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We highlight some of the interesting properties of a new and finite, exact
family of solutions of 1 + 1 dimensional perfect fluid relativistic hydrody-
namics. After reviewing the main properties of this family of solutions, we
present the formulas that connect it to the measured rapidity and pseudo-
rapidity densities and illustrate the results with fits to p + p collisions at
8 TeV and Pb+Pb collisions at

√
sNN = 5.02 TeV.
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1. Introduction

In this manuscript, we discuss a new family of exact solutions of per-
fect fluid hydrodynamics for a 1+1 dimensional, longitudinally expanding
fireball. The applications of 1+1 dimensional hydrodynamics to particle
production in high-energy physics has a long and illustrous history that in-
clude some of the most renowned theoretical papers in high-energy heavy-ion
physics.

In high-energy collisions, thermal models to describe particle production
rates were introduced by Fermi in 1950 [1]. It was soon pointed out by
Landau, Khalatnikov and Belenkij [2–4] that the momentum spectrum can
also be explained in these collisions if one assumes not only global but also
local thermal equilibrium. Landau and collaborators predicted [4] that per-
fect fluid hydrodynamical modelling will be a relevant tool for the analysis
of experimental data of strongly interacting high-energy collisions. After
60 years, this field is still interesting and surprizing, as reviewed recently
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in Ref. [5]. Applications of exact solutions of relativistic hydrodynamics to
describe pseudorapidity distributions in high-energy collisions were reviewed
recently in Ref. [6].

2. Equations of relativistic hydrodynamics

Relativistic perfect fluids are locally thermalized fluids, their dynami-
cal equations of motion correspond to the local conservation of the flow of
entropy and the flow of four momentum

∂µ (σuµ) = 0 , (1)
∂νT

µν = 0 , (2)

where the entropy density is denoted by σ = σ(x), four velocity is uµ,
normalized as uµuµ = 1, and the energy-momentum four tensor is denoted
by Tµν . These fields are functions of the four coordinate xµ = (t, r) =
(t, rx, ry, rz). Similarly, the four momentum is denoted by pµ = (Ep,p) =

(Ep, px, py, pz), where the energy is on mass-shell, Ep =
√
m2 + p2, where

the mass of the observed type of particle is indicated by m.
The energy-momentum four tensor Tµν of a perfect fluid is given as

Tµν = (ε+ p)uµuν − pgµν , (3)

where the metric tensor is gµν = diag(1,−1,−1,−1), the energy density is
indicated by ε and the pressure by p.

The five dynamical equations of relativistic hydrodynamics connect six
variables, the entropy, the energy density, the pressure and the three spatial
components of the four velocity uµ = γ(1,v). This set of equations is closed
by the equation of state that characterizes the properties of the flowing
matter. We assume that this is given by

ε = κp , (4)

where, in this paper, κ is assumed to be a constant, independent of the
temperature T . For net baryon free matter, the baryochemical potential
is µB = 0, hence the fundamental thermodynamical relation reads as ε +
p = Tσ, so the temperature field can also be chosen as one of the local
characteristics of the matter.

In this paper, we recapitulate a recent solution of relativistic hydrody-
namics in 1 + 1 dimensions, with a realistic speed of sound at µB = 0

c2
s =

∂p

∂ε
=
∂ lnT

∂ lnσ
=

1

κ
, (5)

where in the calculations we use the average value of the speed of sound,
cs = 0.35 ± 0.05 as measured by the PHENIX Collaboration in

√
sNN =

200 GeV Au+Au collisions in Ref. [7].
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3. The CKCJ family of solutions

In 1 + 1 dimensions, it is useful to rewrite the equations of relativistic
hydrodynamics in Rindler coordinates (τ, ηx) [6, 8–10]. The (longitudinal)
proper-time τ and the coordinate-space rapidity ηx are

(τ, ηx) =

(√
t2 − r2

z ,
1

2
ln

[
t+ rz
t− rz

])
, (6)

while the fluid rapidity Ω = 1
2 ln(1+vz

1−vz ) relates to the four and to the three
velocity as uµ = (cosh(Ω), sinh(Ω)), vz = tanh(Ω).

A finite and accelerating, realistic 1+1 dimensional solution of relativistic
hydrodynamics was recently given by Csörgő, Kasza, Csanád and Jiang
(CKCJ) [6] as a family of parametric curves

ηx(H) = Ω(H)−H , (7)

Ω(H) =
λ√

λ− 1
√
κ− λ

arctan

(√
κ− λ
λ− 1

tanh (H)

)
, (8)

σ(τ,H) = σ0

(τ0

τ

)λ
Vσ(s)

[
1 +

κ− 1

λ− 1
sinh2(H)

]−λ
2

, (9)

T (τ,H) = T0

(τ0

τ

)λ
κ T (s)

[
1 +

κ− 1

λ− 1
sinh2(H)

]− λ
2κ

, (10)

T (s) =
1

Vσ(s)
, (11)

s(τ,H) =
(τ0

τ

)λ−1
sinh(H)

[
1 +

κ− 1

λ− 1
sinh2(H)

]−λ/2
, (12)

where the parameter of the solutions, denoted by H, stands also for the
difference between the fluid rapidity Ω and the space-time rapidity ηx.
Near midrapidity, these solutions are approximately, but not exactly self-
similar [6], they depend on the space-time rapidity ηx predominantly through
the scaling functions T (s) and Vσ(s) that in turn depend on the scaling vari-
able s. The solutions for the fields F = {σ, T,Ω} and the scaling variable s
are given with explicit dependence on the longitudinal proper-time τ and
as parametric solutions in terms the parameter H. Any of the above space-
time-dependent field can be visualized as parametric (hyper)surfaces

(t, rz, F (t, rz)) = (τ cosh(ηx(H)) , τ sinh(ηx(H)) , Fs(τ,H)) , (13)
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where the subscript s indicates that this function is to be taken from the
parametric solutions, Eqs. (7)–(12), as a function of τ and H. The func-
tional form of such a bi-variate function Fs(τ,H) depends on its variables
differently from the functional form of the also bi-variate function F (t, rz),
as usual.

This new, longitudinally finite family of solutions is illustrated by Fig. 1,
for a realistic value of the speed of sound, c2

s = 1/κ = 0.1, and for a realistic
value of the acceleration parameter, λ = 1.14. This figure shows clearly
that the CKCJ family of solutions is limited to a cone within the forward
light-cone around midrapidity. The formulas that give the limiting values
of the space-time rapidity are determined from the requirement that the
parametric curves of the solution correspond to functions, as detailed in
Ref. [6].

Fig. 1. Illustration of a CKCJ exact solution [6] of relativistic hydrodynamics.
The top left panel shows the space-time evolution of the temperature distribution,
T (t, rz), while the bottom left panel shows the same for the fluid rapidity distri-
bution, Ω(t, rz). The top right panel shows the temperature at a constant value of
the longitudinal proper time τ , as a function of the space-time rapidity ηx, where
the dashed vertical lines indicate the lower and upper limits of the applicability of
the CKCJ solution. The bottom right panel is the same, but it indicates Ω(ηx)

which in this class of solutions is independent of the longitudinal proper time τ .

4. Rapidity and pseudorapidity distributions

Let us clarify first the definition of the observables of the single-particle
spectrum in momentum-space. The pseudorapidity ηp and the rapidity y
of a final-state particle with mass m and four momentum pµ are defined
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as ηp = 1
2 ln

(
p+pz
p−pz

)
and y = 1

2 ln
(
E+pz
E−pz

)
, where the modulus of the three-

momentum is p = |p| =
√
p2
x + p2

y + p2
z.

The rapidity and the pseudorapidity distributions were derived from the
CKCJ solutions in Ref. [6], as follows. As a first step, these 1+1 dimensional
solutions were embedded to the 1+3 dimensional space. Subsequently, we
assumed that the freeze-out hypersurface is pseudoorthogonal to the four
velocity and utilized advanced saddle-point integration methods to obtain
an analytic expression for the rapidity density distribution [6]

dn

dy
≈ dn

dy

∣∣∣∣
y=0

cosh− 1
2
α(κ)−1

(
y

α(1)

)
exp

(
− m

Teff

[
coshα(κ)

(
y

α(1)

)
− 1

])
,

(14)
where α(κ) is defined as α(κ) = 2λ−κ

λ−κ . The mass of the particle m is the
mass of the identified particles (typically pions). The above formula depends
on four fit parameters, κ, λ, Teff and dn

dy

∣∣∣
y=0

. These relate to the speed of

sound, the acceleration, the effective temperature (that corresponds to the
slope parameter of the invariant transverse mass spectrum at midrapidity),
and the value of the rapidity density at midrapidity. The values of Teff should
be determined from fits to the transverse mass spectra of hadrons, while κ
determines the average value of the speed of sound, measured for example
in Ref. [7]. The two key parameters of the rapidity density distributions
are thus the acceleration parameter λ, and the midrapidity density, which is
just an overall normalization factor. Thus, the shape of the rapidity distri-
butions is controlled predominantly by the acceleration parameter λ. Both
dn
dy

∣∣∣
y=0

and λ can be extraced from fits to experimental data. As the mea-

surement of the rapidity density distributions requires particle identification,
the pseudorapidity densities are more readily determined.

Using similar methods, the pseudorapidity density distribution was de-
termined as a parametric curve, where the parameter of the curve is the
momentum-space rapidity y(

ηp(y) ,
dn

dηp
(y)

)
=

(
1

2
log

[
p̄(y) + p̄z(y)

p̄(y)− p̄z(y)

]
,
p̄(y)

Ē(y)

dn

dy

)
, (15)

where Ā(y) denotes the rapidity-dependent average value of the variable A,
representing various components of the four momentum. The Jacobian con-
necting the double differential (y, mt) and (ηp, mt) distributions has been
utilized at the average value of the transverse momentum, following Ref. [8].
In contrast to earlier results, a new element is that this CKCJ family of so-
lutions gives an explicit relation between the p̄T(y), the rapidity-dependent
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average transverse momentum, the slope parameter at midrapidity Teff and
the mass of the observed particles m as follows:

p̄T(y) ≈
√
T 2

eff + 2mTeff

(
1 +

α(κ)

2α(1)2

Teff +m

Teff + 2m
y2

)−1

. (16)

Note that the same functional form, a Lorentzian shape was obtained for
the rapidity dependence of the slope of the transverse momentum spec-
trum in the Buda–Lund hydromodel of Ref. [11]. The coefficient of the
y2-dependent term was considered as a free fit parameter even very recently
in Refs. [12, 13]. This coefficient is now expressed with the help of κ, the
parameter of the equation of state, as well as the mass m and the effective
slope of the invariant transverse mass-dependent single particle spectra Teff

at midrapidity.
The CKCJ family of solutions [6] apparently describes the pseudorapidity

distributions measured by the CMS experiment in p + p collisions at
√
s =

8 TeV [14] in a reasonable manner, for a fixed Teff = 145 MeV, as indicated
by its fit result in the left panel of Fig. 2. Similarly, the CKCJ family of
solutions fits the recent ALICE Pb+Pb data at

√
sNN = 5.02 TeV [15], in

the 40–50% centrality class, using a fixed Teff = 270 MeV. The speed of
sound is fixed in both cases to a realistic value of c2

s = 1/κ = 0.1 [7].

Fig. 2. Left: Fits with the CKCJ family of solutions [6], to CMS p + p data at√
s = 8 TeV [14] using a fixed Teff = 145 MeV. Right: Similar fits, but for ALICE

Pb+Pb data at
√
sNN = 5.02 TeV [15] in the 40–50% centrality class, using a fixed

Teff = 270 MeV. The speed of sound is c2s = 1/κ = 0.1, fixed in both cases.

The conditions of validity of these approximations were detailed in Ref. [6].
Typically, these conditions can be simplified for realistic cases to the condi-
tion that the fits are done near to midrapidity, with |y| < 1/(λ− 1). For λ
values reported in this paper, these conditions are satisfied. Another require-
ment is that the parametric curves of these solutions correspond to unique
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functions of ηx. Typical limits from this condition range from |ηx| < 1.0 to
|ηx| < 2.5. For this reason, and in order to reduce the effects of fit range
dependencies, in this work, we compare fits to various proton–proton and
heavy-ion collision data by limiting the fit range uniformly to |ηx| < 2.5.

5. Discussion

It is interesting to compare the CKCJ family of solutions discussed in
the body of this manuscript to other, well-known exact solution of 1+1
dimensional solutions of perfect fluid hydrodynamics.

It is rather straightforward to show that this class of solutions includes
the Hwa–Bjorken boost-invariant solutions of Refs. [16, 17], as detailed in
Ref. [6]. This can be obtained as taking the H � 1 limiting case first and,
subsequently, evaluating the λ→ 1 from above limit. In this case, we obtain
that the fluid rapidity Ω becomes identical with the space-time rapidity ηx,
the solution becomes boost-invariant and the rapidity distribution becomes
flat.

It is interesting to note a similarity with Landau’s regular solution [2, 4]
valid also near midrapidity, outside the shock-wave region: In these solu-
tions, the fluid rapidity Ω and the temperature T are used to express the
coordinates (t, rz) = (t(T,Ω), rz(T,Ω)), while in our CKCJ family of solu-
tions, the dependence on the longitudinal proper time τ is explicitely given,
however, the dependence on the space-time rapidity ηx is given — similarly
to Landau’s case — as a parametric curve in terms of the fluid rapidity Ω.

The Csörgő–Grassi–Hama–Kodama (CGHK) family of solutions of
Ref. [18] is also recovered easily, in the limit of vanishing acceleration that
corresponds to λ→ 1 from above.

The Csörgő–Nagy–Csanád or CNC family of solutions of Refs. [8, 9] can
be recovered, too, but only carefully, given that in the κ→ 1, and the λ→ 1
limits are not interchangeable. First of all, one has to start from rewrite the
solutions to the 1 ≤ κ < λ domain of the parameters, which is not discussed
here due to space limitations, one has to take the κ→ 1 limit only after this
rewrite to recover the CNC solutions.

It is also very interesting to compare our results with the Bialas–Janik–
Peschanski or BJP solution of Ref. [19]. A main feature of the BJP solutions
is that the fluid rapidity distribution evolves in time in an equation-of-state-
dependent manner, and approaches asymptotically the Bjorken limit at ev-
ery fixed value of the coordinate rz for sufficiently late times. In this sense,
the BJP solutions initially are similar to a static Landau solution (but with-
out the finite lengthscale, the “l” parameter of Landau’s solution), while
at the end of the time evolution, they asymptotically converge to a Hwa–
Bjorken flow velocity field. Our solutions reviewed here are different in the
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sense that as a function of the space-time rapidity ηx, the fluid rapidity Ω
is independent of the proper-time τ so the time evolution of the flow field
is only apparent, in our case, it is due only to the change of variables from
proper-time to time. A similarity to the BJP solution and to Landau’s solu-
tion is that our family of solutions is obtained for an arbitrary but constant
value of the speed of sound.

For more detailed discussions and comparisons of other solutions with
data, we refer to Section 2 of Ref. [6].

6. Summary

This is the first part of a series of three papers, where we have highlighted
some of the properties of a very recently found, new family of analytic and
accelerating, exact and finite solutions of relativistic perfect fluid hydro-
dynamics for 1+1 dimensionally expanding fireball, evaluated the rapidity
and the pseudorapidity densities from these solutions and demonstrated that
these results describe well the pseudorapidity densities of proton–proton col-
lisions at 8 TeV colliding energy as measured by the CMS Collaboration at
the LHC. Similarly, this solution also describes the pseudorapidity densities
in Pb+Pb collisions at

√
sNN = 5.02 TeV measured by the ALICE Collabo-

ration at CERN LHC. These results indicate that the longitudinal expansion
dynamics in proton–proton collisions at CERN LHC is very similar to heavy-
ion collisions at the nearly the same center-of-mass energies.

Our results confirm similar findings, published recently in Ref. [13] that
was based on the analytically more restricted and simpler, 1+1 dimensional
Csörgő–Nagy–Csanád solutions of Refs. [8, 9]. These results also suggest
that the space-time rapidity and the fluid rapidity apparently remain nearly
proportional to each other, even if the speed of sound implemented in two
different solutions becomes very different from one another.
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