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Abstract 

A simple procedure has recently been suggested (T. Pajkossy, Electrochem. Comm. 90 (2018) 69) 

by which various types of voltammograms, above all cyclic voltammograms, pertaining to partially 

diffusion controlled charge transfer reactions can be analysed. Using this procedure, from 

voltammograms taken with varied scan-rates or other-than-triangular waveforms two scan-rate 

independent, hysteresis-free functions can be calculated. One of them is the diffusion-free 

polarization curve; the other the semiintegrated form of the reversible voltammograms. Here we 

show the underlying theory in details, along with numerical simulations to highlight important 

properties of the transformation. The theory opens a new route for the determination of charge- 

transfer rate coefficients of quasi-reversible redox systems. 
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1. Introduction 

Voltammetry is a basic experimental method for studying the kinetics of electrode processes: the 

current density as a function of time, )(tj , is measured, while potential is varied as )(tE : 

voltammograms are the j vs E plots. Most often – in cyclic voltammetry (CV) measurements – the 

potential is scanned between two limits usually with a constant absolute value of the scan-rate 

dtdEv / . Both )(tj  and )(Ej  are complicated functions of v ; hence comparison of two CVs 

measured with different scan-rates is far from being trivial. The comparison is even more 

complicated if the scan-rate varies in time or when two voltammograms are measured with 

different, arbitrary waveforms. 

In rare, simple cases, however, there exist mathematical transformations by which 

voltammograms taken at different scan-rates can be transformed to the one-and-the-same )(ET  

state function – that does not “remember” the actual form of )(tE  and has a hysteresis-free, scan-

rate independent form. The voltammograms of reversible redox couples, for example, can be 

transformed to hysteresis-free polarograpic-wave shaped curves using semiintegration: in this 

case semiintegrated current as function of potential is the scan-rate independent representation 

of the measured data [1]. 

In contrast to the case of reversible CVs, the CVs of redox systems of slower kinetics – of the so-

called quasi-reversible systems – cannot be transformed to a single )(ET  function. However, as it 

has recently been demonstrated in a short communication [2], by measuring a set of quasi-

reversible CVs with different scan-rates, two such state functions can be obtained by a simple 

procedure. One of them characterizes charge transfer kinetics, the other diffusion. Having derived 

the relevant equations, the transformation was tested with one set of simulated quasi-reversible 

CV curves.  

The subject of the present communication is the detailed version of that theory, generalized in 

three respects. (i) Both parties of a redox pair are assumed to be present rather than only one; (ii) 

There is no assumption involved with regard to the exponential dependence of the rate 

coefficients on potential; (iii) The theory applies for voltammograms of any )(tE potential 

programs rather than to CVs only.  

The important features of the theory are highlighted through the transformation of five sets of 

CVs. 
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2. Theory 

Consider a voltammetry measurement of a quasi-reversible redox system [3] with the condition 

that both the reduced and oxidized forms are present in the bulk of the electrolyte solution. These 

species take part in an n-electron charge transfer reaction with no detectable intermediates, on a 

planar electrode. The dependence of the rate coefficients on electrode potential – temporarily, 

until reaching Eq.11 – is not specified; all what is assumed that they lie in a range to make both the 

anodic and cathodic reactions partially diffusion controlled. We apply the usual assumptions, that 

is, the redox system is a minority component of the electrolyte; the effects due to electrolyte 

resistance and convection are disregarded. 

Before starting the experiment, at t=0, the concentrations of the reactants are uniform in the 

electrolyte solution and no current flows: 𝑗(𝑡 ≤ 0) = 0. Accordingly, the )(tE  potential program – 

of arbitrary waveform – starts at t=0 from the redox-potential of the electrolyte solution. We 

apply an )(tE  potential program that crosses the 𝐸 = 𝜀 level more than once during the 

experiment, with different local scan-rates: the aim of the derivation presented below is to 

calculate reaction rate coefficients at given ε potential values.  

Different ways for choosing appropriate )(tE  controlling waveforms are illustrated by Fig.1. We 

can, for example, record linear scan voltammograms (LSVs) repetitively at different scan-rates 

(Fig.1a); we can also record several cyclic voltammograms at varied scan-rates (Fig.1b); or, 

alternatively, we can even use an arbitrary continuous waveform that crosses ε a number of times, 

with different local scan-rates (Fig.1c). 

 

Figure 1. (a). )(tE  of typical experiments for which the theory applies. (a) Single scan experiments 

with varied scan-rates. (b) CVs of varied scan-rates. (c) Voltammograms with arbitrary )(tE s, 

performed with any electric (potentiostatic, galvanostatic, or mixed) control. 
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The rate of charge transfer is expressed as current desity, j in the usual way (Ref. 3, Ch.3) as  

𝑗 = 𝑛F𝑘a(𝐸)𝑐red
s (𝑡) − 𝑛F𝑘c(𝐸)𝑐ox

s (𝑡) (1) 

where the superscript s denotes concentrations at the surface and the subscripts a, c, red, and ox 

refer to anodic and cathodic reactions, and to reduced and oxidized species, respectively; F is 

Faraday’s constant. Note that the ka anodic and the kc cathodic rate coefficients show an explicit 

dependence only on potential, whereas the cred
s  and cox

s  near-surface concentrations depend 

explicitly solely on time. The time dependence of the near-surface concentrations is due to the 

diffusional hindrance of the motion of the redox species. With no hindrance, i.e. at infinite 

transport rate, the current is denoted by 𝑗inf(𝐸); then, Eq.1 is simplified to  

𝑗inf(𝐸) = 𝑛F𝑘a(𝐸)𝑐red − 𝑛F𝑘c(𝐸)𝑐ox (2) 

where the concentrations (without suffixes) are bulk ones. When diffusion limitation is present, 

the near-surface and and bulk concentrations are related to each other through the species flux 

(here expressed as current density) by the following equations:  

cred
s (t) = cred −

1

𝑛F√𝐷red

∙
1

√π
∫

𝑗(𝑢)

√𝑡 − 𝑢
𝑑𝑢

𝑡

0

 (3a) 

and  

𝑐ox
s (𝑡) = 𝑐ox +

1

𝑛F√𝐷ox

∙
1

√𝜋
∫

𝑗(𝑢)

√𝑡 − 𝑢
d𝑢

𝑡

0

 (3b) 

where Dred and Dox are the diffusion coefficients of the two species, and u is the convolution 

auxiliary variable. Eqs 3a and 3b have first been derived by Matsuda and Ayabe in 1955 [4]; similar 

equations – also in Laplace transformed forms – have been published many times since then; see 

also Sect. 6.2.1. of Ref. 3. Note that these equations are consequences of the equations of 

diffusion towards a plane and have no connection whatsoever to the nature of the charge transfer 

reaction. For other than planar electrode geometries, the convolution terms of Eqs 3a and 3b are 

to be modified according to the diffusion geometry; this is beyond the scope of the present paper.  

In what follows, for the convolution terms of Eqs 3a and 3b we use the name „semiintegrated 

current” introduced by Oldham [1]; for a detailed analysis see his recent textbook [5]. 

Semiintegrated current, M(t), is defined as: 
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𝑀(𝑡) =
1

√𝜋
∫

𝑗(𝑢)

√𝑡 − 𝑢
d𝑢

𝑡

0

 (4) 

With the combination of Eqs. 1 to 4, we obtain for time 𝜏, when 𝐸 = 𝜀,  

𝑗(𝜏) = [𝑛F𝑘a(𝜀)𝑐red − 𝑛F𝑘c(𝜀)𝑐ox] −  [
𝑘a(𝜀)

√𝐷red

+
𝑘c(𝜀)

√𝐷ox

] ∙ 𝑀(𝜏) (5) 

Combining this equation with Eq.2, and introducing the denotion  

𝐻(𝜀) = 𝑘a(𝜀) √𝐷red⁄ + 𝑘c(𝜀) √𝐷ox⁄  (6) 

we arrive at two shorter forms: 
𝑗(𝜏) = 𝑗inf(𝜀) −  𝐻(𝜀) ∙ 𝑀(𝜏) (7a) 

and 
𝑀(𝜏) = (𝑗inf(𝜀) − 𝑗(𝜏)) 𝐻(𝜀)⁄  (7b) 

This latter equation allows us to introduce the M-function of reversible voltammograms, 𝑀rev(𝐸). 

Consider the |𝑗(𝜏)| ≪ |𝑗inf(𝜀)| condition implying a completely diffusion controlled charge 

transfer; that is, for this case 𝑀(𝜏) = 𝑀rev(𝜀), hence  

𝑀rev(𝜀) = 𝑗inf(𝜀) 𝐻(𝜀)⁄  (8) 

Note the proportionality – with a positive proportionality factor – of 𝑗inf(𝜀) and 𝑀rev(𝜀): its 

consequences are discussed at Point 2 of Discussion. 

Finally, with the combination of Eqs. 5 to 8 we arrive at  

𝑗(𝜏) = 𝑗inf(𝜀) −
𝑗inf(𝜀)

𝑀rev(𝜀)
∙ 𝑀(𝜏) (9) 

The course of the 𝑗 vs 𝑀 function along with its characteristic values is shown in Fig.2. Eq. 9 

represents the basis of extrapolation to infinite rates of diffusion: on a series of voltammograms 

recorded with varied scan-rates there are a number of ε-crossings 𝑗(𝜀) points for which 𝑗(𝑀) 

point pairs can be plotted. These points lie on a straight line intersecting the ordinate and the 

abscissa at 𝑗inf and 𝑀rev, respectively. With increasing scan-rate the points move towards the 

ordinate. 
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Figure 2. Graphical representation of the quantities of Eqs. 7 and 8. The two lines represent the 

two cases for which 𝑗inf(𝜀) is positive or negative. 

 

Repeating this procedure for all  s, we get 𝑗inf and 𝑀rev as a function of potential. Since they 

depend on potential only, they do not depend on the actual shape of the potential program, by 

which the js have been measured. In the same vein, since they are single valued functions, they do 

not exhibit any hystereses.  

Eq. 9 is the main result of the theory. This equation is valid irrespectively on the actual form of the 

dependencies of the rate coefficients on potential. However, if we consider the usual exponential 

dependences, then we can proceed to get more explicit forms of )(inf Ej  and )(rev EM . First, with 

the introduction of  

𝐾(𝐸) = [𝑘c(𝐸) 𝑘a(𝐸)⁄ ] ∙ √𝐷red 𝐷ox⁄  (10) 

Eq. 8 takes the following form: 

𝑀rev(𝐸) =
𝑛F(𝑘a𝑐red − 𝑘c𝑐ox)

𝑘a √𝐷red⁄ + 𝑘c √𝐷ox⁄
= −𝑛F𝑐ox√𝐷ox +

𝑛F𝑐red√𝐷red + 𝑛F𝑐ox√𝐷ox

1 + 𝐾(𝐸)
 (11) 

Note that 𝑀rev(𝐸) does not depend on the individual rate coefficients but only on their ratio; ie., 

𝑀rev(𝐸) is indeed an attribute of diffusion only. As a next step we assume that the k rate 

coefficients exhibit exponential potential dependences as  

𝑘a(𝐸) = 𝑘0exp (
𝛼aF(𝐸 − 𝐸0)

R𝑇
)) (12a) 

 and 
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𝑘c(𝐸) = 𝑘0exp (
−𝛼cF(𝐸 − 𝐸0)

R𝑇
)) (12b) 

where E0 is the standard redox potential, for the 𝛼a and 𝛼c charge transfer coefficients the 𝛼a +

𝛼c = 𝑛 equation holds [6], and all other symbols have their usual meaning. In this case, by 

combining Eqs. 2 and 11, we arrive at the usual form of the Butler-Volmer equation: 

𝑗inf(𝐸) = 𝑛F𝑘0𝑐redexp (
𝛼aF(𝐸 − 𝐸0)

R𝑇
) − 𝑛F𝑘0𝑐redexp (

−𝛼cF(𝐸 − 𝐸0)

R𝑇
) (13) 

With 𝛼a + 𝛼c = 𝑛, and Eqs. 12a and 12b,  Eq. 10 takes the form: 

𝐾(𝐸) = √
𝐷red

𝐷ox
∙ exp (

−𝑛F(𝐸 − 𝐸0)

R𝑇
) (14) 

By defining the half-wave potential as 𝐸1/2 = 𝐸0 + R𝑇/𝑛F ∙ ln √𝐷red 𝐷ox⁄   and the cathodic and 

anodic limit values of 𝑀rev(𝐸), respectively, as 𝑀lim,c = −𝑛F𝑐ox√𝐷ox  and 𝑀lim,a = +𝑛F𝑐red√𝐷red, 

Eq. 11 can be rearranged to the form: 

𝑀rev(𝐸) = 𝑀lim,c +
𝑀lim,a − 𝑀lim,c

1 + exp (−𝑛F(𝐸 − 𝐸1/2) R𝑇⁄ )
 (15a) 

which is just the same as the equations derived by Oldham [7] given in the following forms: 

𝑀rev(𝐸) =
𝑀lim,c

2
+

𝑀lim,a−𝑀lim,c

2
∙ tanh (

−2𝑛F(𝐸 − 𝐸1 2⁄ )

R𝑇
) (15b) 

and  

𝐸 = 𝐸1 2⁄ +
R𝑇

𝑛F
∙ ln (

𝑀rev(𝐸) − 𝑀lim,c

𝑀lim,a − 𝑀rev(𝐸)
) (15c) 
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3. Discussion 

3.1.  Tests of typical cases: numerical simulations 

For illustrating the properties of the transformation of Eq.9, five sets of voltammograms (actually 

CVs) were simulated and made subject to the described transformation. The CVs were generated 

by a computer program, based on the explicit Euler method for solving the partial differential 

equation relevant to the transport of the redox species (Appendix B of Ref. 3, [8], taking also into 

account the quasi-reversible charge transfer and solution resistance. Having calculated the CVs 

(unless otherwise noted, one complete cycle), the transformation and further calculations have 

been carried out in the following steps: 

a. The semiintegrals were calculated using the algorithm of Ref. 9;  

b. The datasets were re-organized to have 𝑗 vs 𝑀 data pairs at the same ε potentials (in the case of 

non-zero Rs, the data pairs should belong to the same 𝜀 − 𝑗𝑅𝑠 potentials). 

c. According to Eq.9, straight lines were fitted to the 𝑗(𝜀) vs 𝑀(𝜀) point pairs by the linear least 

squares procedure [10]. From the fitted slopes and intercepts 
revM  and infj  values were 

calculated for each 𝜀 potential. The obtained )(inf Ej  and )(EM rev
 functions were then plotted 

(Figs.3d,4d,5b,6b,7b). Note that in each simulation, both curves are hysteresis-free; the 

characteristic values of the curves: typically M, j  and the dE(j)d log  slope at  𝐸 = 𝐸0 are exactly 

the same as can be calculated from the input data. Hysteresis or scatter of the points on the 

)(EM rev
 curve is invisibly small in the full potential range; for the ))(log( inf Ej  curve scatter 

appears close to the edges of the potential range; these points are omitted from the plots (the 

scatter can be traced back to calculation steps with small differences of large numbers). 

There were common parameters of the five simulations; these were as follows. Spatial grid size 

and time resolution: 10-4 cm and 10-4 s; diffusion coefficients Dox= Dred=10-5 cm2/s; k0=10-3 cm/s; 

the potential program started with positive scan direction from the actual redox potential (if cox=0 

then from 𝐸0 − 0.3 V) and changed linearly between the limits  𝐸0 − 0.3 V and 𝐸0 + 0.3 V for one 

or more complete cycles, with scan-rates typically between 10 mV/s and 0.2 V/s in 1-2-5 steps. 

Unless otherwise noted in the respective figure legend, the concentrations are cox=0 and cred=10-6 

mol/cm3; the charge transfer coefficients are c=a=0.5; the uncompensated solution resistance is 

Rs=0.  
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The first simulation, Fig.3, is a somewhat extended version of Fig.2 of Ref. 2. It was the simplest 

case, with the parameters as listed above, i.e. only with one redox component present, and the 

first cycle has been simulated only.  

  

  
 

Figure 3. (a) Simulated CVs of scan-rates as indicated, cred=10-6 mol/cm3; for other parameters see 

the text. (b). The semiintegrated CVs. (c) The j() vs M() points for  potentials as indicated. Full 

and open symbols are for anodic and cathodic scan directions, respectively. Outermost and 

innermost points on the lines are for the largest and smallest scan rates, respectively. (d) The 

)(inf Ej  and )(rev EM  functions.  
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With the next simulation of Fig.4 we demonstrate that the )(inf Ej  and )(EM rev
 functions do not 

change even after a number of cycles. Apart that the charge transfer coefficients have been 

changed to c=0.3 and a=0.7,  ten cycles of the CV have been calculated. To avoid scrambled 

plots only the first and the tenth cycles of the CVs and the semiintegrated forms, and only for two 

scan-rates, are plotted. Note that the )(inf Ej  and )(EM rev
 functions calculated from the first 

and tenth cycles are indistinguishably close to each other.  

  

  

 

Figure 4. Simulated CVs and their transforms. For the meaning of (a) to (d) see the legend of Fig.3. 

Simulation parameters are the same as of Fig.3, but c=0.3 and a=0.7; and ten cycles have been 

calculated. Data of the first and the tenth cycles of CVs of 50 and 200 mV/s scan-rates are shown 

in Figs (a) and (b). The j-M linearity is demonstrated in (c) for two potentials as indicated. Circles 

and diamonds are data for the first and tenth cycles, respectively; full and open symbols are for 

anodic and cathodic scan directions, respectively. (d) The )(inf Ej  and )(rev EM  functions. 

  



T. Pajkossy and S. Vesztergom, Electrochim. Acta, doi: 10.1016/j.electacta.2018.12.023 

 11 

With simulation of Fig.5, we demonstrate how we can get a “classical Tafel-plot”. The parameters 

are the same as for the simulation of Fig.3, but both components of the redox system are present 

of equal concentrations (cox=cred=5*10-7). Note that the log(𝑗) vs 𝐸  curve is a typical Tafel plot of a 

1:1 redox system; the 𝑀 vs  𝐸  curve exhibits one negative and one positive plateaus. 

With the simulations of Fig.6 we demonstrate the elimination of the effect of IR drop. Note that 

the IR drop substantially distorts the CVs; still the transformed functions plotted on the IR-drop 

corrected potential scale are hysteresis-free functions. 

  

Figure 5. (a) Simulated CVs of scan-rates as indicated, cox=cred=5*10-7 mol/cm3; for other 

parameters see the text. (b) The )(inf Ej  and )(rev EM  functions. 

  

Figure 6. (a) Simulated CVs of scan-rates as indicated, cred=10-6 mol/cm3, Rs=200 Ohm*cm2; for 

other parameters see the text. (b) The 𝑗inf and 𝑀rev: functions .against the IR-drop corrected 

potential. 
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The simulation of Fig.7 demonstrates that the transformation can be well applied also to 

voltammograms measured with time-varying scan-rates. Simulation parameters are the same as 

for Fig.3, but instead of five separate CVs, one continuous CV with a time-varying scan-rate (see 

the inset) has been simulated and transformed. The transformed )(inf Ej  and )(EM rev
 functions 

are again the same hysteresis-free functions as of the previous simulations.  

  

Figure 7. (a) Simulated CVs of scan-rates as indicated, cred=10-6 mol/cm3, for other parameters see 

the text. One continuous four-cycles CV with a time-varying scan-rate (see the inset on (a)) has 

been simulated and transformed. (b) The )(inf Ej  and )(rev EM  functions. 

 

3.2. Practical implication: determination of the charge transfer rate coefficients 

3.2.1. Determination of H 

In principle, this measurement and its evaluation is straightforward. One has to measure one or 

more 𝑗(𝑡) voltammograms with varied scan-rates. First the measured 𝑗(𝑡) functions are to be 

semiintegrated (cf. Eq.4). For this, the algorithm of Ref. 9 is recommended. It is a “fast” algorithm 

which requires in the order of magnitude of 𝑁 ∙ ln(𝑁) multiplications, in contrast to conventional 

convolution algorithms [1,11,22] with 𝑁2 multiplications. Afterwards, plotting the 𝑗(𝑀) points of 

the same 𝜀 potential yields the 𝑗inf(𝜀)and 𝑀rev(𝜀). Unless we wish to use it for some 

electroanalytical purposes, the latter function can be disregarded; 𝑗inf(𝐸) – as a “Tafel plot” is to 

be analyzed further. There is another way to obtain data on kinetics: As it follows from Eq. 8, the 

𝐻 = 𝑘a √𝐷red⁄ + 𝑘c √𝐷ox⁄  parameter combination can be directly obtained by plotting 𝑗inf 𝑀rev⁄  as 

a function of potential. Note that an analogous coupling of k and D parameters appears when the 
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Faradaic impedance of the quasi-reversible redox system is theorized (cf. Eqs.3-11 [12]). The 

𝑗inf 𝑀rev⁄ vs E plot for all simulated curves of Figs 3 to 5 are shown together in Fig.8.  

 

Figure 8. 𝑗inf 𝑀rev⁄  [= 𝐻 ≡ 𝑘a √𝐷red⁄ + 𝑘c √𝐷ox⁄ ] vs E for the simulated data of Figs 3d, 4d and 5b 

(full circles, crosses and solid line, respectively). Additional thin lines represent the log(k) vs E 

slopes as calculated from the respective charge transfer coefficients. Note that 𝑘a √𝐷red⁄ +

𝑘c √𝐷ox⁄  appears to be the same for the simulations with the reduced species only and with both 

components of the redox couple.  

3.2.2. Complications  

There might be complications mainly due to (i) the non-zero solution resistance (IR drop) and to 

(ii) double layer charging.  

The IR drop effect is well known and it is easy to correct for [22]. Prior to – or following – the 

voltammetry measurements, one has to determine the solution resistance 𝑅s by measuring an 

impedance spectrum at sufficiently high frequencies. Since all 𝜀 potentials of this text are of 

interfacial nature, the IR drop must be subtracted from the applied potential; i.e. we have to plot 

𝑗(𝑀) points corresponding to the same 𝜀 − 𝑗𝑅𝑠 potential, and analyse these plots to extract 

𝑗inf(𝜀) and 𝑀rev(𝜀).  

The charging current error is a more difficult issue, mostly because the double layer capacitance 

depends on electrolyte composition and electrode potential as well. One possible way of 

correction is based on “baseline-subtraction”: The voltammograms are to be measured with and 

without the redox component(s) added to the supporting electrolyte; then the difference of the 

voltammograms is to be analysed. Alternatively, “standard addition” might be also used: one 
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measures the voltammograms also with doubled concentration of the the redox component and 

then analyse the difference of the corresponding voltammograms.  

3.2.3. Self-consistency 

The )(inf Ej  and )(EM rev
 plots provide a self-consistency check of the analysis. These plots 

should be, in principle, hysteresis-free; the )(EM rev
 function should exhibit the sigmoid shape of 

the “polarographic wave” expressed by Eq.15a; the potential dependence of )(inf Ej  should be 

compatible with the Butler–Volmer equation. This feature, the demonstration of self-consistency 

is a big boon what we get when we apply the present theory for data analysis. 

3.2.4. Alternatives  

Compared to previously known techniques of voltammetric data analysis, the theory presented 

here opens a new route to determine rate and charge transfer (as well as diffusion) coefficients. 

Since the classical treatment of Nicholson [13] (see also Ch. 6.5.2 of [3]), kinetic parameters of the 

electrode reaction and diffusion coefficients are extracted from voltammetric signals based on 

theoretical relations of particular electrode reaction mechanisms, yielding k0 values from CV peak 

separations. 

Improved voltammetric analysis techniques described recently and used to determine kinetic 

parameters include, for example, statistical multivariable regression procedures applied to 

combined current–charge transients obtained from potentiostatic pulse experiments [14], multi-

parameter estimation from hypersurface models [15,16], the use of artificial neural networks to 

distinguish voltammetric signals by reaction mechanism [17], bootstrap resampling to extract 

system parameters [18] and support vector or gaussian process regression based analyses [19]. As 

an alternative, fitting of simulated voltammetric features to experimental data may also be used 

for parameter extraction [20,21]. 

Both approaches — i.e., theoretical analyses and the fitting of simulated voltammograms — have 

their limitations, however. Theoretical relationships are only valid for certain kinetic schemes and 

mechanisms, while simulations, even if based on reasonable mechanistic hypotheses, usually take 

huge computation times and are extremely sensitive to parameter initialization [19]. 

As opposed to the afore-mentioned techniques, the method proposed here offers a relatively easy 

way of transforming voltammetric measurement results. The aim of this transformation is to 

decouple charge transfer and diffusion effects; the analysis of the j(E) is left to a next step.  
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3.3.  The novelty and general nature of the theory 

The above theory is the generalized version of the one presented in Ref. [2] in three respects. (i) 

Both the oxidized and reduced components are assumed to be present rather than only one; (ii) 

For the derivation of Eq.9, no specific (e.g. exponential) dependence of the charge transfer rates 

on potential was needed; (iii) The theory applies to any arbitrary potential controlling waveform. 

Apparently, Eq. 9 is a simple combination of five equations known and used for decades. In 

contrast to the previous semiintegration-based analysis methods [5,22,23,24], in which single CVs 

were analysed, we evaluate a set of  voltammograms with different scan-rates together, or a 

single voltammogram comprising of multiple scans of arbitrarily changing scan-rates, or any 

combination of these. In the present way of analysis, there is an implicit scan-rate dependence 

involved; this is how we can extrapolate to ideally kinetics-controlled and transport controlled 

situations. 

The scan-rate is a control parameter, p, which plays the role of tuning the ratio of rates of charge 

transfer and transport. There are other experimental techniques where some other time-related 

quantities play a similar role, as shown by Fig.9. In a special case of potential-jump experiments 

the linear j(M) relation has been recognized by Oldham (cf. Eq. 11 of [11]): in these experiments, 

time can be considered a control parameter (Fig.9a). In impedance measurements (Fig.9b), where 

the Warburg term of the Faradaic impedance shrinks to yield the charge transfer resistance at the 

high frequency limit (see Ref. 3, Ch.10.4.1) it is the perturbation frequency that can be considered 

a control parameter. In case of rotating disk electrode experiments (Fig.9c) it is the rotation rate 

that plays the role of a control parameter (cf. to the Koutecký–Levich equation [25], see also Ref. 

3, Ch.14.4.1). 
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Figure 9. Analogue experiments for separation of the kinetics of diffusion and charge transfer by 

varying a control parameter p. For the present theory of (cyclic) voltammetry p is the scan-rate, v. 

(see also Fig.2). For other techniques:  

a. For chronoamperometric transients p is time, t (cf. Oldham’s procedure, Eq. 11 of [11])  

b. In impedance spectroscopy p is frequency, ω (Faraday impedance = Rct-W)  

c. For a rotating disc electrode p is rotation speed, Ω (cf. the Koutecky-Levich equation)  

 

4. Conclusions 

The theory presented here, along with the illustrating simulations, shows how to transform quasi-

reversible voltammograms to yield two scan-rate independent functions. One of them is 

characteristic to charge transfer kinetics, the other to diffusional flux. From an algebra point of 

view, Eq. 9 is a simple combination of five well-known equations pertinent to the voltammetry of 

quasi-reversible redox systems. In Eq. 9 we make use of the implicit scan-rate dependence of the 

current and of its semiintegral at a constant potential. In other words, the two functions are 

determined from a set of voltammograms of different scan-rates or from voltammograms 

comprising a number of cycles with varied scan-rates.  

The theory leading to Eq.9 opens a new route for the determination of charge transfer rate 

coefficients of quasi-reversible redox systems.  
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List of symbols 

 

𝐸, 𝑡 electrode potential and time, in general 

𝜀, 𝜏 ε is the electrode potential at time  

𝐸0,𝐸1/2 standard redox potential and half-wave potential 

𝑣 scan rate 

𝑗 current density 

𝑗inf current density at infinite transport rate 

M semiintegrated current density (cf. Eq.3) 

𝑀rev semiintegrated current density for reversible redox systems 

𝑀lim,a, 𝑀lim,c  anodic and cathodic limit values of 𝑀rev  

𝑐red, 𝑐ox concentration of the reduced and oxidized species in the electrolyte bulk 

𝑐red
s , 𝑐ox

s   concentration of the reduced and oxidized species at the electrode surface 

𝐷red, 𝐷ox diffusion coefficient of the reduced and oxidized species 

𝑘a , 𝑘c , 𝑘0 rate coefficient of the anodic and cathodic reactions, and standard rate 

coefficient 

𝛼a , 𝛼c  charge transfer coefficient of the anodic and cathodic reactions 

H,K parameter combination of 𝑘a , 𝑘c , 𝐷red, and 𝐷ox  (cf. Eqs.6 and 10). 

n charge number of the electrode reaction  

F,R,T Faraday’s number, universal gas constant, temperature 
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