

SPC(44) 298 2.870 0.040 0.115 

TIP4P/E(46) 298 3.190 0.064 0.204 

TIP3P(45) 298 2.730 0.040 0.109 

AIMD(48)* 315 3.450 0.090 0.311 

Amoeba 

(47)* 

298 3.470 0.090 0.312 

SPC* 298 3.350 0.050 0.168 

SPC/E* 298 3.410 0.060 0.205 

TIP4P/E* 298 3.570 0.072 0.257 

TIP3P* 298 3.260 0.040 0.130 

 

 geometric definition rOH< 2.5 Å and HOH < 30 °; in other cases we used an energetic 

definition for detecting HB-s in the system as rOH< 2.5 Å and Ehb < -3.0 kcal/mol 

 

3.2 Localization of the nodes 

 

The distribution of localization functions of the nodes, P(NPR), are presented in Fig. 5. (a. water, 

b:ethanol) 
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Fig. 5. Localizations of nodes (P(NPR) as a function of H-bond number for water and ethanol at 

two different temperatures 

 

It is clear from these figures that the localization of water molecules with 1 and 5 

hydrogen bonded neighbors is significantly different from the other structures. The difference 

becomes better defined for water molecules with 1 H-bonded neighbor at low temperature. This 

function for water molecules with 2, 3 and 4 hydrogen bonded neighbors has short tail like 

distributions.  We have already found this type of distribution for small world graph ‘h’ with 

p=0.4 rewiring probability [33]. From the tree like structure we see for ethanol the existence of 

different localizations of 1, 2, or 3 hydrogen bonded ethanol molecules can be confirmed. Mainly 

all of the NPR values for ethanol molecules are larger than the same values for water. We can 

detect a significant change as a function of temperature for ethanol molecules with 1 H-bond.  

All the above results point to the consequence that the H-bonded network in water—in 

good agreement with the earlier studies – is significantly more connected and complex than in 

liquid ethanol.  
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4. Conclusions 

In this work we showed how the size of the spectral gap in the Laplace matrix of H-

bonded networks may be applied for characterising the stability of the network. This quantity 

does not depend on the applied water model (at least among the ones considered here). We 

introduced a new method for detecting the presence percolated network in these systems, too, via 

the investigation of the properties of the distribution of inverse participation ratio for eigenvalue 

‘0’. We showed that the localisation of water molecules that belong to the network is 

significantly different from the ones that are not part of the percolated cluster.  
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