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Asymmetric nuclear collisions of pþ Al, pþ Au, dþ Au, and 3Heþ Au at
ffiffiffiffiffiffiffiffi
sNN

p ¼ 200 GeV
provide an excellent laboratory for understanding particle production, as well as exploring interactions
among these particles after their initial creation in the collision. We present measurements of charged
hadron production dNch=dη in all such collision systems over a broad pseudorapidity range and as a
function of collision multiplicity. A simple wounded quark model is remarkably successful at
describing the full data set. We also measure the elliptic flow v2 over a similarly broad pseudorapidity
range. These measurements provide key constraints on models of particle emission and their
translation into flow.

DOI: 10.1103/PhysRevLett.121.222301

Asymmetric nuclear collisions with a light projectile
nucleus striking a heavier target nucleus have proven to
be an excellent testing ground for particle production
models and the longitudinal dynamics following the
initial collision—for an early review, see Ref. [1].
Many calculations have successfully described the longi-
tudinal (or rapidity) distribution of produced particles in
proton-nucleus (pþ A) collisions via the fragmentation
of color strings and with counting rules based on the
number of “wounded” or struck nucleons or quarks in
the projectile and target. Recently, a proposal for testing the
wounded-quark model [2] was put forth that specifically
called for the measurement of dNch=dη over a broad range
of pseudorapidity in pþ Au, dþ Au, and 3Heþ Au
collisions [3]. Fully three-dimensional hydrodynamical
models also require input on the longitudinal distribution
of initial deposited energy and gradients thereof [4]. Once
the initial partons or fluid elements are populated, the
models evolve the system dynamically. Measurements
of elliptic flow as a function of pseudorapidity provide
constraints on the longitudinal dynamics of the evolution.
As the incoming hadrons or nuclei break up, the

rapidity distribution of liberated partons may be deter-
mined by the longitudinal parton distribution functions
[5,6] or via a universal color field breakup for each struck
nucleon or quark [7]. For that reason, calculations based
on Monte Carlo Glauber models have been developed to

calculate the number of struck nucleons and struck quarks
(see, e.g., Refs. [8–10]). The PHOBOS Collaboration has
previously published charged hadron dNch=dη measure-
ments over jηj < 5.4 in dþ Au collisions at

ffiffiffiffiffiffiffiffi
sNN

p ¼
200 GeV [11]. PHENIX has also published dNch=dη
measurements in high-multiplicity dþ Au collisions atffiffiffiffiffiffiffiffi
sNN

p ¼ 200, 62, 39, and 19.6 GeV [12]. The wounded-
quark model has been constrained by the dþ Au data
and found to be in reasonable agreement with the central-
ity dependence, while the wounded-nucleon model cannot
describe the data [3]. A crucial test of the wounded-
quark model is to see if it is universal across different
colliding systems. Additional measurements in light and
heavy systems at the Relativistic Heavy Ion Collider
(RHIC) and the Large Hadron Collider (LHC) can also
be tested in this context—see, e.g., different geometry
tests in Refs. [13–15].
In Auþ Au and Pbþ Pb collisions at RHIC and the

LHC, the created medium is well described by low-
viscosity hydrodynamics [16,17]. A host of recent exper-
imental observations indicate that hydrodynamics may
also be applicable to the asymmetric collisions of small
nuclear systems, e.g., pþ A, dþ Au, 3Heþ Au, and
perhaps even pþ p (for a recent review, see Ref. [18]).
In heavy ion collisions, the hydrodynamical flow of the
medium is characterized via a Fourier decomposition of
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the final hadron momentum anisotropy in the direction
transverse to the incoming beam directions [19] as

dN
dϕ

∝ 1þ
X

n

2vn cos ½nðϕ − ψnÞ�; ð1Þ

where n is the harmonic number, ϕ is the particle azimuthal
angle, ψn is the nth-order symmetry axis, and vn is the
Fourier coefficient, with v2 referred to as the elliptic flow.
The pseudorapidity dependence of v2 has been measured in
Auþ Au and Pbþ Pb collisions at RHIC and the LHC,
and the elliptic flow is smaller in regions with a smaller
final hadron dNch=dη—see, e.g., Refs. [20,21]. The data
have been interpreted in terms of hydrodynamics and imply
a shear viscosity to entropy density, η=s, that is temperature
dependent [22]. Similar measurements in small nuclear
collisions of different sizes are a key test for how local
rapidity density relates to hydrodynamical evolution into
flow.
In this Letter, we present a comprehensive set of

measurements of dNch=dη and elliptic flow v2 over a
broad pseudorapidity range in pþ Al, pþ Au, dþ Au,
and 3Heþ Au collisions at

ffiffiffiffiffiffiffiffi
sNN

p ¼ 200 GeV. The data
sets analyzed were recorded in 2014 for 3Heþ Au, in 2015
for pþ Al and pþ Au, and in 2016 for dþ Au. All data
sets were recorded with a minimum-bias trigger that
required at least one hit in each of the PHENIX beam-
beam counters (BBCs). The BBC is composed of two
detectors, each containing 64 quartz radiators read out with
photomultiplier tubes [23]. The BBC covers positive and
negative pseudorapidity 3.1 < jηj < 3.9. Following the
procedure from Ref. [24], the minimum-bias trigger is
determined to fire on 88� 4%, 88� 4%, 84� 3%, and
72� 4% of the total inelastic cross section of 2.30, 2.26,
1.76, 0.54 barns for 3Heþ Au, dþ Au, pþ Au, and
pþ Al, respectively. The dNch=dη analysis has negligible
statistical uncertainties, and thus a subset of runs with the
most stable detector configuration are utilized, and the run-
to-run variation is used in the determination of systematic
uncertainties. For the elliptic flow v2 analysis in high-
multiplicity events, also referred to as central events, an
additional trigger was used that required the number of
fired BBC tubes to be above a set number, roughly
corresponding to the 0%–5% highest-multiplicity events.
The characterization of the different collision systems

and centralities follows the procedure detailed in Ref. [24].
The multiplicity class is selected by the total charge in the
BBC covering negative pseudorapidity—i.e., in the Al- or
Au-going direction. The total charge is found to scale with
the total number of struck nucleons from the Al or Au
nucleus folded with a negative binomial distribution,
representing the fluctuations in the number of particles
produced and measured by the BBC. The 5% most central
events have an average number of participating nucleons of

5.1� 0.3, 10.7� 0.6, 17.8� 1.2, and 25.0� 1.6 for
pþ Al, pþ Au, dþ Au, and 3Heþ Au, respectively.
Charged hadrons are reconstructed at midrapidity

jηj < 0.35 with a combination of drift chambers and pad
chambers [25]. Midrapidity tracks have their momentum
reconstructed via their bend in a magnetic field and are
efficiently measured for pT > 0.2 GeV=c. At backward
−3.0 < η < −1.0 and forward 1.0 < η < 3.0 rapidity, the
forward-silicon-vertex detector (FVTX) measures the tra-
versal of charged tracks in four detector layers, as detailed
in Ref. [26]. FVTX tracks are efficiently measured for
pT > 0.3 GeV=c, but with no momentum information,
because the silicon strips are oriented lengthwise along
the magnetic-field bend direction.
For the dNch=dη results, the absolute acceptance and

efficiency for track reconstruction can be determined with
the PHENIX GEANT-3 Monte Carlo simulation. However,
in the last years of data taking, the PHENIX experiment had
increasingly significant dead regions and run-to-run varia-
tions that became challenging to fully account for. Thus, we
determine the acceptance and efficiency for a given running
period in a control data set by taking the ratio RðηÞ of
published PHOBOS dNch=dη to the PHENIX raw dNch=dη
as a function of pseudorapidity. The control PHOBOS data
sets are Auþ Au in 2014 [27], pþ p in 2015 [27], and
dþ Au in 2016 [11], all at

ffiffiffiffiffiffiffiffi
sNN

p ¼ 200 GeV. This “boot-
strapping” procedure is described in detail in Ref. [12].
Sources of systematic uncertainty come from varying the
track selection cuts, run-to-run variations, and considering
high- and low-luminosity running periods with different
double-interaction contributions. We also find good agree-
ment within uncertainties by comparing results in the
FVTX with an absolute acceptance and efficiency calcu-
lation and the “bootstrapped” results.
The determination of hadron yields in centrality bins has

a known bias effect (see Ref. [24]). In pþ p collisions,
inelastic events fire the BBC trigger 55� 5% of the time,
while in events with a π0 or charged hadron at midrapidity,
that percentage is larger, 79� 2%. This increased trigger
efficiency is correlated with a 1.55 times larger BBC
multiplicity. This effect results from the diffractive portion
of the pþ p inelastic cross section disfavoring midrapidity
particle production. This bias has been confirmed for
midrapidity hadron production down to pT ≈ 0.5 GeV=c
[28] and for J=ψ measured in the PHENIX muons’ arms
[29], and thus we expect that this bias affects all charged
hadrons over the pseudorapidity range studied here. We
remove this bias via correction factors that are calculated
following the procedure detailed in Ref. [24]. The bias
corrections are largest in the smallest system and range
from 0.75� 0.01 for central 0%–5% pþ Al to 0.91� 0.01
for central 0%–5% 3Heþ Au. We apply these bias correc-
tion factors to all our dNch=dη results.
Figure 1 shows the dNch=dη results for pþ Al, pþ Au,

dþ Au, and 3Heþ Au at
ffiffiffiffiffiffiffiffi
sNN

p ¼ 200 GeV for the 5%
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highest-multiplicity events. Statistical uncertainties are
negligible, and systematic uncertainties are shown as boxes
around the points. The systematic uncertainties are point-
to-point correlated and can in principle move the backward,
mid-, and forward rapidity points separately, because they
are measured in different detectors. Also shown are the
yields in inelastic pþ p collisions at

ffiffiffiffiffiffiffiffi
sNN

p ¼ 200 GeV as
measured by the PHOBOS Collaboration [27]. The full set
of multiplicity-selected results for the four asymmetric
nuclear collision systems are shown in Fig. 2.

The results are compared to predictions from the
wounded-quark model. Within the wounded-quark model,
each wounded quark is posited to yield hadrons following a
common emission function FðηÞ [3]. FðηÞ is constrained by
dþ Au collision data, and the model then predicts dNch=dη
for all collision centralities and systems. The calculations
are normalized, with factors listed in the Fig. 1 caption, to
best match the data integrated over pseudorapidity, because
the exact normalization can be influenced by modest
differences in the centrality selection, and thus the mean
number of wounded quarks. Within the systematic uncer-
tainties on the experimental measurements, the model
provides a good description of the complete data set across
collision systems and centrality classes. The results are also
compared in Fig. 1 with a hydrodynamical calculation [4]
for 0%–5% central collisions. The calculation includes
Monte Carlo Glauber initial conditions with longitudinal
entropy distributions [30], ð3þ 1ÞD viscous hydrodynam-
ics [31] with η=s ¼ 1=4π, and temperature-dependent bulk
viscosity, followed by statistical hadronization. Again, the
calculations are normalized to the data with factors listed in
the caption. The agreement in this case is also good within
systematic uncertainties, except for a more significant drop
in particle yield in the calculation at the most backward
rapidity region −3.0 < η≲ −2.0.
Midrapidity dNch=dη per participating quark pair,

Nqp=2, scales as a function of the number of participating
quarks from dþ Au and 3Heþ Au collisions [15]. The
previously reported results [15] were not corrected for
the modest bias previously discussed. Figure 3 shows the
results testing this scaling for all small collision systems,
each with the bias correction factors applied. Within
the systematic uncertainties, all systems at all centralities
follow a common scaling for midrapidity particle
production.
In dþ Au collisions, the elliptic flow v2 was observed to

have a similar pseudorapidity dependence to the particle
yield dNch=dη [12]. For the other systems, we have
followed the same procedure for measuring elliptic flow
v2 using the event-plane method, where the event plane is
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FIG. 1. Charged hadron dNch=dη as a function of pseudor-
apidity in high-multiplicity 0%–5% central 3Heþ Au, dþ Au,
pþ Au, and pþ Al collisions at

ffiffiffiffiffiffiffiffi
sNN

p ¼ 200 GeV. Also shown
are results in inelastic pþ p collisions at

ffiffiffiffiffiffiffiffi
sNN

p ¼ 200 GeV as
measured by the PHOBOS Collaboration [27]. Predictions from
the wounded-quark [3] and hydrodynamical [4] models are
shown. The calculations have an overall normalization factor
(S) to best match the data. These factors are S ¼ 0.88, 0.93, 0.85,
and 0.77 for the wounded-quark model for pþ Al, pþ Au,
dþ Au, and 3Heþ Au, respectively; and S ¼ 0.81, 0.96, and
0.75 for the hydrodynamical model for pþ Au, dþ Au, and
3Heþ Au, respectively.
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defined by the Al- or Au-going BBC covering −3.9 <
η < −3.1. The results are corrected using AMPT [32] and a
GEANT-3 simulation of the detector to correspond to v2
integrated over hadrons at all pT’s within each pseudor-
apidity bin. Systematic uncertainties are determined by
varying the track selection cuts, collision z-vertex cuts, and
AMPT input parameters.
Figure 4 shows the elliptic flow v2 as a function of

pseudorapidity in 0%–5% central pþ Al, pþ Au,

dþ Au, and 3Heþ Au collisions at
ffiffiffiffiffiffiffiffi
sNN

p ¼ 200 GeV.
The experimental data have an increasing flow coefficient
at forward rapidity when going from the smallest system
and smallest particle production pþ Al to the largest
3Heþ Au. These trends are consistent with arising from
the combined influence of initial geometry and particle
multiplicity [33]. The v2 also increases towards backward
rapidity for each collision system. For the lowest-
multiplicity systems, pþ Al and pþ Au, there is a sharp
enhancement in the v2 for η≲ −2.0 that is more pro-
nounced in pþ Al. This feature may be due to the nonflow
contribution of short-range correlations, because this is the
pseudorapidity range that is within one unit of the BBC
used for determining the event plane.
The data are compared with the same hydrodynamical

model [4] that gave a reasonable description of the
dNch=dη. There is good qualitative agreement with the
system and pseudorapidity dependence of v2, and good
quantitative agreement of its pseudorapidity dependence in
pþ Au and dþ Au. The only feature not qualitatively
described is the enhancement at backward rapidity. This
enhancement is the strongest in pþ Al, weaker but still
pronounced in pþ Au, and rather weak in dþ Au. The
strength of this enhancement trends inversely with the
dNch=dη, lending additional evidence that this is due to
nonflow influences not incorporated in the hydrodynamical
model. In 3Heþ Au collisions, the hydrodynamical model
overpredicts the forward rapidity (η > 1) v2 by more than
50% and qualitatively has the feature of a weaker forward
or backward asymmetry than what is present in the data.
Note that the model overpredicts the 3Heþ Au dNch=dη by
approximately 25% (but is scaled to fit the data in Fig. 1),
which may help explain the overpredicted v2.

qpN
0 5 10 15 20 25 30 35 40

=0η
/2

) 
at

 
q

p
 / 

(N
η

/d
ch

d
N

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4 =200 GeVNNsSmall Systems 
  p+p    PHENIX
  p+p    PHOBOS
  p+Al   PHENIX
  p+Au  PHENIX
  d+Au  PHENIX
He+Au PHENIX3

FIG. 3. Midrapidity charged hadron dNch=dη per participating
quark pair (Nqp=2) as a function of the number of participating
quarks (Nqp). Results are shown for pþ Al, pþ Au, dþ Au,
and 3Heþ Au collisions in various multiplicity classes. Also
shown are previously published results in pþ p collisions from
PHENIX [15] and PHOBOS [27]. The line is the best fit to all the
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η
3− 2− 1− 0 1 2 3

2
  v

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07
=200 GeV 0-5%NNsp+Al

PHENIX

}
<-3.1η-3.9<

 {EP2v

 3D Hydrodynamics2v

 [Scaled]η/dchdN

η
3− 2− 1− 0 1 2 3

=200 GeV 0-5%NNsp+Au

η
3− 2− 1− 0 1 2 3

=200 GeV 0-5%NNsd+Au

η
3− 2− 1− 0 1 2 3

=200 GeV 0-5%NNsHe+Au3

FIG. 4. Elliptic flow v2 as a function of pseudorapidity in high-multiplicity 0%–5% central pþ Al, pþ Au, dþ Au, and 3Heþ Au
collisions at

ffiffiffiffiffiffiffiffi
sNN

p ¼ 200 GeV. Also shown are predictions from the hydrodynamical model [4]. Lastly, the measured dNch=dη results
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In Fig. 4, we also scale dNch=dη to match the v2 at
forward rapidity to compare the shape of the distributions.
Although a larger local particle density dNch=dη is corre-
lated with more elliptic flow, the scaling observed in
dþ Au appears to be only approximate when viewed in
the context of all collision systems. It is notable that
although not shown in Fig. 4, hydrodynamical model
calculations [4] also do not exhibit an exact scaling relation
v2 ∝ dNch=dη.
We have presented a comprehensive set of measurements

of particle production dNch=dη and elliptic flow v2 over
a broad pseudorapidity range for a suite of asymmetric
nuclear collisions pþ Al, pþ Au, dþ Au, and 3Heþ Au
at

ffiffiffiffiffiffiffiffi
sNN

p ¼ 200 GeV. The particle production is remark-
ably well described in the context of the wounded-quark
model [3]. A three-dimensional hydrodynamical model
qualitatively describes the particle production and elliptic
flow in high-multiplicity events in all collision systems.
However, it overpredicts the overall dNch=dη and forward
rapidity v2 in 3Heþ Au collisions. These data provide an
important constraint on models of the longitudinal dynam-
ics in these asymmetric collisions.
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