
Heterogeneous CPU-GPU Execution of Stencil
Applications

Bálint Siklósi
3in Research Group,

Faculty of Information Technology
and Bionics

Pazmany Peter Catholic University
Esztergom, Hungary

Email: siklosi.balint@hallgato.ppke.hu

István Z Reguly
Faculty of Information Technology

and Bionics
Pazmany Peter Catholic University

Budapest, Hungary
Email: reguly.istvan@itk.ppke.hu

Gihan R Mudalige
Department of Computer Science

University of Warwick
Coventry, United Kingdom

Email: g.mudalige@warwick.ac.uk

Abstract—Heterogeneous computer architectures are now
ubiquitous in high performance computing; the top 7 super-
computers are all built with CPUs and accelerators. Portability
across different CPUs and GPUs is becoming paramount, and
heterogeneous scheduling of computations is also of increasing
interest to make full use of these systems. In this paper we present
research on the hybrid CPU-GPU execution of an important class
of applications: structured mesh stencil codes. Our work broadens
the performance portability capabilities of the Oxford Parallel
library for Structured meshes (OPS), which allows a science code
written once at a high level to be automatically parallelised for a
range of different architectures. We explore the traditional per-
loop load balancing approach used by others, and highlighting its
shortcomings, we develop an algorithm that relies on polyhedral
analysis and transformations in OPS to allow load balancing on
the level of larger computational stages, reducing data transfer
requirements and synchronisation points.

We evaluate our algorithms on a simple heat equation
benchmark, as well as a substantially more complex code, the
CloverLeaf hydrodynamics mini-app. To demonstrate perfor-
mance portability, we study Intel and IBM systems equipped with
NVIDIA Kepler, Pascal, and Volta GPUs, evaluating CPU-only,
GPU-only and hybrid CPU-GPU performance. We demonstrate
a 1.05 − 1.2× speedup on CloverLeaf. Our results highlight
the ability of the OPS domain specific language to deliver
effortless performance portability for its users across a number
of platforms.

Keywords—Stencil computations, hybrid CPU-GPU, load bal-
ancing, polyhedral analysis, tiling, heterogeneous scheduling

I. INTRODUCTION

After the end of Dennard’s scaling, hardware architectures
have once again diversified, trying to improve performance
by means of increased parallelism. In the domain of high
performance computing, there are a number widely used
architectures - to this day the most common are traditional
x86 CPUs, albeit with dozens of cores, long vector units, and
large caches. The second most commonly used architecture
is the graphical processing unit (GPUs), and NVIDIA’s Tesla
line of products in particular. At one end, some of the largest
supercomputers built rely on GPUs, such as Summit, Titan or
Piz Daint, and at the other end GPUs are commonplace in
desktops and workstations. Future systems are also likely to
be heterogeneous in some form.

Due to the increasing complexity of these high perfor-
mance architectures, it is becoming more and more difficult
and arduous to optimise codes to work well on individ-
ual target hardware. Such optimisation requires an in-depth
understanding of the target, which is something that many
domain scientists, who develop these codes, do not have -
and should not be required to obtain. The problem is further
exacerbated by the need to achieve “performance portability”;
have a code run fast across multiple hardware architectures -
for production codes it is not an option to maintain several
different versions of the same code. Finally, utilising several
architectures simultaneously for the solution of the same prob-
lem is something even fewer manage to do - arguably because
the expected performance improvements are only moderate,
given the relative performance difference between CPU and
GPU.

Nevertheless, there is a large body of research on opti-
mising applications to utilise both architectures - an excellent
overview is given by Mittal and Vetter [1], and in the Related
Works section we discuss the relevant literature in detail.
Generally speaking, perhaps the most common approach to
utilising multiple architectures is through the use of task
schedulers [2], [3], [4]. Yet, they have not been successful
in the area of stencil computations, because one needs a very
fine-grained control over the load balance and to minimise data
movement, which would lead to many small tasks, but efficient
execution requires a coarse granularity - the stencil sweep has
to be scheduled in one or two chunks (due to threading and
GPU kernel launch overheads).

Domain Specific Languages (DSLs) have emerged over the
past decade trying to address the challenges of performance,
portability, and productivity with a limited scope, focusing
on a particular domain only, where given enough knowledge
about the possible algorithmic patterns, optimisations could be
applied automatically.

The Oxford Parallel library for Structured meshes (OPS)
[5], [6] is a DSL, embedded in C/C++ and Fortran, which
provides an abstraction for multi-block structured mesh com-
putations. The key technique used by OPS is the separation of
the description of computations from their parallel implemen-
tation - including the management of data. The user will write
seemingly single-threaded code using the API of OPS, handing

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repository of the Academy's Library

https://core.ac.uk/display/228400799?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ownership of data to the library, which in turn can facilitate
automatic parallelisation for both distributed-memory systems
and shared-memory parallel architectures, such as multi-core
CPUs and GPUs. Prior work has examined the efficiency of
such a DSL approach, contrasting performance to hand-coded
implementations, and in other papers optimisations targeting
various architectures were introduced. The most important
feature of OPS for the present work is its capability for delayed
execution of computations, which allows cross-loop analysis
and optimisations.

In this paper, we introduce capability in OPS to utilise
CPU and GPU architectures simultaneously, exploring and
addressing the challenges that arise, and giving a contrasting
performance analysis of the resulting algorithms. Specifically,
we make the following contributions:

• We develop an algorithm in OPS that adaptively
balances computational load between CPU and GPU
on a per-loopnest basis, overlapping the computations
with the memory copies between the two.

• We extend and develop the cache-blocking tiling func-
tionality in OPS to enable load-balancing between
CPU and GPU across a number of computational
loops, thereby reducing the penalty of highly varying
balance between subsequent loopnests.

• We carry out detailed performance analysis on a
machine with Intel CPUs and NVIDIA GPUs, as well
as a IBM Power8 system with NVIDIA GPUs, on a
simple heat equation solver benchmark, as well as the
significantly more complex CloverLeaf hydrodynam-
ics code.

The rest of the paper is organised as follows: Section II
discusses related work, Section III briefly introduces and
discusses the OPS library, Section IV describes the hetero-
geneous scheduling algorithms that we developed, Section V
presents the performance results, and finally Section VI draws
conclusions.

II. RELATED WORK

Here we give an overview of the general approaches and
discuss works that address stencil computations. Perhaps, the
most common approach to heterogeneous scheduling is task
schedulers - a problem is broken up into tasks, defining their
dependencies using a directed acyclic graph (DAG), which is
then given to a runtime system which can automatically moni-
tor performance and assign tasks to different processing units.
Examples of such systems include StarPU [3], OmpSS [4] and
Legion [2] - there are many examples of its uses for such
purposes, such as QR factorisation [7] or image processing [8].
Others have developed more generic frameworks to automate
the hybrid scheduling process, OpenCL being a prime target;
runtimes can automatically intercept and distribute workgroups
- examples include Maestro [9] and SnuCL [10].

Hybrid scheduling often relies on sending different kinds of
tasks to different hardware; Stefanski [11] sends short length
discrete Green’s functions to the CPU and long ones to the
GPU, GROMACS [12] uses the GPU to calculate non-bonded
forces, and the CPU for bonded forces. Ricardo et al [13] keep

the broad phase of a CFD problem with rigid body interactions
on the CPU, and do the rest of the computations on the GPU.

Stencil computations are particularly challenging given that
they already run very efficiently on both CPUs and GPUs,
and the disparity between CPU and GPU performance make
potential gains fairly small. Additionally, these applications are
usually bulk-parallel - there are parallel sweeps over a compu-
tational grid separated by synchronisation points (usually for
MPI halo exchanges). Nevertheless, there are still a number of
papers optimising these computations - Venkatasubramanian
and Vuduc [14] take a simple Jacobi iteration, partition it
between CPU and GPU, and minimise the synchronisation
points between CPU and GPU - achieving 1.2-2.5× speedups
vs. the synchronous GPU implementation. Yang and colleagues
[15], [16] work on Tianhe-1 to speed up Linpack as well as
atmospheric simulations - in the latter they use the GPU to
compute on the middle of each partition, and the CPU around
the boundaries - overlapping CPU-GPU transfers. Sourouri
et al [17] take a simple 3D 7-point stencil application and
statically partition the workload between CPU and GPU -
reporting a 1.1-1.2× speedup. PSkel is a DSL for algorithms
using parallel skeletons - their authors demonstrate simple
static load balancing between CPU and GPU on single-
stencil applications in [18], reporting up to 1.28× speedups,
and later work [19] discusses the use of time-tiling on the
same single-stencil applications to reduce the communications
requirements between CPU and GPU at the cost of redundant
computations.

In summary, prior work on hybrid CPU-GPU stencil com-
putations are limited in several respects; most works use a
static load balance and only consider a single (often repeating)
stencil. Arguably, these are difficult to generalise to larger
applications. The few works that do consider realistic appli-
cations also only consider optimising for hybrid CPU-GPU
execution on a per-loop basis. This is a crucial limitation; the
optimal load balance can be significantly different between
different loops, yet if they access some of the same data,
the cost of data movement can negate the benefits. Our
research differs from existing work and advances the state
of the art in several respects - we demonstrate the limits of
the per-loop balancing approach, and develop an algorithm
that uses polyhedral analysis to partition a set of loops and
thereby drastically reduce synchronisation points as well as
communication requirements. We demonstrate our techniques
on applications substantially more complex than most others.

III. THE OPS DOMAIN SPECIFIC LANGUAGE

The Oxford Parallel library for Structured meshes defines an
abstraction and an API, embedded in C/C++ and Fortran,
for multi-block structured mesh computations. Its design and
implementation is based on the philosophy of the separation
of concerns; the programmer should focus on what to compute
and not on how to compute it. Thus, given a high-level
code written once with the OPS API, the library assumes
responsibility for the parallelisation of computations as well
as all data movement. The user first defines a collection of
structured blocks, as well as data defined on them, and a
number of access patterns, or stencils. Algorithms are then
expressed as a sequence of parallel sweeps over blocks,
accessing data with stencils and describing the type of access

void copy(double *a, const double *b) {
a[OPS_ACC0(0,0)] = b[OPS_ACC1(0,0)]; }

void calc(double *b, const double *a) {
b[OPS_ACC0(0,0)] = a[OPS_ACC1(0,0)]
+ a[OPS_ACC1(0,1)] +a[OPS_ACC1(1,0)]; }

...
int range[4] = {12,50,12,50};
ops_par_loop(copy, block, 2, range,

ops_arg_dat(a,S2D_0,”double”,OPS_WRITE),
ops_arg_dat(b,S2D_0,”double”,OPS_READ));

ops_par_loop(calc, block, 2, range,
ops_arg_dat(b,S2D_0,”double”,OPS_WRITE),
ops_arg_dat(a,S2D_1,”double”,OPS_READ));

Fig. 1. An OPS parallel loop

(read/write), as well as providing a “computational kernel” to
be applied at each grid point. An example is shown in Figure 1;
the ops_par_loop construct captures meta-data about the
iteration space, the data accessed, the pattern of access and
the mode of access. This description does not express how
parallelism is to be orchestrated, and how data is to be stored
and transferred - the computational kernel simply receives a
pointer to the data associated with the current grid point.

During initialisation, the user hands all data to the library,
which later can only be accessed through API calls. This allows
OPS to automate both shared memory parallelisation, through
code generation of CUDA/OpenACC/OpenMP/OpenCL code,
as well as data movement - for example MPI decomposition
and all communications. Code generation relies on parsing
the user code for calls to the OPS API, and generating
boilerplate code around the computational kernel provided by
the user. Given the user’s definition of access patterns and types
the appropriate parallel patterns and implementations can be
generated. The back-end library keeps track of accesses to data,
allowing to manage multiple memory spaces (with GPUs) and
MPI halo exchanges.

Prior work [5], [6] has demonstrated that such an approach
can match the performance of hand-coded implementations
and in some cases outperform it. We have also introduced
a number of techniques and optimisations - for the present
work the most relevant is the delayed evaluation technique
and the polyhedral analysis and optimisation. Delayed eval-
uation allows OPS to gather information about a sequence
of loops and reason about them together, allowing cross-loop
optimisation techniques. Such an optimisation is a scheduling
of computations that improves memory locality [20] - this
depends on polyhedral analysis and transformations. We have
demonstrated speedups of 1.5-3× on the CPU, on bandwidth-
bound applications.

IV. HYBRID SCHEDULING IN OPS

Hybrid scheduling uses a combination of code-generation and
backend logic. We rely on the delayed evaluation mechanisms
in OPS; for each loop, we generate an OpenMP parallelised
CPU code as well as CUDA code. At runtime, when the user
code calls these, instead of executing one of them immediately,
we send the loop descriptors and function pointers to the
back-end. The back-end determines the required partitioning
between CPU and GPU, makes the necessary data transfers

to satisfy data dependencies, then calls the CPU code and the
GPU code with altered iterations ranges.

We present two key algorithms in OPS that perform hy-
brid scheduling; the first that takes a per-loop view of load
balancing, as done in related research [14], [17], and the
second which uses polyhedral analysis to come up with an
overlapped tiling execution schedule for the CPU and GPU
that encompasses a number of loops. For the latter case, we
rely on the aforementioned delayed evaluation technique in a
more advanced manner: loop descriptors can be queued up
until data needs to be returned to the user - this allows OPS
to analyse and optimise these loops together.

A. Per-loop load balancing

For this approach, OPS keeps a historical record of relative
performance between CPU and GPU for each loop 1..N ,
identified by the different computational kernels that are ap-
plied. After each run the record is updated, and the ideal split
(load balance) between CPU and GPU updated with a moving
average calculation. At the same time, OPS keeps track of
all the datasets’ clean and dirty regions: what part of the
computational grid is up-to-date on the CPU and the GPU.

The process for scheduling execution and satisfying data
dependencies is outlined in Algorithm 1. When a loop i is
scheduled to run next, OPS calculates the optimal spliti, and
based on the access descriptors (read/write and access pattern),
initiates the transfer of data to satisfy data dependencies for the
given split. At the same time, it calculates the regions of the
iteration space that are dependent on the ongoing data transfer
and the regions that are independent (both for CPU and GPU).
Therefore, while the copies are taking place, the independent
regions can be scheduled by passing a modified iteration range
through the function pointers. A synchronisation waits for the
copies to finish, and the dependent parts can be scheduled.
Finally, historical timing data is updated.

This algorithm has been described in the literature [14],
[17], [16], although they were one-off implementations,
whereas this is incorporated into OPS, and is applied without
any changes to user code. This algorithm has the potential
to incur very little overhead - as long as the copies can
be completely overlapped with the independent computations.
This has been the case for applications studied in the related
works; simply because the same stencil was applied repeatedly,
the ideal load balance did not change, and the copies only had
to move data on the thin boundary region, as wide as the
stencil used. However, this is not the case for multi-stencil
applications, such as CFD or hydrodynamics solvers (e.g.
CloverLeaf), where a large number of different stencil sweeps
are required, each with its (often very different) ideal balance.
In such cases, the data movement requirements between loops
can become prohibitively expensive. This motivates the devel-
opment of the following algorithm.

B. Tiled scheduling

In our previous work [20], we have developed a run-time
algorithm that can analyse several loops together, and using
polyhedral dependency analysis and transformations it can
create an execution schedule that improves cache locality. This
algorithm was also developed to apply overlapped tiling [21]

Algorithm 1 PER-LOOP HYBRID SCHEDULING

1: Input: loop index i, iteration range [start, end), access
descriptors

2: Calculate ideal load balance spliti based on historical data
3: Calculate data dependencies given spliti and access de-

scriptors:
4: For each dataset m = largest stencil offset in negative

direction, p = in the positive direction
5: For each dataset d, range to be uploaded to

GPU [upd,begin, upd,end) = [spliti − m, end) ∩
[dirtygpu,begin, dirtygpu,end)

6: For each dataset d, range to be downloaded to
CPU [downd,begin, downd,end) = [start, spliti + p) ∩
[dirtycpu,begin, dirtycpu,end)

7: Calculate dependent regions depi,CPU ,depi,GPU and in-
dependent regions indepi,CPU ,indepi,GPU :

8: [depcpu,begin, depcpu,end) =
(

⋃
datasets d

[downd,begin, downd,end)) ∩ [start, spliti)

9: [indepcpu,begin, indepcpu,end) = [start, spliti) \
depcpu,begin, depcpu,end)

10: [depgpu,begin, depgpu,end) =
(

⋃
datasets d

[upd,begin, uod,end)) ∩ [spliti, end)

11: [indepgpu,begin, indepgpu,end) = [spliti, end) \
depgpu,begin, depgpu,end)

12: Upload and download data to satisfy dependencies
13: Simultaneously launch computations on independent re-

gions indepi,CPU ,indepi,GPU

14: Wait for uploads and downloads to finish
15: Launch computations on dependent regions

depi,CPU ,depi,GPU

16: Update historical timing data
17: Update dirty regions:
18: For each dataset d written, dirty region on GPU

is: [dirtygpu,begin, dirtygpu,end) = [start, spliti) ∪
([dirtygpu,begin, dirtygpu,end) \ [upd,begin, upd,end)))

19: For each dataset d written, dirty region
on CPU is: [dirtycpu,begin, dirtycpu,end) =
[spliti, end) ∪ ([dirtycpu,begin, dirtycpu,end) \
[downd,begin, downd,end)))

across MPI boundaries - the idea is that halo regions are
extended and a single MPI communication satisfies all the
data dependencies required to execute all the loops that are
tiled over - at the expense of redundant computations in these
halo areas.

We have modified and applied the very same algorithms
to hybrid CPU-GPU scheduling: we create a tile for the
CPU as well as the GPU, do the data transfer between
the two before executing the two tiles, and use redundant
computations along the boundary. This allows the two tiles to
execute asynchronously without any further communications
and synchronisation (just as it does over MPI). For efficient
data transfers between CPU and GPU we only split in the last
dimension, so the data to be copied is contiguous in memory.
Aside from reduced communication costs, this approach has
a key advantage over per-loop scheduling: the load balance
between CPU and GPU no longer has to be set for individual
loops, rather for an entire loop chain, which enables averaging

out relative performance differences on different loops.

Algorithm 2 TILED HYBRID SCHEDULING

1: Input: Loop chain l1..lN , each with iteration range, access
descriptors

2: Calculate ideal load balance split based on historical data
3: Create CPU and GPU tile, and data dependency ranges:
4: Call Algorithm 3, once for CPU, once for GPU
5: Transfer array chunks with a non-empty intersection of

data dependency range and CPU/GPU dirty region (as in
Algorithm 1)

6: Asynchronously launch loops in GPU tile
7: Launch loops in CPU tile
8: Reduce partial reduction results
9: Update historical timing data for this loopchain

10: Update dirty regions on CPU and GPU (as in Algorithm
1)

The specifics of the algorithm are described in Algorithm
2, and the subroutine for creating tiles for CPU and GPU in
Algorithm 3. Once the execution of a loop chain is triggered,
due to some data being returned to the user (e.g. a reduction),
based on historical data, OPS calculates the ideal load balance
for this particular loop chain. It then constructs a single tile
for the GPU, calculating the necessary overlapping region and
required data transfers, then does the same for the CPU part.
The CPU part however may be further divided into smaller tiles
to allow cache blocking tiling - this is not detailed here as the
algorithm is quite extensive, the reader is referred to [20]. The
halo transfers are then made, all the loops in the GPU tile are
launched asynchronously, then the CPU proceeds to execute
the CPU tile(s). Finally, dirty/clean regions are updated and
partial reduction results are merged.

V. RESULTS

In this section we first introduce the stencil applications being
studied and the testing environments, then move on to analyse
performance with the previously introduced methods.

A. Experimental setup

For performance measurements, we have tested our algorithms
on two different applications. The first is a simple Poisson
equations solver with two main functions in each iterations.
The first step computes the new value of each cell from its
neighbours using a five point stencil, and the second step
updates all values regarding to the previous results. This
algorithm has been well studied in the literature, and lends
itself to good load balancing considering the few and simple
computational loops. For testing, we run a 1000 iterations on
various mesh sizes.

The second application is the CloverLeaf mini-app which
involves the solution of the compressible Euler equations,
which form a system of four partial differential equations. The
equations are statements of the conservation of energy, density
and momentum and are solved using a finite volume method
on a structured staggered grid. The cell centres hold internal
energy and density while nodes hold velocities. The solution
involves an explicit Lagrangian step using a predictor/corrector
method to update the hydrodynamics, followed by an advective

Algorithm 3 CREATING TILES

1: Input: Loop chain l1..lN , each with iteration range
[beginli , endli), access descriptors, required split

2: Output: Iteration ranges for each loop [tbeginli , tendli),
data dependency ranges for datasets ∀d :
[read depd,start, read depd,end)

3: for all loops i, backwards do
4: {Start index for current loop in tile}
5: if CPU tile then
6: tbeginli = beginli
7: else if GPU tile then
8: {Extend tile, satisfying RAW dependencies}
9: tbeginli = split

10: for all dataset d written in loop i do
11: tbeginli = max(beginli ,

min(tbeginli , read depd,begin))
12: end for
13: end if
14: {End index for current loop in tile}
15: if CPU tile then
16: {Extend tile, satisfying RAW dependencies}
17: tendli = split
18: for all dataset d written in loop i do
19: tendli = min(endli ,

max(tendli, read depd,end))
20: end for
21: else if GPU tile then
22: tendli = endli
23: end if
24: {Update read dependencies}
25: for all dataset d accessed in loop i do
26: if dataset d is written then
27: [read depd,start, read depd,end) = ∅
28: else if dataset d is read then
29: Let m and p be the largest stencil offset in the

negative/positive direction
30: [read depd,start, read depd,end) =

[read depd,start, read depd,end) ∪ [tbeginli −
m, tendli + p)

31: end if
32: end for
33: end for

remap that uses a second order Van Leer up-winding scheme.
The advective remap step returns the grid to its original
position. The original application [22] is written in Fortran
and operates on a 2D structured mesh. It is of fixed size in
both x and y dimensions.

The CloverLeaf application consists of 25 datasets defined
on the full computational domain (200 bytes per grid point),
and 30 different stencils used to access them. There are
a total of 83 parallel loops spread across 15 source files,
each using different datasets, stencils and “user kernels”;
many of these include branching (such as upwind/downwind
schemes, dependent on data). The source files that contain
ops_par_loop calls include branching and end up calling
different loops, dependent on e.g. sweep direction, with some
code paths shared and some different for different sweeps, and
often the pointers used refer to different datasets, depending
on the call stack. A single time iteration consists of a chain

of 153 subsequent loops. The full size of CloverLeaf is 4800
lines of code. It is a substantially more complex code than
what is usually studied in the literature - the only paper we
have found that considers the hybrid CPU-GPU scheduling of
a larger stencil code is by Yang et. al. [15], however they only
consider load balancing on a per-loop basis. For testing in this
paper, we run for 50 time iterations.

For testing, we have used three workstations. The first has
CentOS Linux 7.4.1708, Intel(R) Xeon(R) CPU E5-2650 v3 @
2.30GHz CPU with 20 cores, 2 threads per core and a NVIDIA
Tesla K80 GPU. The second environment has Ubuntu 16.04.3
operating system, two POWER8E IBM CPUs each with 10
cores running at up to 3.69 GHz, 8 threads per core and 2
Tesla K40m GPUs. The third system has Debian 9, Intel(R)
Xeon(R) CPU E5-2660 v4 @ 2.00GHz CPUs with 14 cores,
2 threads per core, an NVIDIA P100 and an NVIDIA V100
GPU. For in-depth testing, we only use the first two machines,
and a single socket to avoid any NUMA issues. We then briefly
discuss results obtained on the faster GPUs.

B. Analysis

Our results for the different applications on the different
environments can be seen in Figures 2 and 3, and for a
representative mesh size, in Table I. We have two performance
baselines: the GPU-only version, and the CPU-only version.
Since the CPU-only computed version is too slow to be shown
in the same figure (on Intel), we show just the original GPU-
only computed runtimes (cuda) for a measured reference -
CPU-only performance is documented in previous work [20].
However, CPU times for a representative problem size are
included in Table I.

Subsequently, we employ a trivial performance model to
calculate the ideal hybrid CPU-GPU execution time - based on
the relative performance difference between the two hardware,
the fraction of workload to be assigned to the GPU will be
cpu/(cpu + gpu), and to the CPU gpu/(cpu + gpu), where
cpu and gpu indicate the CPU-only and GPU-only runtimes
respectively. Multiplying this by the execution time of CPU
or GPU only versions, we get cpu ∗ gpu/(cpu+ gpu) for the
theoretical minimum execution time utilising both hardware.
Given that OPS has previously introduced support for cache-
blocking tiling on the CPU, there are two CPU-only runtimes,
with and without tiling; yielding two ideal runtimes, which we
denote as Perfect normal and Perfect tiling. These estimates
present a theoretical upper bound for performance, because
they do not account for data movement between CPU and
GPU and any further costs involved with load balancing.

The hybrid curves represent the basic per-loop hybrid
scheduling. Its extended version with the tiled scheduling is
shown with the Hybrid tiled curves, and the final version which
is combined with the cache blocking tiling scheduling within
the CPU is the Hybrid tiled with CPU tiling.

We first study the performance on the Poisson code, shown
in Figure 2 - with growing mesh sizes, the throughput of the
GPU-only version stabilises as expected, and this behaviour
is followed by all the other curves as well. Considering that
the two repeating loops require similar balance, therefore the
re-balancing between loops involves little data movement, the
plain hybrid and the hybrid tiled versions perform almost the

(a) (b)

Fig. 2. Simulation results for the Poisson application on the (a) Intel-NVIDIA and the (b) IBM Power8-NVIDIA environments

(a) (b)

Fig. 3. Simulation results for the CloverLeaf application on the (a) Intel-NVIDIA and the (b) IBM Power8-NVIDIA environments

TABLE I. TOTAL WALL TIME PER GRID POINT (µs) FOR LARGER PROBLEMS OF TWO APPLICATIONS ON THE DIFFERENT ENVIRONMENTS

Application Environment Grid size GPU-only Hybrid Hybrid tiled Hybrid tiled
with CPU tiling Perfect normal Perfect tiling CPU-only CPU-only

with tiling

Poisson Intel-K80 8000*8000 0.1623 0.1450 0.1429 0.1007 0.1394 0.0936 0.9823 0.2211

CloverLeaf Intel-K80 4000*4000 0.4647 0.5324 0.4252 0.3819 0.3949 0.3758 2.6295 1.9653

Poisson Power8-K40 8000*8000 0.1794 0.1552 0.1492 0.1007 0.1153 0.0922 0.3226 0.1897

CloverLeaf Power8-K40 4000*4000 0.5308 0.6041 0.4653 0.4322 0.3686 0.3660 1.2056 1.1791

Poisson Intel-P100 8000*8000 0.0619 0.0659 0.0766 0.0473 0.0579 0.0443 0.8898 0.1561

CloverLeaf Intel-P100 6000*6000 0.1694 0.2664 0.1798 0.1539 0.1564 0.1421 2.0387 0.8811

Poisson Intel-V100 8000*8000 0.0434 0.0500 0.0628 0.0366 0.0414 0.0340 0.8898 0.1561

CloverLeaf Intel-V100 6000*6000 0.1114 0.2110 0.1231 0.1050 0.1056 0.0989 2.0387 0.8811

TABLE II. ACHIEVED BANDWIDTH (GB/S) FOR THE TWO
APPLICATIONS

Application Environment GPU-only CPU-only Best CPU+GPU

Poisson Intel+K80 183.6 134.8 296.0

CloverLeaf Intel+K80 167.3 39.3 201.6

Poisson Power8+K40 166.1 157.1 296.0

CloverLeaf Power8+K40 145.2 65.3 178.4

Poisson Intel+P100 479.8 190.9 296.0

CloverLeaf Intel+P100 458.9 50.68 500.3

Poisson Intel+V100 684.3 190.9 296.0

CloverLeaf Intel+V100 697.9 50.68 735.3

same at higher mesh sizes. However, at small mesh sizes, the
hybrid tiled version is very fast - this is due to the CPU
partition still fitting in on-chip cache. Performance is even
better than the ideal at certain mesh sizes, which is due to

the model not accounting for cache size. This effect is not
observed on the plain hybrid version, due to the much higher
number of synchronisations. At larger problems, on the Intel
platform the hybrid and hybrid tiled versions perform within
5% of the ideal. On the Power8 platform there is still a 25%
gap between the hybrid version and the ideal speedup, which
is due to a yet unexplained slowdown of the CPU side of
computations. Enabling cache blocking tiling on the CPU side
leads to a significant performance improvement - on Intel we
see a 29% performance gain and get within 5% of the ideal,
and on Power we see a 32% improvement, getting within 8%
if the ideal. In total we see a 1.62× speedup over the GPU-
only version on the Intel platform, and 1.78× on the Power
platform.

Next, we move on to studying the much more complex
CloverLeaf application. We can immediately observe in Figure
3 that the hybrid version - which load balances on a per-

loop basis, performs very poorly. This is simply because
subsequent loops often require a very different load balance
between CPU and GPU, because of their different relative
performances. Data movement can no longer be overlapped
with computations, and we experience a slowdown - on Intel
19%, on Power 15-120%. This is where the communication-
avoiding tiled approach can drastically improve the situation:
OPS needs to communicate and synchronise between CPU
and GPU much less frequently. This also means that the CPU
and GPU parts of individual loops may run asynchronously
with respect to each other, allowing load balancing on a much
coarser level; all the loops that are tiled across, which in case
of CloverLeaf is an entire time iteration consisting of 153
subsequent loops. On Intel, the hybrid tiled version is within
8% of the ideal, and on Power it is within 28%. Enabling cache
blocking tiling on the CPU, we get within 2% of the ideal on
Intel, and on Power within 17%. In total there is a 1.21×
speedup over the GPU-only version on the Intel platform, and
a 1.25× on the Power platform.

On newer generation GPU hardware, such as the Pascal
P100 and the Volta V100, the performance difference between
these and the older generation (Broadwell) CPU is much
higher. As shown in Table I, compared to the plain CPU
version, on the Poisson application the P100 is 14× and the
V100 is 20× faster than a single socket of the CPU - although
this is significantly improved by enabling the CPU-side cache
blocking tiling optimisation - to 2.5× and 3.5× respectively.
Compared to the 1.1-1.4× difference (with tiling enabled) on
the Intel-K80 and Power8-K40 platforms, this is a significant
jump - and naturally means that there is much less performance
improvement to be had from heterogeneous execution. On the
Poisson application, heterogeneous execution with the CPU
and the P100 GPU yields a 1.3× speedup (within 7% of the
ideal), and with the V100 a 1.18× speedup (within 8% of the
ideal). On the more complex CloverLeaf application, we have
more significant overheads, the P100+CPU achieves a 1.097×
speedup over the P100 (8.4% higher than ideal), and with the
V100+CPU there is a speedup of factor 1.055× (6.7% higher
than ideal).

Absolute performance metrics - achieved bandwidth (GB/s)
are presented in Table II, for the best CPU (with tiling), GPU
and hybrid CPU-GPU variants. It is clear that on the Intel
platform, for both applications, the achieved bandwidth of the
hybrid version is close to the sum of the CPU and GPU-
only versions. For the Power platform however, there is a
loss of CPU performance when both CPU and GPU are used,
particularly on CloverLeaf, therefore the improvement is more
modest.

A more interesting aspect of the above absolute per-
formance results is how one would quantify performance
portability for applications executed in a hybrid manner on
multiple processor architectures, such as done in this paper.
Framing this question, in terms of the recent performance
portability metric by Pennycook et. al. [23] appears to be not
very intuitive. Architectural efficiency of the hybrid application
could be computed easily by looking at the peak performance
of each of the processors (in this case the bandwidth) and
using its sum as the peak performance of the hybrid platform.
Then performance portability of the hybrid application can be
computed using this peak. However, the insights that can be

gained appears to be limited. For example, it is obvious from
Table II that for the POWER platform, the loss of bandwidth
on the CPU when executing both CPU and GPU will result
in lower architectural performance portability. The converse
insight is when fully hybrid executable improves the bandwidth
performance of each platform than the sum of each executed
on their own separately. Both cases give insights into exploring
how to gain further absolute performance. Performance porta-
bility based on application efficiency as detailed in [23] will
require a hand tuned implementation of the hybrid application
(or indeed the hybrid application implemented with some
other portability framework) to ascertain if a high percentage
of the best performance can be achieved with OPSs hybrid
executable. Currently to our knowledge such a hand-tuned
version of these applications does not exist, nor are there any
other portability frameworks capable of achieving this.

VI. CONCLUSION

In this paper we have explored the techniques and performance
for the heterogeneous CPU-GPU scheduling of stencil appli-
cations using the OPS framework. We have shown that the
per-loop load balancing and scheduling approaches used in
the similar works do not generalise to complex applications,
and we introduced a technique that relies on lazy evaluation
and polyhedral analysis/scheduling to address this problem.
By being able to asynchronously schedule a large number of
loops, it is possible to load balance for complete computational
phases, that include many loops, instead of individual loops.
This approach also significantly reduces the amount of data
that needs to be communicated between CPU and GPU. The
development of such algorithms is highly non-trivial - arguably
it is not reasonable to enmesh such constructs in science code,
as it would highly degrade its maintainability and readability.
Productivity is therefore an important concern when consider-
ing such optimisations; there is a definite need for higher-level
approaches to implementing science code which will later are
capable of supporting these transformations.

We have evaluated our algorithms on a simple Poisson
example as well as the substantially more complex CloverLeaf
hydro mini-app, and tested them in Intel and IBM systems
equipped with NVIDIA GPUs. We have demonstrated a 1.2-
1.6× speedup over GPU-only execution by adaptively load bal-
ancing between CPU and Kepler-generation GPUs, and relying
on CPU cache blocking tiling techniques already built into
OPS. Testing with newer generation GPUs shows diminishing
returns - the relative performance difference between GPU and
CPU are much higher, and therefore the achieved speedups are
lower.

Looking ahead, there are two key trends to consider. It is
clear, that while there may be a performance advantage when
one GPU is paired with one CPU socket, with higher compute
density (more GPUs, same number of CPUs), the expected im-
provements all but disappear - for all intents and purposes the
CPU just becomes something that feeds the GPUs. Second, the
relative performance difference between the GPU and the CPU
will always fluctuate - with the introduction of Skylake, Intel
CPUs got a significant bump in bandwidth as well as compute
- but at the same time, the memory bandwidth of Power8+ and
Power9 CPUs is actually less than the first-generation Power8
CPUs which used the Centaur memory modules. It is therefore

very much system-, and somewhat problem-dependent whether
heterogeneous scheduling can deliver worthwhile performance
improvements. Given that this research was done in the context
of OPS, the user can simply select a heterogeneous version,
and test whether it can improve upon the performance of the
GPU-only version.

In summary we have demonstrated the ability of OPS to
take a user code written once using its high level API, and
automatically apply such complex optimisations as heteroge-
neous scheduling. This once again underlines the utility of
DSLs to deliver performance portability across a diverse set
of architectures without user intervention.

ACKNOWLEDGMENTS

István Reguly was supported by the János Bolyai Research
Scholarship of the Hungarian Academy of Sciences. Project
no. PD 124905 has been implemented with the support pro-
vided from the National Research, Development and Inno-
vation Fund of Hungary, financed under the PD 17 funding
scheme. The research has been supported by the European
Union, co-financed by the European Social Fund (EFOP-3.6.2-
16-2017-00013, Thematic Fundamental Research Collabora-
tions Grounding Innovation in Informatics and Infocommuni-
cations). OPS was developed under the UK EPSRC project
entitled “Future-proof massively-parallel execution of multi-
block applications” (EP/K038567/1). The authors would like
to acknowledge the use of the University of Oxford Advanced
Research Computing (ARC) facility in carrying out this work.
http://dx.doi.org/10.5281/zenodo.22558

REFERENCES

[1] S. Mittal and J. S. Vetter, “A survey of cpu-gpu
heterogeneous computing techniques,” ACM Comput. Surv.,
vol. 47, no. 4, pp. 69:1–69:35, Jul. 2015. [Online]. Available:
http://doi.acm.org/10.1145/2788396

[2] M. Bauer, S. Treichler, E. Slaughter, and A. Aiken, “Legion: Expressing
locality and independence with logical regions,” in Proceedings of
the International Conference on High Performance Computing,
Networking, Storage and Analysis, ser. SC ’12. Los Alamitos, CA,
USA: IEEE Computer Society Press, 2012, pp. 66:1–66:11. [Online].
Available: http://dl.acm.org/citation.cfm?id=2388996.2389086

[3] C. Augonnet, S. Thibault, R. Namyst, and P.-A. Wacrenier,
“StarPU: A Unified Platform for Task Scheduling on Heterogeneous
Multicore Architectures,” Concurrency and Computation: Practice and
Experience, Special Issue: Euro-Par 2009, vol. 23, pp. 187–198, Feb.
2011. [Online]. Available: http://hal.inria.fr/inria-00550877

[4] J. Planas, R. M. Badia, E. Ayguad, and J. Labarta, “Self-adaptive ompss
tasks in heterogeneous environments,” in 2013 IEEE 27th International
Symposium on Parallel and Distributed Processing, May 2013, pp. 138–
149.

[5] I. Z. Reguly, G. R. Mudalige, M. B. Giles, D. Curran, and S. McIntosh-
Smith, “The ops domain specific abstraction for multi-block structured
grid computations,” in 2014 Fourth International Workshop on Domain-
Specific Languages and High-Level Frameworks for High Performance
Computing, Nov 2014, pp. 58–67.

[6] G. R. Mudalige, I. Z. Reguly, M. B. Giles, A. C. Mallinson, W. P.
Gaudin, and J. A. Herdman, “Performance analysis of a high-level
abstractions-based hydrocode on future computing systems,” in High
Performance Computing Systems. Performance Modeling, Benchmark-
ing, and Simulation, S. A. Jarvis, S. A. Wright, and S. D. Hammond,
Eds. Cham: Springer International Publishing, 2015, pp. 85–104.

[7] E. Agullo, C. Augonnet, J. Dongarra, M. Faverge, H. Ltaief, S. Thibault,
and S. Tomov, “Qr factorization on a multicore node enhanced with
multiple gpu accelerators,” in 2011 IEEE International Parallel Dis-
tributed Processing Symposium, May 2011, pp. 932–943.

[8] F. Lecron, S. A. Mahmoudi, M. Benjelloun, S. Mahmoudi, and
P. Manneback, “Heterogeneous computing for vertebra detection
and segmentation in x-ray images,” Journal of Biomedical
Imaging, vol. 2011, pp. 5:1–5:12, Jan. 2011. [Online]. Available:
http://dx.doi.org/10.1155/2011/640208

[9] K. Spafford, J. Meredith, and J. Vetter, “Maestro: Data orchestration
and tuning for opencl devices,” in Euro-Par 2010 - Parallel Processing,
P. D’Ambra, M. Guarracino, and D. Talia, Eds. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2010, pp. 275–286.

[10] J. Kim, S. Seo, J. Lee, J. Nah, G. Jo, and J. Lee, “Snucl: An opencl
framework for heterogeneous cpu/gpu clusters,” in Proceedings of the
26th ACM International Conference on Supercomputing, ser. ICS ’12.
New York, NY, USA: ACM, 2012, pp. 341–352. [Online]. Available:
http://doi.acm.org/10.1145/2304576.2304623

[11] T. Stefanski, “Implementation of fdtd-compatible greens function on
heterogeneous cpu-gpu parallel processing system,” Progress In Elec-
tromagnetics Research, vol. 135, p. 297316, 2013.

[12] H. Berendsen, D. van der Spoel, and R. van Drunen,
“Gromacs: A message-passing parallel molecular dynamics
implementation,” Computer Physics Communications, vol. 91,
no. 1, pp. 43 – 56, 1995. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/001046559500042E

[13] J. R. d. S. Junior, E. W. Clua, A. Montenegro, and P. A. Pagliosa, “Fluid
simulation with two-way interaction rigid body using a heterogeneous
gpu and cpu environment,” in 2010 Brazilian Symposium on Games
and Digital Entertainment, Nov 2010, pp. 156–164.

[14] S. Venkatasubramanian and R. W. Vuduc, “Tuned and wildly
asynchronous stencil kernels for hybrid cpu/gpu systems,” in
Proceedings of the 23rd International Conference on Supercomputing,
ser. ICS ’09. New York, NY, USA: ACM, 2009, pp. 244–255.
[Online]. Available: http://doi.acm.org/10.1145/1542275.1542312

[15] C. Yang, W. Xue, H. Fu, L. Gan, L. Li, Y. Xu, Y. Lu, J. Sun,
G. Yang, and W. Zheng, “A peta-scalable cpu-gpu algorithm for global
atmospheric simulations,” in Proceedings of the 18th ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming, ser.
PPoPP ’13. New York, NY, USA: ACM, 2013, pp. 1–12. [Online].
Available: http://doi.acm.org/10.1145/2442516.2442518

[16] C. Yang, F. Wang, Y. Du, J. Chen, J. Liu, H. Yi, and K. Lu, “Adaptive
optimization for petascale heterogeneous CPU/GPU computing,” in
Proceedings of the 2010 IEEE International Conference on Cluster
Computing, Heraklion, Crete, Greece, 20-24 September, 2010, 2010, pp.
19–28. [Online]. Available: https://doi.org/10.1109/CLUSTER.2010.12

[17] M. Sourouri, J. Langguth, F. Spiga, S. B. Baden, and X. Cai, “Cpu+gpu
programming of stencil computations for resource-efficient use of gpu
clusters,” in 2015 IEEE 18th International Conference on Computa-
tional Science and Engineering, Oct 2015, pp. 17–26.

[18] A. D. Pereira, L. Ramos, and L. F. W. Ges, “Pskel: A stencil program-
ming framework for cpu-gpu systems,” Concurrency and Computation:
Practice and Experience, vol. 27, no. 17, pp. 4938–4953. [Online].
Available: https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.3479

[19] A. D. Pereira, R. C. O. Rocha, L. Ramos, M. Castro, and L. F. W. Ges,
“Automatic partitioning of stencil computations on heterogeneous sys-
tems,” in 2017 International Symposium on Computer Architecture and
High Performance Computing Workshops (SBAC-PADW), Oct 2017, pp.
43–48.

[20] I. Z. Reguly, G. R. Mudalige, and M. B. Giles, “Loop tiling in large-
scale stencil codes at run-time with ops,” IEEE Transactions on Parallel
and Distributed Systems, vol. 29, pp. 873–886, 2018.

[21] S. Krishnamoorthy, M. Baskaran, U. Bondhugula, J. Ramanujam,
A. Rountev, and P. Sadayappan, “Effective automatic parallelization of
stencil computations,” SIGPLAN Not., vol. 42, no. 6, pp. 235–244, Jun.
2007. [Online]. Available: http://doi.acm.org/10.1145/1273442.1250761

[22] S. McIntosh-Smith, M. Boulton, D. Curran, and J. Price, “On the
performance portability of structured grid codes on many-core computer
architectures,” in Supercomputing, ser. Lecture Notes in Computer
Science. Springer International Publishing, 2014, vol. 8488.

[23] S. Pennycook, J. Sewall, and V. Lee, “Implica-
tions of a metric for performance portability,” Future
Generation Computer Systems, 2017. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0167739X17300559

APPENDIX

A. Abstract

This artifact comprises the source code, datasets, and build
instructions on GitHub that can be used to reproduce our
results presented in our paper.

B. Description

1) Check-list (artifact meta information):

• Algorithm: Heterogeneous scheduling for stencil compu-
tations

• Program: C/C++ code in OPS backend and CUD-
A/OpenMP code generated by OPS.

• Compilation: Intel ICC/ICPC 17.0.0. and IBM XLC
13.1.7

• Transformations: OPS uses a source-to-source translator
(see documentation), however all files required have
already been generated.

• Binary: hybrid executables built with make
(*_hyb_cuda)

• Data set: for CloverLeaf, the included clover.in files in the
application directories. Can be edited to change problem
size.

• Run-time environment: CentOS 7.2 with Intel Parallel
Studio XE 2017 (Intel) and Ubuntu 16.04.3 with XLC
13.1.7

• Hardware: tested on Xeon E5-2650 v3 @ 2.3 GHz, with
Hyper-Threading enabled and Power8 (10 core) @ 3.69
GHz

• Execution: OMP_NUM_THREADS=20 numactl
--cpunodebind=0 ./executable_name
OPS_HYBRID OPS_TILING.

• Output: Elapsed times, GB/s and GFLOPS/s break-
downs.

• Experiment workflow: clone sources from GitHub, build
OPS backend, build poisson/CloverLeaf 2D hybrid tiled
executables, compare to plain CUDA results.

• Experiment customization: Plain hybrid execution can
be enabled with the OPS_HYBRID flag, tiled version can
be enabled by adding the OPS_TILING flag, and tile
sizes to improve CPU-side cache blocking tiling may be
set using the T1,T2 environment variables, the problem
size in clover.in. For the Jacobi problem, using the -sizex,
-sizey, -iters, and the tile height using -itert, switching
between copy and non-copy versions with -non-copy.

• Publicly available?: Yes

2) How software can be obtained (if available):
The OPS library can be downloaded from
https://github.com/OP-DSL/OPS.

3) Hardware dependencies: Any Intel CPU, or any IBM
Power8 CPU.

4) Software dependencies: The library can be compiled
with several compilers (intel, gnu, pgi, clang, XL), but to
reproduce the results, we suggest using Intel Parallel Studio
XE 2017 on Intel, and XLC 13.1.7 on Power.

5) Datasets: Data is implicitly generated by the applica-
tions themselves. To specify the grid dimensions in the Jacobi
benchmark, one has to add the -sizex and -sizey arguments,
and -iters for the number of iterations. -itert can be used to set
the tile height, and -non-copy to switch from the copy variant
to the non-copy variant. For CloverLeaf 2D/3D, modify the
clover.in files to specify the dimensions and the number of
iterations/convergence criteria.

C. Installation

Clone the OPS repository and checkout the feature/hybrid
branch:

g i t c l o n e h t t p s : / / g i t h u b . com / OP−DSL / OPS
cd OPS
g i t c h e c k o u t f e a t u r e / h y b r i d

Set up environment variables, as specified in
README.md, to specify the compiler used and to point to
the locations of the OPS library, MPI and HDF5, then build
the OPS C backend:

cd ops / c
make

Build the poisson and CloverLeaf variants

cd apps / c / p o i s s o n
make p o i s s o n c u d a p o i s s o n h y b c u d a
cd apps / c / C l o v e r L e a f
make c l o v e r l e a f c u d a c l o v e r l e a f h y b c u d a

D. Experiment workflow

For testing the OPS version of the Jacobi problem with
various parameters:

T1= t i l e s i z e x T2= t i l e s i z e y OMP NUM THREADS=20 \
numac t l −−cpunodeb ind =0 . / p o i s s o n h y b c u d a \
−s i z e x =8192 −s i z e y =8192 − i t e r s =1000 \
− i t e r t =20

For testing the CloverLeaf 2D with various parameters:

T1= t i l e s i z e x T2= t i l e s i z e y OMP NUM THREADS=20 \
numac t l −−cpunodeb ind =0 . / c l o v e r l e a f h y b c u d a \
−DOPS DIAGS=0 OPS HYBRID OPS TILING

E. Evaluation and expected result

All benchmarks print timing breakdowns as well as
achieved bandwidth figures, which can be directly compared
to those in figures and tables in the paper. CloverLeaf’s
GFLOPS/s results are extrapolated based on the CUDA version
(build cloverleaf cuda) and the GFLOPS/s values reported by
nvprof.

F. Experiment customization

The Jacobi benchmark can be customised through runtime
flags, and the CloverLeaf runs through changes to the clover.in
input file, that are in the same directory as the executable.

G. Notes

You may have to modify the compilation flags to use
-fp-model fast -fma, as the defaults may be set to
IEEE compliant optimisation flags.

