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Absolute Pose Estimation of Central Cameras
Using Planar Regions

Robert Frohlich, Levente Tamas Member, IEEE, and Zoltan Kato Senior Member, IEEE

Abstract—A novel method is proposed for the absolute pose estimation of a central 2D camera with respect to 3D depth data
without the use of any dedicated calibration pattern or explicit point correspondences. The proposed method has no specific
assumption about the data source: plain depth information is expected from the 3D sensing device and a central camera is used
to capture the 2D images. Both the perspective and omnidirectional central cameras are handled within a single generic camera
model. Pose estimation is formulated as a 2D-3D nonlinear shape registration task which is solved without point correspondences
or complex similarity metrics. It relies on a set of corresponding planar regions, and the pose parameters are obtained by solving
an overdetermined system of nonlinear equations. The efficiency and robustness of the proposed method were confirmed on
both large scale synthetic data and on real data acquired from various types of sensors.

Index Terms—Pose estimation, calibration, data fusion, registration, Lidar, omnidirectional camera
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1 INTRODUCTION [11], [12]. Many of these methods apply to general central

BSOLUTE pose estimation consists of determining thgameras (both perspectiv_e and omnidirectional) that are

position and orientation of a camera with respe@ft€n represented by a unit sphere [13], [14], [15], [16].
to a 3D world coordinate frame. It is a fundamental POS€ estimation (also known esternal calibration) of
building block in various computer vision applications2D color and 3D depth cameras was performed especially
such as robotics (e.gvisual odometry [1], localization for_enw_ronment mapping gppllcatmns [17]. Whlle internal
and navigation [2]), augmented reality [3], geodesy, &a!lbranon can b_e sqlved in a controlled e_nqunmmg.
cultural heritage [4]. The problem has been extensiveﬂﬁ'ng special c_ahbratlon patt(_erns, pose es_tlmatlon must rely
studied yielding various formulations and solutions. Mo&" the actual images taken in a real environment. Popular
of the approaches focus on a single perspective camera po&ihods rely on point correspondences such as [18], or
estimation using: 2D-3D point correspondences, knowr'S'N9 fl'du0|al markgrs [,19]’ Whlph.may be' cumberspme
as thePerspective n PoinPnP) problem [5], [6], [7]. It to use in real life situations. This is especially true in a
has been widely studied for large as well as for the multimodal setting, where omnidirectional images need to
minimal case ofn — 3 (see [7] for a recent overview). be combined with other non-conventional sensors like Lidar
Using line correspondences yields tRerspective n Line scans proviQing_range only data. The Lidar-omnidirgctional
(PnL) problem [8], [9] (see [8] for a detailed overview).camera F:allbratlon problem' was analyzed from. different
Several applications dealing with multimodal sensors maRgspectives. In [20]_' the calibration is performed in natural
use of fused 2D radiometric and 3D depth informatiofic€NeS, Nowever point correspondences between the 2D-3D
from uncalibrated cameras. The availability of 3D data h4d'2ges are selected in a semi-supervised manner. In [21],
also became widespread. Classical image-based technigG@dbration is tackled as an observability problem using
such as Structure from Motion (SfM) [10] provide 3p? (planar) fIdUC.Ial marker as calibration pattern. In [22]
measurements of a scene, while modern range senddrflly automatic method is proposed based on mutual
(e.g. Lidar, ToF) record 3D structure directly. Therefordnformation (M) between the |n'_[e_nS|ty_ information from_
methods to estimate absolute pose of a camera based ori¥p) dépth sensor and the omnidirectional camera, while

measurements of the 3D scene received more attention {7],[23]: [24] a deep learning approach for calibration is
presented. Another global optimization method uses the
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method makes use of a segmented planar region from tbheLidar systems with reflectivity information rather it is
2D and 3D visual data and handles the absolute pdsased only on depth information. On the optimization side,
estimation problem as a nonlinear registration task. Motke proposed method is not restricted to convex problems
specifically, inspired by the 2D registration frameworland allows camera calibration using only a single Lidar-
presented in [25], for the central camera model we construggmera image pair.
an overdetermined set of equations containing the unknownAn early and efficientsilhouette based registration
camera pose. By solving this system of equation we obtaimethod is presented in [43], which solves a model-based
the required set of parameters representing the camera poggon problem using parametric description of the model.
This method can be used with an arbitrary number of
1.1 Related work parameters describing the object model and is based on
Due to the large number of applications using centrglobal optimization with thé.evenberg-Marquardtnethod.
camera systems, also the range of the calibration methodéigvhole object silhouette based registration is proposed
rather wide. Beside solving the generic 2D-3D registratidn [40], where the authors describe the 2D-3D registra-
problem, several derived applications exists including metion pipeline including segmentation, pixel level similarity
ical [26], robotics [17] and cultural heritage ones [4]. Fomeasure and global optimization. Although the proposed
the pose estimation in known environment a good examgiethod can be used in an automatic manner, this is
can be found in [27], while in [28] an application is reportedimited only to scenes with highly separable foreground-
using spherical image fusion with spatial data. A moreackground parts. By an automatic segmentation of the
generic classification of the types of algorithms is presentéglevant forms in panoramic images, which are registered
in [29]. Beside the direct measured relative pose methodgainst cadastral 3D models the segmented regions are
such as [30], a number of generic methods are summariz&digned using particle swarm optimization in [44]. An ex-
below. tension of silhouette based registration is proposed in [45],
Severalfeature based methodmsed on specific markerswhere a hybrid silhouette and key-point driven approach is
are used for extrinsic camera calibration [31], [32]. In thesed for the registration of the 2D and 3D data. The ad-
early work of [33], alignment based on a minimal numbevantage of this method is the possibility of multiple image
of point correspondences is proposed, while in [34], a largegistration as well as precise output of the algorithm.
number of 2D-3D correspondences are used with possibly
redundant or mismatched pairs. [35] was among the firSt2 Contributions
?gsdczli ?isolzg g;: g)é:ir\l/r;SIcColgzri“cbe:rzﬁ;org (\)/T/hsith L'gﬁ;rgﬁfeéogstead of establishing 2D-3D point matches, relying on
algorithm p?opopsed in [36]. This metr'md is ba?sed on manu FIiifiCiaI m_arke_rs or recprded ir!tensity values, we propose
g : ' . ose estimation algorithm which works on corresponding
p0|.nt feature _selc.acu'on frqm poth do”.‘a'.”s and assume mented 2D-3D regions. Since segmentation is anyway
valid camera intrinsic calibration. A similar manual poin

feature corresnondence based approach is pronosed in uired in many real-life image analysis tasks, such regions

rresponden d appro Propos [ y be available or straightforward to detect. Inspired
Recently, increasing interest is manifested in various call- [25], we reformulate pose estimation as a shape align-
bration setups ranging from high-resolution spatial data [3 '

. . ent problem. The solution is obtained by constructing a
to low-resolution commercial cameras [38], as well ag

online calibration of depth and color sensors on a mc)V”L%stem of non-linear equations, which is solved in the least
platform [22], [39]. uares sense by a standadrevenberg-Marquardialgo-

. .. _rithm. The result represents the estimates for the unknown
A popular alternative to feature based matching is the "

color-intensitymutual information (Ml)alignment between pose parameters. We formulate the problem as the pose

. o .. estimation of an universal central camera, which includes
the 2D color image and the 3D data with intensity in-_ . .~ " . )

. . . omnidirectional as well as perspective cameras. Our method
formation such [40], [17]. Extensions to the simultaneous o :
T . . ; . .~ Was quantitatively evaluated on a large synthetic dataset and
intrinsic-extrinsic calibration are presented in [21], which

o L . , rProved to be robust and efficient on real data too. For the
makes use of Lidar intensity information to find correspon- . )
real tests we used both publicly available dataset, as well

dences between the 2D-3D data. Other works are basedagsnour own captured data
the fusion of IMU or GPS information for calibration [41]. '

A good overview ofstatistical methodbased calibration
methods can be found in [26]. Mutual information and REGION-BASED POSE ESTIMATION
particle filters are used in [17], which performs pos@ose estimation consists in computing the position and
estimation using the whole image space of a single 2D-3Dientation of a camera with respect to a 3D world co-
observation. The method can use both intensity and nornaatlinate system/V. Herein, we are interested in central
distribution information for the 3D data. A further extensiortameras, where the projection rays intersect in a single
of this approach based on gradient orientation measurepi@nt called projection center or single effective viewpoint.
described in [42]. A gradient information extraction andypical examples include omnidirectional cameras as well
global matching between the 2D color and 3D reflectivitgs traditional perspective cameras. A broadly used unified
information is presented in [22]. This has two major differmodel for central cameras represents a camera as a projec-
ences compared to our work. Our approach is not limiteégbn onto the surface of a unit sphefe(see Fig. 1) [13],
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[14], [15], [16], the projection center being the center of 4

the sphere. The camera coordinate systéns in S, the

origin is the effective viewpoint (which is also the center of

the sphere) and th#& axis is the optical axis of the camera g

which intersects the image plane in t@ncipal point. The

absolute pose of our central camera is defined as the rigi

transformation(R, t) : W — C acting between the world

coordinate framé/V and the camera coordinate frarfe T

while the internal projection function of the camera defines

how 3D points are mapped frog onto the image plane

T. Fig. 1: Spherical camera model
Let us first see the relationship between a point

[z1,22]T € R? in the imageZ and its representation

Xs Z.[$S¢17$S727$S,3]T € R’ on the unit sphereS | idar device) will only record depth information, which
(see Fig. 1). Note that only the half sphere on the imagga|ienges feature-based point matching algorithms.

plane_ side is qctually used, as the other half is not ViSib!eTherefore the question naturally arises: what can be done
from image pomt.s. There are seyeral well known geometnigon neither a special target nor point correspondences
modelg for the mterna! projection [13], [?4]' .[15]’.[16]' re available? Herein, we present a solution for such
Following [1_6].’ the_ nonlinear (bUt, symmetric) distortion 0challenging situations. In particular, we will show that by
central omnidirectional cameras is represented by a surf Sntifying a single planar region both in 3D and the camera
g between the image plane and the unit sph€revhich

; onall X & Herei dimage, the absolute pose can be calculated. Of course,
IS rotationa y_symmetnc arouni. Herein, as suggested ;s s just the necessary minimal configuration. More such
by [16], we will use a fourth order polynomial

regions are available, a more stable pose is obtained. Our
g(Ix])) = ao + az||x||> + as||x||® + as|x||*, (1) solution is inspired by the 2D shape registration approach

of Domokoset al. [25], where the alignment of non-
which hasi parametergag, az, as, as) representing the in- linear shape deformations are recovered via the solution of a
ternal parameters of the camera. Note that for a perspectiecial system of equations. Here, however, pose estimation
camerag is a plane — this special case will be discussegelds a 2D-3D registration problem in case of a perspective
later in Section 2.2. The bijective mappidg: Z — S is camera and a restricted 3D-3D registration problem on the

composed of spherical surface for omnidirectional cameras. These cases
1) lifting the image pointx € Z onto theg surface by thus require a different technique to construct the system
an orthographic projection of equations.
X
X, = 2
9= Lo+ asllxl? + aslix)? +aufix?] @

o _ . 2.1 Absolute pose of spherical cameras
2) then centrally projecting the lifted poist, onto the

surface of the unit sphers: For spherical cameras, we have to work on the surface of
x the unit sphere as it provides a representation independent
xs = ®(x) = ”Xg” (3)  of the camera internal parameters. Furthermore, since cor-

g9

o _ respondences are not available, (4) cannot be used directly.
Thus the camera projection is fully described by means plwever, individual point matches can be integrated out

unit vectorsxs in the half space oR?. yielding the following integral equation [46]:
The projection of a 3D world pointX =
[X1,X2,X3]T € R? in the generalized spherical B
camera is basically a central projection ogtdaking into XsdDs = [ [ 25 dFs, ®)
account the extrinsic pose parameters, @R Thus for a Ds Fs

world point X and its imagex € Z, the following holds

on the surface of: whereDg denotes the surface patch Sncorresponding to

the regionD visible in the camera imagé, while Fs is
RX+t (4) the surface patch of the corresponding 3D planar region
IRX + t] projected ontaS by U in (4).

A classical solution of the absolute pose problem is to To get an explicit formula for the above surface inte-
establish a set of 2D-3D point matches using.a special grals, the spherical patchd3s and Fs can be naturally
calibration target [38], [21], or feature-based correspoparametrized viab and ¥ over the planar region® and
dences and then solve fqR,t) via the minimization F. Without loss of generality, we can assume that the third
of some error function based on (4). However, in mangoordinate ofX € F is 0, henceD C R?, F C R?
practical applications, it is not possible to use a calibratiand vxs € Ds : xs = ®(x),x € D as well as
target and most 3D data (e.goint clouds recorded by aVzs € Fs : zs = ¥(X),X € F yielding the following
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form of (5) [46]: w; from (8), yielding the following system of7 equations:
. 0P 0P // Pl (x) DT (x) P (x Ha@ X a—q) doi dos =~
//q)(x)Hale% dIEldLEQ: /. 1() 2 () 3() axl a.’L'Q 1 2
D
)\ )\ l; mi o n;
//‘I’(X) Ha Al dX;dX, (6) ) //25,123,223,3 dzs, (10)
)2 00X, 0X, VAEFS A
.vvlhere(b = [®y,®y,®3]" denote the coordinate func-

where the magnitude of the cross product of the parti .
derivatives is known as the surface element. The abo@%ﬂfcegf r;};e d. toI b: rgéc,;rer:juson?gly atnhde tL”ean%Ie
equation corresponds to @ system fequations only, tegral over these s hgricjal trian Ies, is calculated us-
because a point on the surfaSehas2 independent com- g P 9

ponents. However, we havi pose parameters (tation ing the method prese!’lted in [48].' In our experiments,
: e used the Matlab implementation of John Burkardt
angles and3 translation components). To construct more ~ . ) .
equations, we adopt the general mechanism from [25] aﬁ}lﬁ'lable from https.//peoplg.sc.fsu.ed;h)Urkardt/m_src/
apply a functionw : R? — R to both sides of the equationSp ere_trlangIe_quad/spher_etrlangIg_quad.htmI:
(4), yielding The pose parameters are obtained by solving the sy;tem
of equations (10) in the least squares sense. For an optimal
o o estimate, it is important to ensure numerical normalization
//w(cb(x)) H X — || dzy dag = and a proper initialization. In contrast to [25], where this
o~ Oxy  Owy was achieved by normalizing the input pixel coordinates
ow ow into the unit square in the origin, in the above equation
//w(‘I’(X)) HaX X 5y || 4X1dXz (7)) all point coordinates are on the unit sphere, hence data
F ! 2 normalization is implicit. To guarantee an optimal least
squares solution, initialization of the pose parameters is
Adopting a set of nonlinear functiods.; }_,, eachw; gen- also important. In our case, a good initialization ensures
erates a new equation yielding a system¢ahdependent that the surface patché®s and Fs, as shown in Fig. 1,
equations. Hence we are able to generate sufficiently masyerlap as much as possible. How to achieve this?
equations. The pose parametéRs, t) are then simply ob-
tained as the solution of the nonlinear system of equatiops| .1 Initialization
(7). In practice, an overdetermined system is constructeghe 3p gata is given in the world coordinate frame,
which is then solved by minimizing the algebraic error ifyhich may have an arbitrary orientation, that we have to
theleast squares sensea a standardlevenberg-Marquardt 51y align with our camera. Thus the first step is to
algorithm. Although arbitrary.; functions could be used, o re that the camera is looking at the correct face of the
power functions are computaﬂonally_ favorable [25], [47] 8§, face in a correct orientation. This is achieved by applying
these can be computed in a recursive manner: a rotationR,, that aligns the normal of the 3D regioh®
with the Z axis, i.e. 72 will be facing the camera, since
wi(xs) = fcl1"'9372”i$§79 according to the camera modeV is the optical axis. Then
with 0 < I;,m;,n; <2 andl; + m; +n; <3 (8) Wwe also apply a translatioty, that brings the centroid of
F2into[0,0,—1] T, which puts the region into thg = —1
Note that the left hand side of (7) is constant, hence it hatane. This is necessary to ensure that the plane doesn'’t
to be computed only once, but the right hand side has itdersectS while we initialize the pose parameters in the
be recomputed at each iteration of the least squares soluekt step.
as it involves the unknown pose parameters, which is com-If there is a larger rotation around thg& axis, then
putationally rather expensive for larger regions. Thereforthe projected spherical patcﬁsA might be oriented very
in contrast to [46] where the integrals on the 3D side idifferently w.r.t. Ds. Using non-symmetric regions, this
(7) were calculated over all points of the 3D region, hengould not cause an issue for the iterative optimization to
we consider a triangular mesh representafféh of the 3D  solve, but in other cases an additional apriori input might
planar regionF. Due to this representation, we only havdée needed, such as an approximate value for the vertical
to apply ¥ to the vertices{V;}}_, of the triangles inF#, direction in the 3D coordinate system, which could be
yielding a triangular representation of the spherical regigrovided by different sensors, or might be specified for
]—‘SA in terms ofspherical triangles. The verticeVs;}Y., a dataset captured with a particular setup. Based on this

of ]—‘SA are obtained as extra information, we apply a rotatioR, around theZ
axis that will roughly align the vertical direction to the
Vi=1,...,V: Vg, =9V, (9) camera’sX axis, ensuring a correct vertical orientation of

the projection.
Due to this spherical mesh representation7af, we can To guarantee an optimal least squares solution, initializa-
rewrite the integral on the right hand side of (7) adoptintion of the pose parameters is also important, which ensures
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that the surface patché3s and ]—'5A overlap as much asthe normalized inhomogeneous image coordinates=
possibie. This is achieved by computing the centroidBgf [zq,z5]" € R?:

and Fg', and initializingR. as the rotation between them. e DT -

Translation of the planar regio* along the direction x — KTx =2 K™PX = [Rt]X, (12)
of its normal vector will cause a scaling o"’FSA on the Denoting the normalized image I, the surface; in (1)
spherical surface. Hence an initial is determined by will be ¢ = 7 , hence the bijective mapping : Z — S for
transIAatingF 4 along the axis AQOi”g through the centroich perspective camera becomes simply the unit vecter: of
of 75 such that the area oFg becomes approximately x

equal to that ofDg. xs = ®(x) = Tl (13)

r_Starting from the above spherical representation of our
perspective camera, the whole method presented in the
_ . ) . previous section applies without any change. However, it is
Input: The coefficients of, 3D (triangulated) regiotF™ 01 tationally more favorable to work on the normalized
and corresponding 2D regidR as a binary image.  jmage planeZ, because this way we can work with plain
Output: The camera pose. , double integrals orf instead of surface integrals ofi.
1. Produce the spherical pat@hs from D using (3). Hence applying a nonlinear functian: R? — R to both

. A L A . .
2 I?roduce]—"s b_y prealigning7** as described in SeC-sides of (12) and integrating out individual point matches,
tion 2.1.1 using(Rg,tp) and thenR,, then back- we get [47]

projecting it onto the unit spher§ using (9).
3: Initialize R from the centroids ofDs and F5' as in / w(x) dx :/ w(z) dz. (14)
Section 2.1.1. D [R|t]F
4: Initialize t by trgnslatlngFA until the area ofFs and \yhereD corresponds to the region visible in the normalized
Ds are approximately equal (see Section 2.1.1).  cameraimage 7 and [R|t].F is the image of the corre-
5: Construc.t the system of equations (10) and solve it f%ondingSD planar region projected by the normalized
(R, t) using theLevenberg-Marquardalgorithm. camera matri¥R|t]. Adopting a set of nonlinear functions
6: The absolute camera pose is then given as the COMRD; 1 | eachw; generates a new equation yielding a sys-

i=11

sition of the transformationfRo, to), R, and(R,t). tem of ¢ independent equations. Choosing power functions

Algorithm 1 Absolute pose estimation algorithm for sphe
ical cameras.

for w; [47]
The steps of the proposed algorithm for central spher—w}(x) =Tl 0<ng,m; <3and(n; +m;) <4
ical cameras using coplanar regions is summarized in e - _(1’5)

Algorithm 1. For two or more non-coplanar regions, thg,q using a triangular mesh representatiéf of the 3D
algorithm starts similarly, by first using only one region paiFegion]—‘, we can adopt an efficient computational scheme.
for an initial pose estimation, as described in Algorithm ]First, let us note that this particular choice of yields 13
Then, starting from the obtained pose as an initial value, t@ﬁuations, each containing the 2D geometric moments of
system of equations is solved for all the available regiong,o projected 3D regiofR |t]F. Therefore, we can rewrite

which provides an overall optimal pose. the integral ovefR|t]F~ adoptingw; from (8) as [47]
2.2 Absolute pose of perspective cameras ./D rytaydx =
A glas§ical perspective caTmera sees the homogen(ious world 20 dz / S dz. (16)
point X = [X, X2, X3,1]' as a homogeneous poiit= [RIt]F vAaeR|tFL YA
[z1,72,1]" in the image plain obtained by a perspective S o
projectionP: The latter approximation is due to the approximationfof
by the discrete mesiF*. The integrals over the triangles
%~ PX = K[R[t]X, (11) are various geometric moments which can be computed

using efficient recursive formulas discussed hereatfter.
where =’ denotes the equivalence of homogeneous coor- Since many applications deal with 3D objects represented
dinates,i.e. equality up to a non-zero scale factor; aRd by a triangulated mesh surface, the efficient calculation of
is the 3 x 4 camera matrix, which can be factored into thgeometric moments is well researched for 3D [49], [50]. In
well known P = K[R|t] form, whereK is the3 x 3 upper the 2D case, however, most of the works concentrate on the
triangularcalibration matrix containing the camera intrinsicgeometric moments of simple digital planar shapes [51],
parameters, whiléR|t] is the absolute pose aligning the[52], [53], and less work is addressing the case of trian-
world coordinate framéV with the camera framé€. gulated 2D regions, with the possibility to calculate the
As a central camera, the perspective camera can dg@ometric moments over the triangles of the region.

represented by the spherical camera model presented i®Since in our method we have a specific case, where a
the previous section: Since we assume a calibrated cam@@, triangulated regioF* is projected onto the 2D image
we can multiply both sides of (11) b¥K~!, yielding plane Z, where we need to calculate integrals over the
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regionsD C Z and [R[t]F® C Z, we can easily adopt and
the efficient recursive formulas proposed for geometric
moments calculation over triangles in 3D and apply them to 0 ifi<Oorj<o
our 2D regions: Since our normalized image planes at  (;(c)=4{1 ifi=;=0
7 =1, the Z coordinate of the vertex points is a constant
' . - c1Ci—1.4(c) +eC;i—1(c
1, hence the generic 3D formula for tlig j, k) geometric 1Cim15(0) + 2Ciya(e) (24)

moment of a surfacé' [49] becomes a plain 2D momentyging only the equations (22)—(24), we can thus perform
in our specific planar case: the exact computation of the contribution of every triangle
to all the geometric moments of the image region in a very
efficient way. The different quantitie€’;;(c), D;;(b,c),
and S;;(T") are computed at orde¥ from their values at
as the last term of\/;;;, will always bel regardless of the order N — 1 using the recursive formulas given above and
value of k. i andj are integers such that j = N is the they are initialized ta at order0. The resultingS;; (T are

order of the moment. then multiplied by the area of the triangle and summed
Let us now see how to compute the integral on thgy according to (20).

right hand side of (16). The projected triangulated planar
surface[R|t]F* consists of triangle§ defined by vertices
(a,b,c) that are oriented counterclockwise. The integrd.2.1
over this image region is simply the sum of the integral&

. . . . s in Section 2.1.1, an initial rotatiolR, is applied to
over the triangles. Analytically, the integral over a triangle . .

. énsure that the camera is looking at the correct face of
can be written as [50], [54]

the surface followed by an optional rotatidR, around
/zizé dz
JT

otherwise

Mijk:/a:iyjzde:/ zlyl de dy a7)
5 s

Initialization

the optical axis of the camera, that brings the up looking
directional vector parallel to the camera’s vertical axis, then
apply a translatiorns.. to center the region in the origin. The

B 2area(7‘}i!j!s (1),

TR e

where initialization of the paramete® andt is done in a similar
(v + 1) 5 way as in Section 2.1.1: first the translatibralong theZ
Si(T) > > (Wa?a%l axis is initialized such that the image regidn and the

(i1+i2+iz3=1) (j1+j2+js=J)
(i2 +j2)!bi2bj2 (15 +j3)!ci36j3) (19)
ioljel NP igljsl P

Substituting (18) into (16), we get

/ 2z dz = 2# > area(7)S;(T)

T +j+ 205 Input: The calibration matrixi, 3D triangulated region
(20) F2 and corresponding 2D regidh as a binary image.

where the signed area of triangle is calculated as the Qutput: The camera pose.

magnitude of the cross product of two edges: 1: Produce the normalized imageusingK—? as in (12)

2: Prealign the 3D regioF” by rotating it first withR

then withR,,, as described in Section 2.2.1, then center

the region in the origin using..

Initialize t [0,0,¢.,]T such that the area of the

regions are roughly the same (see Section 2.2.1).

projected 3D region are of the same size, thens the
rotation that brings the centroid of the projected 3D region
close to the centroid of the corresponding image region

Algorithm 2 Absolute pose estimation algorithm for per-
spective cameras

VTE[R|t]F2

aredT) = Jf|(b—a) x (c—a)| (1)

As shown by [49] and then by [50], the computational 3.
complexity of the termS;;(T") can be greatly reduced from

orderO(N?) to orderO(N?). Based on the final generating 4.
equations proposed by [50], we can write our generating
equations for 2D domain as 5

Initialize R to ensure that the regions overlapZnas
in Section 2.2.1.

: Construct the system of equations (16) and solve it for

(R, t) using theLevenberg-Marquardalgorithm.

0 ifi<Oorj<0 6: The absolute camera pose is then given as the compo-

1 ifi=j=0

g — sition of the transformationR, R.., t., and(R,t).
Sy(M) =14, S () + 091y 1(T) (22) (R, t)
+ D;j(b,c) otherwise o _
The steps of the numerical implementation of the pro-
with posed method are presented in Algorithm 2. Note that for
0 ifi<Oorj<o non-coplanar regions, as in Algorithm 1, we first use a
L single arbitrarily selected region for an initial pose esti-
D;j(b,c) = L ifi=5=0 (23) Mmation, then in a second step we solve the system using
biD;—1,j(b,c) + b2D; j—1(b,c) all the available regions, which provides and optimal pose
+ Cy;(c) otherwise estimate.
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and shapes with elongated thin parts often yield suboptimal
results. However, such a solution can be used as an initial-
ization for the solver with more regions. Adding one extra
non-coplanar region increases the robustness by more than
4 times! This robustness enhancement quickly saturates
with the number of regions, thus in our experiments we
Fig. 2: Examples of various amount of segmentation erroligiited the number of non-coplanar patches to 3. We also
(se). First an omnidirectional image withose, then the remark, that the planarity of the regions is not strictly
same test wittrse= 12%, lastly the same template from g@equired. In fact, the equations remain true as long as
perspective test case wite= 20%. the 3D surface has no self-occlusion from the camera
viewpoint (see [4] for a cultural heritage application). Of
course, planarity guarantees that the equations remain true
3 EVALUATION ON SYNTHETIC DATA regardless of the viewpoint.
Since the proposed algorithms work with triangulated 3D
For the quantitative evaluation of the proposed methogata, the planar regions of the synthetic 3D scene were
we generated different benchmark sets ustigtemplate triangulated. For the perspective test cases a plain Delaunay
shapes as 3D planar regions and their images taken {gyngulation of only the boundary points of the shapes
virtual cameras. The 3D data is generated by platif®y3 \ere used, thus the mesh contains less but larger triangles,
2D planar ShapeS with different orientation and distance \Hﬂ‘nch are Computationa"y favorable. For the Spherica|
the 3D Euclidean space. Assuming that the longer side gflver, however, a higher number of evenly sized triangles
a template shape ism, a set of 3D template scenes args desirable for a good surface approximation, which was
obtained with1/2/3 planar regions that have a randonproduced by thelistmesh2D function of [55] with the
relative distance oft(1 — 2)m between each other and ajefault parameters.
random relative rotation of-30°. For a quantitative error measure, we used the rotation
Both in the perspective and omnidirectional case, drors along the 3D coordinate axes as well as the overall
2D image of the constructed 3D scenes was taken Witation error as the rotation angle (or angular_distance)
a virtual camera using the internal parameters of a rea— RRT, R being the true rotation matrix ani the
3Mpx 2376 x 1584 camera and a randomly generate@dstimated one; and the difference between the ground truth
absolute camera pose. The random rotation of the pas@nd estimated translation vectors at — t||.
was in the range oft40° around all three axes. The Fyrthermore, as a region-based back-projection error,
random translation was given in the rang€0.5 — 2)m e also measured the percentage of non-overlapping area
in horizontal and vertical directions a.r(d — G)m in the (denoted byé) of the reference 3D Shape back-projected
optical axis direction for the perspective camera, while thghto the 2D image plane and of the 2D observation im-
omnidirectional camera was placed at half the diStahee, age. The a|gorithms were imp|emented in Matlab and all
(1-3)m in the direction of the optical axis, aae(0.5—1)m  experiments were run on a standard six-core PC. A demo
in the X and Y axis directions to obtain approximatelyimplementation is available at http://www.inf.u-szeged.hu/
equal sized image regions for both type of cameras.  ~kato/software/ The average runtime of the algorithm varies
In practice, we cannot expect a perfect segmentation fgdm 1 — 3 seconds in the perspective caselto7 seconds
the regions, therefore the robustness against segmentafipthe omnidirectional case, without explicit code or input
errors was also evaluated on synthetic data (see samplegafa optimization. Quantitative comparisons in terms of the
Fig. 2): we randomly added or removed squares distributgdrious error plots are shown for each test case.
uniformly around the boundary of the shapes, both in the
2D images and on the edges of the 3D planar regions, yield-
ing different levels of segmentation error expressed as the-  Omnidirectional cameras
percentage of the original shape’s area. Using these imagHse results withl, 2 and 3 non-coplanar regions using
we tested the robustness against 2D and 3D segmentat@midirectional camera are presented in Fig. 3. In Fig. 3a
errors separately by performing a systematic series of testfig. 3d, the rotation and translation errors for various
using 1, 2, and 3 planes gradually increasing the segmeest cases are presented. In the minimal casel(iegion),
tation error in each tests case individually. Based on thesgors quickly increase, but using one more region stabilizes
results we determined the noise level for each considerg® solution: not only the error decreases but the number
plane configurations such that the median rotation errof correctly solved cases is also greatly increased. ¥he
around any of the axes remains undér and we show error plot in Fig. 3e also confirms the robustness provided
combined error plots of these particular noise levels. by more regions, while it has to be noted that with more
Theoretically, one single plane is sufficient to solve faregions the back-projection error does not improve in the
the absolute pose, but it is clearly not robust enough. Wy the pose parameter errors would imply, since even
have also found, that the robustness of tqglane minimal a smaller error in the pose yields larger non-overlapping
case is also influenced by the shape used: Symmetricamea because of the longer boundary of the distinct re-
less compact shapes with smaller area and longer contaigns. While using a second non-coplanar region brings
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Fig. 3: Omnidirectional rotation errors along thé, Y, and Z axis (first row) and translatiord, error and runtime plots
(second row)m denotes median errase2Dandse3Dstand for segmentation error on the 2D and 3D regions respectively
(best viewed in color).

20 ‘ ‘ s spherical regions is greatly influencing the performance of
—time, triang, m=4.05 1us the solver. While placing the camera closer to the scene

251 73‘:':‘& Fi'ﬁ*:r']‘g'sri: fgzgg 14 produces larger spherical projections of the regions and the
........ delta. pixelwise, m=1.19 1as pose estimation becomes more robust, we aimed to use real

N}
1S}

world camera parameters instead, thus the camera-to-scene
distance was limited. In our test cases, the median area of
the spherical projections for theand3 region cases were
0.07 and0.13 units respectively on the unit sphere.

$

Runtime (s)
&
Delta error (%)

-
15

b
°e For computing the spherical surface integrals, we com-

% 100 00 w0 a0 s00 w0 700 w0 o0 1000 pared two different approaches for the area approximation
Test cases of the spherical regions. Our earlier approach is using stan-

Fig. 4: Backprojection ( errors and runtime comparisondard numerical integration over the pixels projected onto the

for point and triangle based spherical surface integrahit sphere [46], while the current one in Algorithm 1 is

approximation on d plane dataset (best viewed in color)integrating over spherical triangles instead. Bherror and
runtime of these numerical schemes are compared in Fig. 4,
which clearly shows that the CPU time of Algorithm 1 is an

a rather big improvement, adding subsequent coplanar @Fer of magnitude faster while the precision remains the
non-coplanar regions yield only slight improvement ovet@me as for the earlier scheme in [46]. The slight precision
2 regions. Fig. 8 shows the performance using 3 manggange is caused by the pixel level discretization of the

with 1 and 2 regions per plane, and 5 non-coplanar regior‘iggions' since the triangulated shapes are generated using a

Practically the increase of the number of regions aboveS§Pset of the boundary pixels, thus the triangles practically

does not improve significantly the performance. average out thg rasterized edge_s to a smoother edge, making
While the perfect dataset is solved with median tranghe integrals slightly more precise.
lation errors as low a8mm (see Fig. 3d), the error is in-
creased by an order of magnitude, but still being urdden, The algorithm’s CPU runtime is shown in Fig. 3f, where
for regions corrupted with segmentation error. Accordinghe slightly increased runtime of the 3D segmentation error
to our previous experience [46],dabelow 5% corresponds test cases (noted bse3D) is due to the triangulation of
to a visually good result. Combining this metric with thehe corrupted planar regions, that increases the number of
rotation error limit of 1°, we conclude that our method istriangles around the edges and thus the computational time.
robust against segmentation errors of upatol2% if at Practically our algorithm can solve the pose estimation
least3 non-coplanar regions are used. problem of an omnidirectional camera#n5 seconds using
We have experimentally shown that the size of th2regions.
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Fig. 5: Perspective pose estimation results: rotation and translation efrersor and algorithm runtime plotse2D
stands for observation segmentation erse3D for template side segmentation error amdfor median values (best
viewed in color).
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3.2 Perspective cameras with non-symmetric template shapes (symmetric ones were

o : . considered separately).
Pose estimation results using a perspective camera

ar .
presented in Fig. 5, including the same test cases With ?n each dataselRx was set to a fixed absolute value

2 and3 non-coplanar regions and with segmentation erro%'ﬁ?e::a; tt?c?alwaerign%v:sn%fn bi(:]twis)%@t?e d(?vlvin?ozrld the
as in the omnidirectional case. The rotation and translatiGf P ging

error plots in Fig. 5a - Fig. 5d clearly confirm the advantad(%sts(;i?;nsofj 'tg'tergnfxt?er%%gaggséncms%?hgfi?:gg\r/,e
of having more non-coplanar regions. P )

: . . rameters wer t nd the translation along th
The median translation error (see Fig. 5d) on the perfe’%ffl ameters were set 1, and the translation along the

dataset is as low a&mm, which increases by an order O]ppncal axis was ra_ndomly ger_werated 0 ensure roughly
) . . equally sized projections on the image plane. This is needed
magnitude in the presence 26% segmentation error, but

. . : : to a correct evaluation where results are not influenced b
still being under5cm in case of 3 regions. Thé error y

plot in Fig. 5e also shows the robustness provided by ﬂ%her pose parameters or the changes in the size of the

o . : o rojected regions. Experimental results in Fig. 9 show that
additional regions. Obviously, the back-projection error al o ST N
. . . It the camera’s orientation is initialized withifr60° of the
increases in the presence of segmentation errors. Howe

. . Yftle rotation (i.ea quite rough initialization suffices), the
as Fig. 5a - Fig. 5d shows, the actual pose parameters e '

) . . orithm can robustly find the correct solution even in case
considerably improved and the robustness greatly increas - i
of degenerate viewing angles: at le&8% of the cases are

by using1 or 2 extra non-coplanar regions. Similar to thesolved withe < 1° rotation error folRx >= 5°, but below

omnidirectional case, the increase of the number of regiog@viewing angle, the errors increase significantly. Symme-

above 3 does not improve significantly the performance Prfy of the template shapes doesn't affect significantly the

th?rﬁosel est.ltrEat,lonC(;(EJe ?Iso Fig. 8). five test results, since the projectively distorted shapes usually don’t
e algorithm’s ime on perspective test cases . .. e the symmetry.

'S showtn t'm Fig. 5tf. '{he mcreafec(ijsbrugnmed of tth?hS Degeneracy analysis along tieaxis (in-plane rotations
segmentation error test cases (notecsbgD) is due to the nly) practically translates into the initialization problem

Friangulation of the corrupted planar regions, that great t the in-plane rotation, which can be performed in a
increases the total number of triangles and thus the compyz, application using a rough estimateef. the vertical

tat:_onal_ time. Iz)rlactlcilly our algotr_lthm can sqlve thiel ﬁ%os irection. As in the previous case, we generated our datasets
estimation problém of a perspective camera in aro with a pureR 7 rotation around theZ axis going from30°

seconds u§|ng re_glons. ) ) to 90° in absolute value, while setting all other rotations to
As mentioned in Section 2.2, a perspective camera Cgiynq the translation along the optical axis was randomly

also.be represented by the spherical mOdgl develc’pefdgﬁherated to ensure roughly equally sized projections on
Section 3.1. However, as we have shown in the previojs, image plane. Since the initialization B, — 0 was

section, this model's main limitation is the small size Ofi oy throughout the test cases, these rotations directly

the spherical regions, because a perspective camera hgs,gs|ate into a rotation error in the initialization Bt .

narrower field of view and has to be placed at a Iarg%rxgerimental results show, that if the in-plane rotation is

distance_ from the scene, to produce _the same si.ze of regignS lized within a-60° (+80° for the perspective) of the
oln the Image. The res_ultmg spherlca}I pl"OjeCtIOI’lS Icl)f tqﬁ.le rotation, the proposed method robustly finds a correct
phana_r rehglons |r_1d_meo!|an Iare typically times hsma elr _solution (conditioned to the use of non-symmetrical shapes)
than in the omnidirectional camera's case. Thus solVing s is visible in the second and last histogram plots of
the perspective case using the spherical solver yieldszg g |, contrast to the plane rotation aloigandy” axes,
degraded performance, as shown by therror plot in - 0 in_njane rotation preserves the symmetry of the template

Fig. 6. Comparing the algorithm's runtime plot in Fig. 7shapes in our setup, thus results are greatly affected if

also shows that using the spherical solver for the perspect] metric shapes are used, Bat —40° initialization error

camera greatly increases the computing time due to the Gd easily tolerated even for symmetric shapes.
culation of surface integrals on the sphere, which confirms

the advantage of using the perspective solver proposed in
Section 2.2, instead of a unified spherical solver. 4 EVALUATION ON REAL DATASETS

To thoroughly evaluate our method on real world test cases,
we used several different 3D data recorded by commercial
as well as a custom built 3D laser range finder with
In order to analyze the degeneracy characteristics of tberresponding 2D color images captured by commercial
proposed method, two separate tests were performed: &k and compact digital cameras with prior calibration
along the X axis rotation (rotations along th& axis and radial distortion removal. Whatever the source of the
would have similar effects) and another one for the iIr2D-3D data is, the first step is the segmentation of planar
plane rotation (along th& axis). Both test cases are alsagegion pairs used by our algorithm. There are several
linked to the robustness of the initialization step of thautomated or semi-automated 2D segmentation algorithms
algorithm. For these experiments, a series of new datasietghe literature includinge.qg. clustering, energy-based or
with 100 test cases each were generated using one regiegion growing algorithms [56]. In this work, a simple

0162-8828 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more

3.3 Degeneracy analysis

information.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TPAMI.2019.2931577, IEEE Transactions on Pattern Analysis and Machine Intelligence

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. ?, NO. ??, MAY 6, 2019 11

100 Histogram of ¢ <1 results Histogram of ¢ <1 results 100 Histogram of ¢ <1 results Histogram of ¢ <1 results
0 ) 0 )
8 2 8 8
2 80 @ c & ©
13} o 13} o
— u— — u—
O 60 o O 60 o
5} ) 5} )
=) =} =) =)
8 a0 g8 8 a0 8
c c c c
@ o) @ o)
IS4 < IS4 =
o 2 3] o 2 3]
o o a8 o

0
2 5 10 15 20 25 30 2 5 10 15 20 25 30 30 40 50 60 70 80 90
Plane rotation along X axis (deg) In-plane rotation (deg) Plane rotation along X axis (deg) In-plane rotation (deg)
Histogram of € <1 results Histogram of € <1 results Histogram of e <1 results Histogram of € <1 results
100 100 100 100
0 0 0 0
8 8 8 8
g & @ g & @
o o 13} o
— — — —
O 60 o O 60 o
[} ) [} )
=) =) =) =)
8 w0 g8 8 g
c c c c
@ o) @ o)
o ° S °
o 2 5 o 2 5
a8 o a8 o
0 0
5 10 20 30 30 40 50 60 70 5 10 20 30 30 40 50 60 70
Plane rotation along X axis (deg) In-plane rotation (deg) Plane rotation along X axis (deg) In-plane rotation (deg)

Fig. 9: Histograms of the overall rotations with errors ldsant 1 degrees (from left to right): for the perspective camera
along the X and Z axis and for the omnidirectional camera along teand Z axis. First row shows results on
non-symmetric shapes, second row on the symmetric ones.

region growing was used which proved to be robust enougegmented 3D region is a simple point cloud, the boundary
in urban environment [57]. As for 3D segmentation, af the region is detected using Alpha Shapes [67], which
number of point cloud segmentation methods are availabig,then used for generating a triangular mesh. As in the
e.g.based on difference of normals [58] or robust segmesynthetic case, for the omnidirectional case the method
tation [59]. Like in 2D, region growing based on surfacef [55] generated a uniform mesh, while for the perspective
normals gave stable results for extracting planar 3D regiooase a simple Delaunay triangulation was sufficient. The
in our experiments. Corresponding 2D-3D regions wemdsolute pose obtained from Algorithm 1 or Algorithm 2
simply selected during the seed selection of region growimgas used to fuse the depth and RGB data by projecting the
as a one-click user input. We remark, however, that a fullpnages onto the 3D point cloud.
automatic region correspondence could be implemented byin Fig. 10, we show the fusion of an RGB perspective
detecting and extracting planar objects like windows [6@amera image and a sparse 3D point cloud recorded by a
(seee.g.Fig. 10) which are typically planar surfaces presemustom built 3D laser range finder containing a tilted Sick
in urban scenes. The 2D-3D correspondence search oftddS200 ranger. The absolute pose of the RGB camera was
can be transformed into 2D-2D image based matching, @amputed using Algorithm 2, which was then used to back-
the 3D models are built from 2D images. Application speproject the RGB image onto the 3D point cloud. Despite of
cific solutions such as building facade segmentation [61he relatively large displacement between the camera and
[62] or traffic sign extraction [63] support the matchinghe Lidar, the absolute pose was successfully estimated.
of high level features (such as windows, doors, walls, For the omnidirectional real data experiments we first
tables,...) in 2D and 3D data. Object extraction approachiested the proposed method on 2D fish-eye camera im-
relying on semantic segmentation [64], [65] or semantges and a 3D triangulated building model obtained by
scene completion [66] yield high level 2D-3D feature set®gistering a set of sparse 3D laser scans recorded by a
especially in semantically rich environments, from whichVelodyne HDL-64E with a depth resolution up tom and
the corresponding region pairs can be filtered out. If tren angular resolution up t0.5°. The best results were
obtained by large non-coplanar regions. Such a test case

Fig. 10: Pose estimation example with (left-right) centratgpective camera and custom Lidar data: color 2D image
(original frame) with corresponding regions (purple); 3D data with the segmented regions (green); color information
overlaid on 3D data using the estimated camera pose (best viewed in color).
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Fig. 11: Pose estimation example with (left-right) centrapdric (fish-eye) and commercial (Velodyne) Lidar images:
color 2D image (original frame) with corresponding regions (purple); 3D data with the segmented region (green); color
information overlaid on 3D data using estimated pose parameters (best viewed in color).

Fig. 12: Pose estimation example with omnidirectional carierage and dense Lidar data (left to right): color 2D
image and 3D triangulated surface with corresponding segmented regions marked with purple and green respectively
lastly color information projected onto 3D data using the estimated extrinsic parameters, green dots mark the referenc
positions of the markers while red dots mark the projected positions (best viewed in color).

Fig. 13: Pose estimation example with perspective camerglanse Lidar data (left to right): color 2D image and 3D
triangulated surface with corresponding segmented regions marked with purple and green respectively; color informatior
projected onto 3D data using the estimated pose, green dots mark the reference position of the markers while red do
mark the projected position. First row: wide field of view camera image; second row: normal field of view UAV camera
image. (best viewed in color).
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is shown in Fig. 11, where the fish-eye camera image ___[ UPnP [ RPnP| Riegl | Riegi(fine) | Prop. ]
was reprojected onto the 3D surface using the absolute Peor?n||—|R 059 ”‘{a ';/g‘ 2/2 ;
pose obtained by Algorithm 1. Note that in case of th Pers Dronel 22 5 e A )

omnidirectional cameras, even a relatively small rotation

or translation error in the pose vyields large differences LﬂABLE 1: Comparisons on high resolution Lidar data in
the non-linear distortions on the omnidirectional data. Rrms of the mean forward projection errors in marker
spite of this sensitivity, Algorithm 1_proyed to be robuvs\;}J ints in cm. Note that results of UPnP [7], RPnP[6] and
enough as the segmented regions n F'g‘ 11 oyerlap egl(fine) all rely on markers.Riegl stands for factory

even if the total area of selected regions is relatively sm:&l libration, Prop. for the proposed method, and HR for

compared o the wholq Image size. . . gigh resolution full frame camera perspective test case.
Finally, test cases with a high precision Riegl Lidar an

different cameras are shown in Fig. 12 and Fig. 13. Tr[:e [fransl. | Rx | Ry | Rz [ (%) | ime(s) |
static Riegl scanner has a range 4f0m with a depth Prop. | 0.592 | 2.970] 0.402| 0.393] 1249 1.23
precision of less than.5cm and angular resolution Up tONorm. T 0441 [ 0522 | 4.740 | 0.745 | 74.01| 166
0.003°. In this dataset, the high density precise 3D modetnt. 0397 | 3254 | 4.826 | 1543 | 46.77 | 147
also includes the 3D positions of marker points that were
set up on the building facade. Using these markers, WABLE 2: Comparative results with the proposed method
could evaluate the precision of our pose estimation by therop), normal based MI(Norm)[17] and intensity based Ml
forward projection of each marker from the 2D image intQint)[17] in terms of translation(m), rotation(deg) afidfor
3D space and then calculated the distance from their grouglerences for the ground truth pose 18.49%) errors.
truth position.

For the omnidirectional case shown in Fig. 12, we used a
full frame Canon EOS 5 DSLR camera wittdmm fish-eye 3 correct pose with a mean forward projection error of

lens. Segmenting only two simple, relatively small regiongcm, which is a good result considering the extreme angle
the proposed Algorithm 1 estimated a precise pose Wigh the camera and the camera-to-scene distance 9.
a forward projection mean error measured in the markgy comparison, the state of the art UPnP [7] and RPnP[6]
points of only 7cm. The ground truth marker positionsmethods using the high precision marker points as input
are visualized in green while the projected markers m-gD point Correspondences produm and6cm mean
red. Note that the camera-to-scene distance wasim grror, respectively.
in this case. For comparison, we also show in Table 1The qualitative comparison of all the mentioned methods
the error of the absolute pose obtained by the state jgfpresented in Table 1, where n/a stands for not available,
the art UPnP [7] method, which directly used the groungince factory calibration parameters were only available
truth marker positions as input 2D-3D point matches. Iy one case, and RPnP[6] cannot be used with omnidi-
spite of working with perfect point correspondences, UP"Rctional cameras. Let us emphasize, that all the point-
achieved only2cm better forward projection error in thosegorrespondence-based methods (except the Riegl factory
marker pOintS than our method which used inherentlyarameters) re|y on 2D-3D Specia' markerS, that were
imperfect segmented region pairs. precisely measured in 3D and 2D. Thus to achieve these
For the perspective case in Fig. 13, we used a fuilbsults with UPnP and RPnP, a careful setup of special
frame Nikon DSLR camera with a wide field of viewmarkers in required before data acquisition, thus both 2D
20mm lens, one of the typical RGB cameras that comegd 3D data capture must be performed at the same time. In
calibrated with these Riegl scanners. The mean forwaggntrast, the proposed method does not require any special
projection error of the proposed Algorithm 2 measured iarget or setup, hence images recorded at different time

the marker points wascm. The advantage of using multiplecan be fused as long as at least one planar region pair is
regions from differently oriented surfaces is clearly visiblgyajlable.

here. In Table 1, we compare our results to the factory
calibration of the setup. It was interesting to find, that at ) )
18m distance from the wall, the factory calibration paranft-1 Algorithm evaluation on the KITTI dataset
eters produc€0cm mean forward projection error, due taComparison with other camera pose estimation methods
the interchangeable camera mounting system. Applyingfram the main literature could be performed only in a
marker based refinement to the calibration in the scanndirsited manner due to the fundamental differences of the
own software, this can be reducedit@cm, which is only proposed algorithm with respect to existing ones presented
slightly better than our marker-less result achieved purely Section 1. Methods using artificial markers like the ones
using 3 segmented region pairs. described in [35], [31] were tested using the codes provided
The proposed Algorithm 2 was also tested with imagdsy the authors. The detailed comparisons are presented in
taken by a flying DJI Phantom 3 drone. As can be seen d@uir previous work [47]. Due to the limitations of [35], [31]
Fig. 13, the viewing angle of such a camera is very differenn real datasets, we also tested the proposed method on the
from that of a ground level imaging device. Using twdITTI dataset [68] with available ground truth information.
corresponding segmented regions was sufficient to estimateFig. 14 the extrinsic calibration of a color camera and
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method makes use of minimal information (plain depth
data from 3D and radiometric information from 2D) and
is general enough to be used both for perspective and
omnidirectional central cameras. The algorithm has been
tested on a large scale synthetic dataset and on various
real life date acquired by different types of sensors. The
method could be further extended to handle internal camera
parameter estimation as well. The state of the art perfor-
mance of the proposed method was confirmed both on a
large synthetic data set as well as on various real data
experiments using different depth sensors, perspective and
omnidirectional cameras.
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