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Abstract. The accurate consideration of the local (plate) buckling resistance and the determination of 

the effective width is highly important in the design of civil engineering structures. The current effective 

width calculation method provided by the EN 1993-1-5 is mainly developed for I-sections loaded by 

bending moment. Several previous studies proved that the current design rules can overestimate the 

plate buckling resistance especially in case of square box sections loaded by compression. The purpose 

of the current study is (1) to investigate the local buckling resistance of welded square box section 

columns loaded by pure compression and pure bending moment and (2) to investigate the applicability 

of the Winter curve for these worst cases. Another aim of the current study is to investigate the 

differences between NSS (S235 – S355) and HSS (S500 – S960) on the local buckling resistance. A 

numerical and experimental research program is conducted to investigate the residual stresses, 

geometric imperfections and local buckling resistance of welded square box section stub-columns. The 

obtained results are valid for steel grades between S235 – S960. 

1 INTRODUCTION 

High strength steel (HSS – S420 and higher steel grades) structures are increasingly used in 

the field of structural engineering due to its favorable properties compared to the normal 

strength steel (NSS) structures such as economic design, material saving, possibility of creation 

of lighter and more aesthetic structures. Due to the higher yield strength slender sections can be 

used, therefore the stability behavior of HSS structures is highly important. The application 

range of the current EN 1993 is limited for steel grades up to S460. The EN 1993-1-12 [1] gives 

design rules for materials up to steel grades of S700, however, there are no differences in the 

calculation method of the local buckling resistance of NSS and HSS columns. Previous 

researches show that the necessary safety level of the Eurocode is not reached in some cases 

even for NSS structures by using the Winter-curve based formula of the EN 1993-1-5 [2] for 

the calculation of the local buckling resistance.  

The aim of the current research is to obtain a local buckling curve that satisfies the safety 

requirements of the Eurocode. In the current research program buckling curves are derived for 

different loading cases (pure compression and pure bending), for several steel grades (S235 - 

S960) for welded square box sections, which is the most unfavorable case from the local 

buckling point of view. The applicable buckling curves are calculated based on GMNIA 

analysis using a verified numerical model by applying a deterministic analysis. The buckling 

curves are determined following two different concepts and the results are discussed. The first 

concept is to execute deterministic parametric calculations using equivalent geometric 

imperfection according to the Eurocode. The second concept is to execute deterministic 

parametric calculations taken into consideration the realistic residual stresses and geometric 

imperfections based on laboratory tests and based on the manufacturing tolerances. The 

obtained local buckling curves are evaluated and compared for specific loading cases, steel 
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grades and cross-section geometries. Deterministic numerical research program is carried out 

for welded HSS box section columns in order to determine the requested reduction factor and 

to evaluate the applicability of the Winter curve. The numerical model and the input variables 

are validated and determined based on laboratory tests and measurements. The objectives of 

the research program are achieved by the following research strategy: 

1. literature review on the local buckling behaviour of welded box section columns, 

2. laboratory measurements to determine the residual stress distribution and 

imperfections of the analysed sections, 

3. numerical model development and verification, 

4. deterministic numerical parametric study using equivalent geometric 

imperfections, 

5. deterministic numerical parametric study using measured/realistic residual 

stresses and imperfections, 

6. comparison of the results to the buckling curve of the EN 1993-1-5. 

2 LITERATURE REVIEW 

2.1 Local buckling resistance according to EN 1993-1-5 

The calculation of the local buckling resistance in the EN1993-1-5 [2] is based on the 

effective width method derived by Tódor Kármán et al. in 1932 [3]. George Winter semi-

empirically improved this method and developed the Winter curve in 1947 [4] formulated by 

Eq. 1. The basis of the new formula was his own experiments supplemented by the experimental 

results of Sechler and Donnel [3]. 
 

 
b𝑒𝑓𝑓

𝑏
 =  

1
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) (1) 

 
In 1968 Winter modified the 0.3 constant to 0.22 based on experiments made on cold-formed 

sections loaded by bending moment. There are two reasons of the modifications, (i) the cold-

forming results in more advantages condition at the corners than the welding, and (ii) the 

bending results in better support conditions than the pure compression due to the supporting 

effect of the connecting plate. This modified formula (Eq. 2) is currently applied in the EN1993-

1-5 [2].  
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Later, researchers proposed formulas to the calculation of the effective width. Eq. 3 is 

proposed by Gerard in 1957 and Eq. 4 is proposed by Faulkner in 1965 [5].  
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=  

0.82

�̅�𝑝
0.85 (4) 

 
In the EN1993-1-5 [2] the Eq. 2. is slightly modified (introducing the  factor) in order to 

be applicable to different loading situations, however the formula in the Eurocode gives back 

Eq. 2 in case of pure compression. The appropriateness of the Winter curve was questioned by 

several researches in the past. In 1987 Scheer [6] compared the Winter curve to several 

experimental results and concluded that Winter curve provides approximately the mean of the 
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experimental resistances. Therefore, numerous experimental test results provided lower 

resistances than the resistance proposed by the Winter curve.  

2.2 Local buckling resistance of welded box sections 

In 1967 Nishino [7] et al. examined the connection between the local buckling resistance 

and the residual stress of welded box section. Their experiments were carried out on specimens 

made of ASTM A7 (fy=250 MPa) and ASTM A514 (fy=690 MPa) material grades. The 

experimental resistances proved to be lower than the resistance proposed by the Winter curve 

[5]. In 1992 Rasmussen and Hancock [8] experimentally studied the local buckling resistance 

of welded box, I, and cruciform sections and compared to the Australian, American, British and 

European standards. In 1998 Bridge and O’Shea [9] tested welded box sections with and 

without concrete infill. Their test resistances also proved to be lower than the resistance level 

of the Winter curve. The local imperfection and the residual stress of their test specimens were 

measured, these data were used by Pircher et al in. 2002 [10] to develop a numerical model and 

examine the local buckling behavior numerically. The numerical and experimental results 

showed good agreement with each other. In the last few years several researches investigated 

the local buckling resistance of welded box section. Shi et al. [11] examined the local buckling 

behavior of welded box and I-sections made of S460 steel grade in 2014. In 2016 Shi et al. [12] 

extended the experimental results by numerical calculations to different (NSS and HSS) 

material grades. Based on their results a new formula was proposed. Schillo et al. [13] [14] 

executed 34 experimental local buckling tests on high strength steel welded box sections. The 

imperfection shape of the specimens was also measured. Their results were compared by the 

Winter curve, which showed that several test specimens have lower resistance than the 

resistance level of the Winter curve.  

2.3 Research strategy 

The international literature shows that several experimental or numerical results provide 

local buckling resistances below the Winter curve. Therefore, it can be concluded that the 

Winter curve is not always on the safe side for NSS and also for HSS structures. Therefore, the 

actual procedure in the Eurocode to determine the local buckling resistance of inner plates of 

box section loaded by pure compression should be studied further and evaluated.  

In the present study a numerical model is developed to examine the local buckling resistance 

of welded box sections under pure compression and pure bending. Several material grades from 

S235 to S960 are examined to provide results for NSS and HSS structures as well. Two different 

analysis type are taken into consideration to provide numerical resistances:  

 analysis based on the EN 1993-1-5 [2] using equivalent geometric imperfections. 

 analysis based on realistic numerical experiments included the realistic residual stress 

distribution and geometric imperfections coming from manufacturing. 

The resistance level of the two different analysis type is compared. The evaluation is made 

separately for pure compression and for pure bending. Finally, the different resistance level of 

the two loading situations are also compared and evaluated. 
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3 NUMERICAL MODEL DEVELOPMENT AND VERIFICATION 

3.1 Numerical model development 

A numerical model is developed using ANSYS 16.2 [15] to examine the local buckling 

behavior of welded box columns and to determine their local buckling resistance. The numerical 

model is a full shell model, using four-node quadrilateral thin shell elements, see Figure 1. The 

buckling resistance is determined by geometrical and material nonlinear (GMNI) analysis, 

implementing the initial geometrical local imperfections and residual stresses coming from the 

welding process. The analysis is executed using the Newton-Raphson iteration process. Two 

different loading situations are applied in the study. In case of pure compression, the loading is 

applied through displacement-control at the center of one of the end cross-section. In case of 

pure bending, force-controlled loading is applied by concentrated bending moments at the end 

cross-sections. The applied mesh size is chosen to one-tenth of the cross-section width, that is 

validated by convergence study. Stiff diaphragm is generated at the end-cross sections. The 

length of the element is 50 mm plus three times the width of the cross-section, therefore, the 

length is small enough to avoid flexural buckling. 
 

 

Figure 1: Applied numerical model and meshing. 
 

The local imperfection shape is generated using linear buckling analysis (LBA). The first 

eigenshape is considered as the local imperfection shape, which contained always three sinus 

half-waves, as presented in Figure 2. The amplitude of the imperfection shape is specified in 

Section 4.1. The applied residual stress distribution is shown at Figure 3. The compressive and 

tensile residual stress values are calculated based on the residual stress model of Somodi and 

Kövesdi [16]. 
 

 

Figure 2: Scaled local imperfection shape for compression (left) and bending (right). 
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Figure 3: Applied residual stress pattern. 

3.2 Model validation 

The model validation is executed based on the experimental results of Schillo and Feldmann 

[13]. A total of 34 HSS (S500MC, S700MC and S960MC) stub columns specimens were tested. 

The length of the test specimens was the same as used in the numerical simulations (L = 3b + 

50 mm). The model validation is executed for all three material grades using the real material 

behavior measured by coupon tests. The comparison of the experimental and numerical 

resistances presented in Table 1 which shows a good agreement with an average difference of 

3.3%.  

Figure 4 compares the force-displacement diagrams of the experiments and numerical 

simulations. It can be observed that the numerical model provided the same behavior that was 

experienced by the tests. The model validation proved that the developed model can follow the 

real structural behavior of local buckling of welded box sections and it can provide reliable 

resistance values. 
 

Table 1: Comparison of experimental and numerical resistances. 

Specimen 

(fy_b_t) 

Material 

grade 
Ntest [kN] Nnum [kN] Difference 

S500_195_6 S500 2278 2150 -5.9% 

S500_250_4 S500 1084 1123 +3.6% 

S700_180_6 S700 2688 2637 -1.9% 

S700_260_6 S700 2669 2676 +0.3% 

S960_120_6 S960 2933 2659 -9.4% 

S960_170_6 S960 3365 3207 -5.3% 

S960_220_6 S960 3180 3095 -2.7% 

S960_250_6 S960 3297 3187 -3.3% 

   Mean: -3.3% 
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Figure 4: Numerical and experimental load-displacement diagrams. 

3.3 Measurement of the input parameters 

For the numerical simulations residual stresses and local geometric imperfections are applied 

in the numerical model. For residual stresses of welded box sections Somodi and Kövesdi [16] 

developed a residual stress model validated for NSS and HSS sections as well. This residual 

stress model is used in the present study as a realistic residual stress pattern. In order to specify 

the realistic local imperfection (e) of welded box sections that can be used in the numerical 

model, experimental measurements are carried out using a moving displacement transducer. 

The experimental layout is shown in Figure 5.  

The imperfection shape is recorded on each sides in seven lines for the wider specimens and 

in five lines for the narrower specimens. This means 288 measuring lines on the measured 6 

specimens. The exact shape of each measuring line is measured using 50 Hz recording 

frequency which resulted in more than 1000 data for every line. The global shape of the 

specimens is filtered out of the measured data using the following procedure. The average of 

the two measured data rows at the measuring lines next to the edges are considered as the global 

shape of the element. This shape is extracted from the other three (for narrow specimens) or 

five (for wide specimens) measured data rows on the same side. The maximum amplitude for 

each side based on these modified data are calculated. The average of the maximum amplitudes 

of each sides are considered as the final result for one specimen. The results of this evaluation 

process are presented in Table 2. The average local imperfection amplitude for the examined 
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six specimens is b/1094. This is considerably lower than b/250, which is the manufacturing 

tolerance in the EN 1090-2 § D.2.4 [17]. Figure 6 represents the final imperfection values for 

the six measured specimens. The results show that the local imperfection – cross section width 

ratio (e/b) depends on the b/t ratio if it is lower than 35. The measured values are approximated 

by a linear trend (Eq. 5) if b/t < 35 and by a constant value (Eq. 6) if b/t > 35. These equations 

are used to predict the realistic local imperfection amplitudes in the numerical simulations. 

 

Figure 5: Experimental layout to measure the local imperfection. 
 

 If b/t ≤ 35: 𝑒 𝑏⁄ =
−0.0513 ∙ 

𝑏

𝑡
 + 2.6131

1000
 (5) 

 

 If b/t ≥ 35: 𝑒 𝑏⁄ =  
0.8176

1000
 (6) 

 

 

Figure 6: Measured local imperfection for the six examined specimens and fitted model. 
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Table 2: Local imperfection measurement results. 

ID 
fy b t L b/t λ̅p side emax b/e 

mean 

b/e 

[N/mm2] [mm] [mm] [mm] [-] [-]  [mm] [-] [-] 

12 

500 

150 6 570 25.0 0.591 

A 0.2039 736 

930 
B 0.1741 861 

C 0.1158 1296 

D 0.1812 828 

11 250 4 500 62.5 1.554 

A 0.1792 1395 

1178 
B 0.3491 716 

C 0.1930 1295 

D 0.1912 1308 

18 700 140 6 750 23.3 0.648 

A 0.1628 860 

780 
B 0.1535 912 

C 0.1922 728 

D 0.2254 621 

16 

960 

120 6 595 20.0 0.641 

A 0.3651 329 

525 
B 0.2236 537 

C 0.2960 405 

D 0.1446 830 

13 220 6 455 36.7 1.234 

A 0.2230 986 

1412 
B 0.1560 1411 

C 0.1520 1447 

D 0.1220 1803 

7 250 6 500 41.7 1.411 

A 0.1140 2192 

1740 
B 0.2248 1112 

C 0.1273 1963 

D 0.1477 1692 

         Mean: 1094 

4 RESULTS OF THE DETERMINISTIC NUMERICAL ANALYSIS 

4.1 Research strategy 

The goal of the current deterministic numerical analysis is to obtain the local buckling 

resistance of the analysed welded box sections, and to compare the numerical resistances to the 

Winter-curve. Moreover, the clarification of different behaviour between NSS and HSS 

elements is an another task. The numerical results are generated for four different plate 

thicknesses (4, 8, 12 and 16 mm) and for five different steel grades (S235, S355, S500, S700, 

S960) in the local slenderness region between 0,4 <  < 2,0. Two different analysis types are 

applied: 

 analysis type 1 – application of equivalent geometric imperfection according to EN 

1993-1-5 [2] (b/200) and no residual stress. 

 analysis type 2 – application of realistic geometric imperfection based on imperfection 

measurements (see Section 3.3.) and realistic residual stresses based on residual stress 

model of Somodi and Kövesdi [16]. 
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4.2 Results for compression 

First, the case of pure compression is examined. In this case the reduction factor  is 

calculated by Eq. (7) in function of the numerical compression resistances (NFEM), the nominal 

cross-sectional area (Anom) and the nominal yield strength (fy). It is considered that for the 

calculation of the buckling resistance, the  reduction factor is applied only to the inner width 

of the cross-section, see Eq. (8). It should be mentioned that for the deterministic numerical 

analysis the values of Anom and fy are used as the nominal area and the yield strength. The 

evaluation of the  reduction factor is done in the function of the p local slenderness ratio, 

which is calculated by Eq. (9) based on the EN1993-1-5 [2]. 
 

 

2FEM

y

2
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4

4

N
t

f

A t
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  2 2

nom y r
4 4A t t f N    
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b t
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 , 

y

235MPa

f
   (9) 

 
The numerical resistances of analysis type 1 are compared to the Winter curve in Figure 7. 

In case of analysis type 1, all the cases with the same yield strength and local slenderness ratios 

(depending on the b/t ratio) but with different plate thicknesses provided identical  reduction 

factors. The results show that the application of b/200 equivalent geometric imperfection results 

in resistances close to the Winter curve, independently from the yield strength. In the plastic 

zone a difference can be identified between the NSS (S235, S355) and HSS (S500, S700, S960) 

columns; the HSS columns provide higher resistances than the plastic resistance (Anom fy), this 

can be explained by the fact that HSS materials does not have clear yield plateau and the 0.2% 

proof stress is used as yield stress. Figure 8 shows the results of analysis type 2. It can be 

observed that there are several different results which belongs to the same yield strength and 

local slenderness ratios. It means that keeping the local slenderness ratio constant, but changing 

the plate thickness could result in change in the resistance. This behavior can be explained by 

the applied residual stress model, where the magnitude of the compressive residual stress is 

thickness dependent. The residual stress model gives lower compressive residual stress for thick 

plates than for thin plates, considering the same b/t ratio. 
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Figure 7: Results of analysis type 1, compression. 
 

Therefore, the box sections made of thicker plates have higher reduction factor than the box 

sections having the same slenderness, but made of thinner plates. However, this behavior is 

considerable only in the middle local slenderness range (approximately if 0.8 <  < 1.3, see 

Figure 8). This is explained by the fact that the residual stress has the main impact on the 

resistance in this slenderness range, where elastic-plastic failure occurs. In case of lower 

slenderness, the failure mode is mainly plastic. In case of higher slenderness ratios, the failure 

mode is mainly elastic. In case of both the fully elastic and fully plastic cases the residual stress 

does not have considerable impact on the buckling resistance. The results also show that using 

the realistic imperfection and residual stress values (analysis type 2) results in lower resistances 

than using the equivalent geometric imperfection of EN 1993-1-5 [2] (analysis type 1). 
 

 

Figure 8: Results of analysis type 2, compression. 
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Figure 9: Mean results of analysis type 2, compression. 
 

In order to evaluate the results, the reduction factors related to the same yield strength and 

local slenderness are averaged, and these values are shown in Figure 9. The results show that 

box sections made of steel grades with higher yield strength provides slightly higher reduction 

factor than box sections having the same local slenderness but made of lower steel grades. This 

also can be explained by the residual stress model, since the value of the compressive residual 

stress does not depend on the yield strength. Therefore, the compressive residual stress is not 

increasing together with increasing of the yield strength. However, all of the calculated 

numerical buckling curves are below the Winter curve, even for the highest S960 steel grade. 

Based on the deterministic numerical results it can be concluded that the Winter curve is not 

on the safe side to obtain the local buckling resistance of square welded box sections under pure 

compression. To ensure the required safety either the buckling curve or the value of the related 

partial safety factor could be changed. The appropriate partial safety factor that can be used 

together with the Winter curve based calculation method can be determined based on stochastic 

analysis. The authors are still currently working on this research field. 

4.3 Results for bending 

In this section the results of the pure bending case are discussed. It has to be mentioned that 

in case of pure bending the connection between the reduction factor  and the buckling 

resistance is not so obvious as in case of pure compression (see Eq. (7)). In order to simplify 

the problem only those cases are evaluated where the web does not belong to cross-section class 

4. Therefore, only the compressed flange can buckle. In this case the local buckling resistance 

can be calculated by Eq. (10). 
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where 

 Weff is the effective cross-section modulus, 

 f is the local buckling reduction factor for the flange alone. 
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The value of f can be directly calculated knowing the effective-cross section modulus, the 

width of the cross-section and the plate thickness. Therefore, the numerical f values are derived 

from the results of the WFEM, calculated by Eq. (11) in function of the numerical resistances 

(MFEM) and the nominal yield strength (fy). 
 

   FEM
FEM f

y

 
M

W
f

 (11) 

 
The local slenderness ratio p is calculated on two different ways. The value of p,EC is 

calculated following the concept of the EN 1993-1-5 using Eq. (9). The value of p,FEM is 

calculated based on the critical bending moment related to elastic buckling (Mcr) by Eq. (12). 
 

 
el,r

p,FEM

cr

M

M
   where el,r el y

M W f   (12) 

 
where 

 Wel is the elastic cross-section modulus, 

 Mcr is obtained by elastic buckling analysis using the finite element model. 

As it is mentioned, for bending only those geometries are examined, where the web does not 

belong to cross-section class 4. Table 3 summarizes the limits for cross-section class 4 of the 

web for the studied steel grades. It can be observed that the web buckles if p,FEM is higher than 

1.46. 
 

Table 3: The limit for cross-section class 4 related to the web. 

Material grade b/t p,FEM p,EC 

S235 101.4 1.456 1.750 

S355 82.89 1.459 1.750 

S500 70.16 1.462 1.750 

S700 59.61 1.465 1.751 

S960 51.20 1.469 1.751 

 Mean: 1.46 1.75 
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Figure 10: Results of analysis type 1, bending, based on p,EC. 
 

Figure 10 and Figure 11 compare the numerical results (f) to the Winter curve using the 

two different concepts for the local slenderness ratio. In case of analysis type 1, all the cases 

with the same yield strength and local slenderness ratios, but with different plate thickness 

provided the same f reduction factor. It can be observed that the obtained numerical results are 

significantly higher than in case of pure compression. This is especially true for the evaluation 

based on p,EC. The evaluation based on p,FEM represents the real behavior better, but engineers 

are using the values of p,EC to design steel structural elements. Therefore, for the statistical 

evaluation to provide the necessary partial factor p,EC should be considered. Figure 11 shows 

that if the p,FEM is equal by 1.5 then the numerical analysis provides the same result as the 

Winter curve and the same results that was experienced using pure compression. This 

observation has a good agreement with the average limit of p,FEM = 1.46 for the cross-section 

class 4 (see Table 3). The explanation for this is when the web becomes to be cross-section 

class 4, it starts to buckle and provides no more restraint to the flange, therefore the same 

situation is reached that exists for square closed sections under pure compression. It can be 

observed that higher yield strength results in slightly higher reduction factors as it was 

experienced in case of pure compression as well. 
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Figure 11: Results of analysis type 1, bending, based on p,FEM. 
 

Figure 12 shows the numerical reduction factors based on analysis type 2 in function of the 

p,EC local slenderness ratio. As it was experienced by compression, changing the plate 

thickness has an impact to the buckling resistance due to the characteristic of the applied 

residual stress model. This behaviour is considerable in the same middle slenderness region that 

is experienced by the compression load. The reduction factors representing the same yield 

strength and b/t ratio are averaged and presented in Figure 13.  
 

 

Figure 12: Results of analysis type 2, bending, based on p,EC. 
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Figure 13: Mean results of analysis type 2, bending, based on p,EC. 
 

The resistance-increasing effect of the higher yield strength can be observed similarly to the 

previously experienced rate. However, all of the calculated numerical buckling curve is above 

the Winter curve. The difference between pure compression and pure bending is presented in 

Figure 14. It can be explained by the fact that in case of bending the webs provide considerable 

rotational restraint to the compressed flange at the corners, but in case of compression all of the 

sides of the cross-section buckle at the same time, so those cannot provide rotational restraint 

to each other.  
 

 

Figure 14: Comparison of resistances from compression and bending. 
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5 CONCLUSION 

In the present paper a deterministic numerical analysis is carried out to determine the local 

buckling resistance for welded NSS and HSS square box section columns. The investigation 

covers columns loaded by compression and bending moment separately. Numerical research 

program is executed to determine the necessary reduction factor to determine the local buckling 

resistance for various cross section geometries and steel grades. The applied numerical model 

is verified based on laboratory test results taken from international literature. To the 

determination of the typical residual stress pattern and local geometric imperfections laboratory 

tests are executed. The obtained results based on the numerical simulations are compared to the 

plate buckling curve provided by the EN 1993-1-5 [1]. Based on the numerical results the 

following conclusions are drawn:  

 for square box section columns loaded by pure compression, the local buckling 

resistance can be overestimated by the application of the Winter curve, 

 the application of the proposed equivalent geometric imperfection (h/200) given by the 

EN 1993-1-5 can provide the same safety level as the Winter curve, 

 for square box section columns loaded by pure bending, the local buckling resistance is 

underestimated by the application of the Winter curve due to neglecting the supporting 

effect of the adjacent plates within the cross section, 

 the relative local buckling resistance (reduction factor) of columns made from HSS can 

be slightly larger than for columns made from NSS.  
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