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Absolute Pose Estimation of Central Cameras
Using Planar Regions

Robert Frohlich, Levente Tamas Member, IEEE , and Zoltan Kato Senior Member, IEEE

Abstract—A novel method is proposed for the absolute pose estimation of a central 2D camera with respect to 3D depth data
without the use of any dedicated calibration pattern or explicit point correspondences. The proposed method has no specific
assumption about the data source: plain depth information is expected from the 3D sensing device and a central camera is used
to capture the 2D images. Both the perspective and omnidirectional central cameras are handled within a single generic camera
model. Pose estimation is formulated as a 2D-3D nonlinear shape registration task which is solved without point correspondences
or complex similarity metrics. It relies on a set of corresponding planar regions, and the pose parameters are obtained by solving
an overdetermined system of nonlinear equations. The efficiency and robustness of the proposed method were confirmed on
both large scale synthetic data and on real data acquired from various types of sensors.

Index Terms—Pose estimation, calibration, data fusion, registration, Lidar, omnidirectional camera

✦

1 INTRODUCTION

A BSOLUTE pose estimation consists of determining the
position and orientation of a camera with respect

to a 3D world coordinate frame. It is a fundamental
building block in various computer vision applications,
such as robotics (e.g.visual odometry [1], localization
and navigation [2]), augmented reality [3], geodesy, or
cultural heritage [4]. The problem has been extensively
studied yielding various formulations and solutions. Most
of the approaches focus on a single perspective camera pose
estimation usingn 2D–3D point correspondences, known
as thePerspective n Point(PnP) problem [5], [6], [7]. It
has been widely studied for largen as well as for the
minimal case ofn = 3 (see [7] for a recent overview).
Using line correspondences yields thePerspective n Line
(PnL) problem [8], [9] (see [8] for a detailed overview).
Several applications dealing with multimodal sensors make
use of fused 2D radiometric and 3D depth information
from uncalibrated cameras. The availability of 3D data has
also became widespread. Classical image-based techniques,
such as Structure from Motion (SfM) [10] provide 3D
measurements of a scene, while modern range sensors
(e.g. Lidar, ToF) record 3D structure directly. Therefore
methods to estimate absolute pose of a camera based on 2D
measurements of the 3D scene received more attention [7],
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[11], [12]. Many of these methods apply to general central
cameras (both perspective and omnidirectional) that are
often represented by a unit sphere [13], [14], [15], [16].

Pose estimation (also known asexternal calibration) of
2D color and 3D depth cameras was performed especially
for environment mapping applications [17]. While internal
calibration can be solved in a controlled environment,e.g.
using special calibration patterns, pose estimation must rely
on the actual images taken in a real environment. Popular
methods rely on point correspondences such as [18], or
using fiducial markers [19], which may be cumbersome
to use in real life situations. This is especially true in a
multimodal setting, where omnidirectional images need to
be combined with other non-conventional sensors like Lidar
scans providing range only data. The Lidar-omnidirectional
camera calibration problem was analyzed from different
perspectives. In [20], the calibration is performed in natural
scenes, however point correspondences between the 2D-3D
images are selected in a semi-supervised manner. In [21],
calibration is tackled as an observability problem using
a (planar) fiducial marker as calibration pattern. In [22]
a fully automatic method is proposed based on mutual
information (MI) between the intensity information from
the depth sensor and the omnidirectional camera, while
in [23], [24] a deep learning approach for calibration is
presented. Another global optimization method uses the
gradient orientation measure as described in [17]. However,
these methods require range data with recorded intensity
values, which are not always available. In real life applica-
tions, it is also often desirable to have a flexible one step
calibration for systems which do not necessarily contain
sensors fixed to a common platform.

In this work we propose a straightforward absolute
pose estimation method which overcomes the majority of
these limitations,i.e. by not using any artificial marker
or intensity information from the depth data. Instead, our
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method makes use of a segmented planar region from the
2D and 3D visual data and handles the absolute pose
estimation problem as a nonlinear registration task. More
specifically, inspired by the 2D registration framework
presented in [25], for the central camera model we construct
an overdetermined set of equations containing the unknown
camera pose. By solving this system of equation we obtain
the required set of parameters representing the camera pose.

1.1 Related work
Due to the large number of applications using central
camera systems, also the range of the calibration methods is
rather wide. Beside solving the generic 2D-3D registration
problem, several derived applications exists including med-
ical [26], robotics [17] and cultural heritage ones [4]. For
the pose estimation in known environment a good example
can be found in [27], while in [28] an application is reported
using spherical image fusion with spatial data. A more
generic classification of the types of algorithms is presented
in [29]. Beside the direct measured relative pose methods
such as [30], a number of generic methods are summarized
below.

Severalfeature based methodsbased on specific markers
are used for extrinsic camera calibration [31], [32]. In the
early work of [33], alignment based on a minimal number
of point correspondences is proposed, while in [34], a large
number of 2D-3D correspondences are used with possibly
redundant or mismatched pairs. [35] was among the first
addressing the extrinsic calibration of 3D Lidar and low
resolution perspective color camera, which generalized the
algorithm proposed in [36]. This method is based on manual
point feature selection from both domains and assumes a
valid camera intrinsic calibration. A similar manual point
feature correspondence based approach is proposed in [20].
Recently, increasing interest is manifested in various cali-
bration setups ranging from high-resolution spatial data [37]
to low-resolution commercial cameras [38], as well as
online calibration of depth and color sensors on a moving
platform [22], [39].

A popular alternative to feature based matching is the
color-intensitymutual information (MI)alignment between
the 2D color image and the 3D data with intensity in-
formation such [40], [17]. Extensions to the simultaneous
intrinsic-extrinsic calibration are presented in [21], which
makes use of Lidar intensity information to find correspon-
dences between the 2D-3D data. Other works are based on
the fusion of IMU or GPS information for calibration [41].

A good overview ofstatistical methodsbased calibration
methods can be found in [26]. Mutual information and
particle filters are used in [17], which performs pose
estimation using the whole image space of a single 2D-3D
observation. The method can use both intensity and normal
distribution information for the 3D data. A further extension
of this approach based on gradient orientation measure is
described in [42]. A gradient information extraction and
global matching between the 2D color and 3D reflectivity
information is presented in [22]. This has two major differ-
ences compared to our work. Our approach is not limited

to Lidar systems with reflectivity information rather it is
based only on depth information. On the optimization side,
the proposed method is not restricted to convex problems
and allows camera calibration using only a single Lidar-
camera image pair.

An early and efficient silhouette based registration
method is presented in [43], which solves a model-based
vision problem using parametric description of the model.
This method can be used with an arbitrary number of
parameters describing the object model and is based on
global optimization with theLevenberg-Marquardtmethod.
A whole object silhouette based registration is proposed
in [40], where the authors describe the 2D-3D registra-
tion pipeline including segmentation, pixel level similarity
measure and global optimization. Although the proposed
method can be used in an automatic manner, this is
limited only to scenes with highly separable foreground-
background parts. By an automatic segmentation of the
relevant forms in panoramic images, which are registered
against cadastral 3D models the segmented regions are
aligned using particle swarm optimization in [44]. An ex-
tension of silhouette based registration is proposed in [45],
where a hybrid silhouette and key-point driven approach is
used for the registration of the 2D and 3D data. The ad-
vantage of this method is the possibility of multiple image
registration as well as precise output of the algorithm.

1.2 Contributions

Instead of establishing 2D-3D point matches, relying on
artificial markers or recorded intensity values, we propose
a pose estimation algorithm which works on corresponding
segmented 2D-3D regions. Since segmentation is anyway
required in many real-life image analysis tasks, such regions
may be available or straightforward to detect. Inspired
by [25], we reformulate pose estimation as a shape align-
ment problem. The solution is obtained by constructing a
system of non-linear equations, which is solved in the least
squares sense by a standardLevenberg-Marquardtalgo-
rithm. The result represents the estimates for the unknown
pose parameters. We formulate the problem as the pose
estimation of an universal central camera, which includes
omnidirectional as well as perspective cameras. Our method
was quantitatively evaluated on a large synthetic dataset and
proved to be robust and efficient on real data too. For the
real tests we used both publicly available dataset, as well
as our own captured data.

2 REGION-BASED POSE ESTIMATION

Pose estimation consists in computing the position and
orientation of a camera with respect to a 3D world co-
ordinate systemW. Herein, we are interested in central
cameras, where the projection rays intersect in a single
point called projection center or single effective viewpoint.
Typical examples include omnidirectional cameras as well
as traditional perspective cameras. A broadly used unified
model for central cameras represents a camera as a projec-
tion onto the surface of a unit sphereS (see Fig. 1) [13],
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[14], [15], [16], the projection center being the center of
the sphere. The camera coordinate systemC is in S, the
origin is the effective viewpoint (which is also the center of
the sphere) and theZ axis is the optical axis of the camera
which intersects the image plane in theprincipal point. The
absolute pose of our central camera is defined as the rigid
transformation(R, t) : W → C acting between the world
coordinate frameW and the camera coordinate frameC,
while the internal projection function of the camera defines
how 3D points are mapped fromC onto the image plane
I.

Let us first see the relationship between a pointx =
[x1, x2]

⊤ ∈ R
2 in the imageI and its representation

xS = [xS,1, xS,2, xS,3]
⊤ ∈ R

3 on the unit sphereS
(see Fig. 1). Note that only the half sphere on the image
plane side is actually used, as the other half is not visible
from image points. There are several well known geometric
models for the internal projection [13], [14], [15], [16].
Following [16], the nonlinear (but symmetric) distortion of
central omnidirectional cameras is represented by a surface
g between the image plane and the unit sphereS, which
is rotationally symmetric aroundZ. Herein, as suggested
by [16], we will use a fourth order polynomial

g(‖x‖) = a0 + a2‖x‖
2 + a3‖x‖

3 + a4‖x‖
4, (1)

which has4 parameters(a0, a2, a3, a4) representing the in-
ternal parameters of the camera. Note that for a perspective
camerag is a plane – this special case will be discussed
later in Section 2.2. The bijective mappingΦ : I → S is
composed of

1) lifting the image pointx ∈ I onto theg surface by
an orthographic projection

xg =

[
x

a0 + a2‖x‖
2 + a3‖x‖

3 + a4‖x‖
4

]
(2)

2) then centrally projecting the lifted pointxg onto the
surface of the unit sphereS:

xS = Φ(x) =
xg

‖xg‖
(3)

Thus the camera projection is fully described by means of
unit vectorsxS in the half space ofR3.

The projection of a 3D world point X =
[X1, X2, X3]

⊤ ∈ R
3 in the generalized spherical

camera is basically a central projection ontoS taking into
account the extrinsic pose parameters (R, t). Thus for a
world point X and its imagex ∈ I, the following holds
on the surface ofS:

Φ(x) = xS = Ψ(X) =
RX+ t

‖RX+ t‖
(4)

A classical solution of the absolute pose problem is to
establish a set of 2D-3D point matches usinge.g.a special
calibration target [38], [21], or feature-based correspon-
dences and then solve for(R, t) via the minimization
of some error function based on (4). However, in many
practical applications, it is not possible to use a calibration
target and most 3D data (e.g.point clouds recorded by a

Fig. 1: Spherical camera model

Lidar device) will only record depth information, which
challenges feature-based point matching algorithms.

Therefore the question naturally arises: what can be done
when neither a special target nor point correspondences
are available? Herein, we present a solution for such
challenging situations. In particular, we will show that by
identifying a single planar region both in 3D and the camera
image, the absolute pose can be calculated. Of course,
this is just the necessary minimal configuration. More such
regions are available, a more stable pose is obtained. Our
solution is inspired by the 2D shape registration approach
of Domokos et al. [25], where the alignment of non-
linear shape deformations are recovered via the solution of a
special system of equations. Here, however, pose estimation
yields a 2D-3D registration problem in case of a perspective
camera and a restricted 3D-3D registration problem on the
spherical surface for omnidirectional cameras. These cases
thus require a different technique to construct the system
of equations.

2.1 Absolute pose of spherical cameras

For spherical cameras, we have to work on the surface of
the unit sphere as it provides a representation independent
of the camera internal parameters. Furthermore, since cor-
respondences are not available, (4) cannot be used directly.
However, individual point matches can be integrated out
yielding the following integral equation [46]:

∫∫

DS

xS dDS =

∫∫

FS

zS dFS , (5)

whereDS denotes the surface patch onS corresponding to
the regionD visible in the camera imageI, while FS is
the surface patch of the corresponding 3D planar regionF
projected ontoS by Ψ in (4).

To get an explicit formula for the above surface inte-
grals, the spherical patchesDS and FS can be naturally
parametrized viaΦ andΨ over the planar regionsD and
F . Without loss of generality, we can assume that the third
coordinate ofX ∈ F is 0, henceD ⊂ R

2, F ⊂ R
2;

and ∀xS ∈ DS : xS = Φ(x),x ∈ D as well as
∀zS ∈ FS : zS = Ψ(X),X ∈ F yielding the following
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form of (5) [46]:

∫∫

D

Φ(x)

∥∥∥∥
∂Φ

∂x1
×

∂Φ

∂x2

∥∥∥∥ dx1 dx2 =

∫∫

F

Ψ(X)

∥∥∥∥
∂Ψ

∂X1
×

∂Ψ

∂X2

∥∥∥∥ dX1 dX2 (6)

where the magnitude of the cross product of the partial
derivatives is known as the surface element. The above
equation corresponds to a system of2 equations only,
because a point on the surfaceS has2 independent com-
ponents. However, we have6 pose parameters (3rotation
angles and3 translation components). To construct more
equations, we adopt the general mechanism from [25] and
apply a functionω : R3 → R to both sides of the equation
(4), yielding

∫∫

D

ω(Φ(x))

∥∥∥∥
∂Φ

∂x1
×

∂Φ

∂x2

∥∥∥∥ dx1 dx2 =

∫∫

F

ω(Ψ(X))

∥∥∥∥
∂Ψ

∂X1
×

∂Ψ

∂X2

∥∥∥∥ dX1 dX2 (7)

Adopting a set of nonlinear functions{ωi}
ℓ
i=1, eachωi gen-

erates a new equation yielding a system ofℓ independent
equations. Hence we are able to generate sufficiently many
equations. The pose parameters(R, t) are then simply ob-
tained as the solution of the nonlinear system of equations
(7). In practice, an overdetermined system is constructed,
which is then solved by minimizing the algebraic error in
the least squares sensevia a standardLevenberg-Marquardt
algorithm. Although arbitraryωi functions could be used,
power functions are computationally favorable [25], [47] as
these can be computed in a recursive manner:

ωi(xS) = xli
1 x

mi

2 xni

3 ,

with 0 ≤ li,mi, ni ≤ 2 and li +mi + ni ≤ 3 (8)

Note that the left hand side of (7) is constant, hence it has
to be computed only once, but the right hand side has to
be recomputed at each iteration of the least squares solver
as it involves the unknown pose parameters, which is com-
putationally rather expensive for larger regions. Therefore,
in contrast to [46] where the integrals on the 3D side in
(7) were calculated over all points of the 3D region, here
we consider a triangular mesh representationF△ of the 3D
planar regionF . Due to this representation, we only have
to applyΨ to the vertices{Vi}

V
i=1 of the triangles inF△,

yielding a triangular representation of the spherical region
F△

S in terms ofspherical triangles. The vertices{VS,i}
V
i=1

of F△
S are obtained as

∀i = 1, . . . , V : VS,i = Ψ(Vi) (9)

Due to this spherical mesh representation ofFS , we can
rewrite the integral on the right hand side of (7) adopting

ωi from (8), yielding the following system of17 equations:
∫∫

D

Φli
1 (x)Φ

mi

2 (x)Φni

3 (x)

∥∥∥∥
∂Φ

∂x1
×

∂Φ

∂x2

∥∥∥∥ dx1 dx2 ≈

∑

∀△∈F△

S

∫∫

△

zliS,1z
mi

S,2z
ni

S,3 dzS , (10)

where Φ = [Φ1,Φ2,Φ3]
⊤ denote the coordinate func-

tions of Φ : I → S. Thus only the triangle
vertices need to be projected ontoS, and the in-
tegral over these spherical triangles is calculated us-
ing the method presented in [48]. In our experiments,
we used the Matlab implementation of John Burkardt
available from https://people.sc.fsu.edu/∼jburkardt/m src/
sphere triangle quad/spheretriangle quad.html.

The pose parameters are obtained by solving the system
of equations (10) in the least squares sense. For an optimal
estimate, it is important to ensure numerical normalization
and a proper initialization. In contrast to [25], where this
was achieved by normalizing the input pixel coordinates
into the unit square in the origin, in the above equation
all point coordinates are on the unit sphere, hence data
normalization is implicit. To guarantee an optimal least
squares solution, initialization of the pose parameters is
also important. In our case, a good initialization ensures
that the surface patchesDS andFS , as shown in Fig. 1,
overlap as much as possible. How to achieve this?

2.1.1 Initialization

The 3D data is given in the world coordinate frameW,
which may have an arbitrary orientation, that we have to
roughly align with our camera. Thus the first step is to
ensure that the camera is looking at the correct face of the
surface in a correct orientation. This is achieved by applying
a rotationR0 that aligns the normal of the 3D regionF△

with the Z axis, i.e. F△ will be facing the camera, since
according to the camera model−Z is the optical axis. Then
we also apply a translationt0 that brings the centroid of
F△ into [0, 0,−1]⊤, which puts the region into theZ = −1
plane. This is necessary to ensure that the plane doesn’t
intersectS while we initialize the pose parameters in the
next step.

If there is a larger rotation around theZ axis, then
the projected spherical patchF△

S might be oriented very
differently w.r.t. DS . Using non-symmetric regions, this
would not cause an issue for the iterative optimization to
solve, but in other cases an additional apriori input might
be needed, such as an approximate value for the vertical
direction in the 3D coordinate system, which could be
provided by different sensors, or might be specified for
a dataset captured with a particular setup. Based on this
extra information, we apply a rotationRz around theZ
axis that will roughly align the vertical direction to the
camera’sX axis, ensuring a correct vertical orientation of
the projection.

To guarantee an optimal least squares solution, initializa-
tion of the pose parameters is also important, which ensures
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that the surface patchesDS andF△
S overlap as much as

possible. This is achieved by computing the centroids ofDS

andF△
S , and initializingR as the rotation between them.

Translation of the planar regionF△ along the direction
of its normal vector will cause a scaling ofF△

S on the
spherical surface. Hence an initialt is determined by
translatingF△ along the axis going through the centroid
of F△

S such that the area ofF△
S becomes approximately

equal to that ofDS .

Algorithm 1 Absolute pose estimation algorithm for spher-
ical cameras.

Input: The coefficients ofg, 3D (triangulated) regionF△

and corresponding 2D regionD as a binary image.
Output: The camera pose.

1: Produce the spherical patchDS from D using (3).
2: ProduceF△

S by prealigningF△ as described in Sec-
tion 2.1.1 using(R0, t0) and thenRz, then back-
projecting it onto the unit sphereS using (9).

3: Initialize R from the centroids ofDS andF△
S as in

Section 2.1.1.
4: Initialize t by translatingF△ until the area ofF△

S and
DS are approximately equal (see Section 2.1.1).

5: Construct the system of equations (10) and solve it for
(R, t) using theLevenberg-Marquardtalgorithm.

6: The absolute camera pose is then given as the compo-
sition of the transformations(R0, t0), Rz, and(R, t).

The steps of the proposed algorithm for central spher-
ical cameras using coplanar regions is summarized in
Algorithm 1. For two or more non-coplanar regions, the
algorithm starts similarly, by first using only one region pair
for an initial pose estimation, as described in Algorithm 1.
Then, starting from the obtained pose as an initial value, the
system of equations is solved for all the available regions,
which provides an overall optimal pose.

2.2 Absolute pose of perspective cameras

A classical perspective camera sees the homogeneous world
point X̃ = [X1, X2, X3, 1]

⊤ as a homogeneous pointx̃ =
[x1, x2, 1]

⊤ in the image plain obtained by a perspective
projectionP:

x̃ ∼= PX̃ = K[R|t]X̃, (11)

where ’∼=’ denotes the equivalence of homogeneous coor-
dinates,i.e. equality up to a non-zero scale factor; andP
is the3× 4 camera matrix, which can be factored into the
well knownP = K[R|t] form, whereK is the3×3 upper
triangularcalibrationmatrix containing the camera intrinsic
parameters, while[R|t] is the absolute pose aligning the
world coordinate frameW with the camera frameC.

As a central camera, the perspective camera can be
represented by the spherical camera model presented in
the previous section: Since we assume a calibrated camera,
we can multiply both sides of (11) byK−1, yielding

the normalized inhomogeneous image coordinatesx =
[x1, x2]

⊤ ∈ R
2:

x← K
−1

x̃ ∼= K
−1

PX̃ = [R|t]X̃, (12)

Denoting the normalized image byI, the surfaceg in (1)
will be g ≡ I , hence the bijective mappingΦ : I → S for
a perspective camera becomes simply the unit vector ofx:

xS = Φ(x) =
x

‖x‖
(13)

Starting from the above spherical representation of our
perspective camera, the whole method presented in the
previous section applies without any change. However, it is
computationally more favorable to work on the normalized
image planeI, because this way we can work with plain
double integrals onI instead of surface integrals onS.
Hence applying a nonlinear functionω : R2 → R to both
sides of (12) and integrating out individual point matches,
we get [47]

∫

D

ω(x) dx =

∫

[R|t]F

ω(z) dz. (14)

whereD corresponds to the region visible in the normalized
camera image I and [R|t]F is the image of the corre-
sponding3D planar region projected by the normalized
camera matrix[R|t]. Adopting a set of nonlinear functions
{ωi}

ℓ
i=1, eachωi generates a new equation yielding a sys-

tem of ℓ independent equations. Choosing power functions
for ωi [47]

ωi(x) = xni

1 xmi

2 , 0 ≤ ni,mi ≤ 3 and (ni +mi) ≤ 4,
(15)

and using a triangular mesh representationF△ of the 3D
regionF , we can adopt an efficient computational scheme.
First, let us note that this particular choice ofωi yields 13
equations, each containing the 2D geometric moments of
the projected 3D region[R|t]F . Therefore, we can rewrite
the integral over[R|t]F△ adoptingωi from (8) as [47]

∫

D

xni

1 xmi

2 dx =
∫

[R|t]F

zni

1 zmi

2 dz ≈
∑

∀△∈[R|t]F△

∫

△

zni

1 zmi

2 dz. (16)

The latter approximation is due to the approximation ofF
by the discrete meshF△. The integrals over the triangles
are various geometric moments which can be computed
using efficient recursive formulas discussed hereafter.

Since many applications deal with 3D objects represented
by a triangulated mesh surface, the efficient calculation of
geometric moments is well researched for 3D [49], [50]. In
the 2D case, however, most of the works concentrate on the
geometric moments of simple digital planar shapes [51],
[52], [53], and less work is addressing the case of trian-
gulated 2D regions, with the possibility to calculate the
geometric moments over the triangles of the region.

Since in our method we have a specific case, where a
3D triangulated regionF△ is projected onto the 2D image
plane I, where we need to calculate integrals over the
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regionsD ⊂ I and [R|t]F△ ⊂ I, we can easily adopt
the efficient recursive formulas proposed for geometric
moments calculation over triangles in 3D and apply them to
our 2D regions: Since our normalized image planeI is at
Z = 1, theZ coordinate of the vertex points is a constant
1, hence the generic 3D formula for the(i, j, k) geometric
moment of a surfaceS [49] becomes a plain 2D moment
in our specific planar case:

Mijk =

∫

S

xiyjzk dS =

∫

S

xiyj dx dy (17)

as the last term ofMijk will always be1 regardless of the
value ofk. i andj are integers such thati+ j = N is the
order of the moment.

Let us now see how to compute the integral on the
right hand side of (16). The projected triangulated planar
surface[R|t]F△ consists of trianglesT defined by vertices
(a,b, c) that are oriented counterclockwise. The integral
over this image region is simply the sum of the integrals
over the triangles. Analytically, the integral over a triangle
can be written as [50], [54]

∫

T

zi1z
j
2 dz =

2area(T)i!j!
(i+ j + 2)!

Sij(T ), (18)

where

Sij(T ) =
∑

(i1+i2+i3=i)

∑

(j1+j2+j3=j)

( (i1 + j1)!

i1!j1!
ai11 aj12

(i2 + j2)!

i2!j2!
bi21 bj22

(i3 + j3)!

i3!j3!
ci31 cj32

)
. (19)

Substituting (18) into (16), we get

∑

∀T∈[R|t]F△

∫

T

zi1z
j
2 dz = 2

i!j!

(i+ j + 2)!

∑

T

area(T)Sij(T )

(20)
where the signed area of triangleT is calculated as the
magnitude of the cross product of two edges:

area(T ) =
1

2
‖(b− a)× (c− a)‖ (21)

As shown by [49] and then by [50], the computational
complexity of the termSij(T ) can be greatly reduced from
orderO(N9) to orderO(N3). Based on the final generating
equations proposed by [50], we can write our generating
equations for 2D domain as

Sij(T ) =





0 if i < 0 or j < 0

1 if i = j = 0

a1Si−1,j(T ) + a2Si,j−1(T )

+Dij(b, c) otherwise

(22)

with

Dij(b, c) =





0 if i < 0 or j < 0

1 if i = j = 0

b1Di−1,j(b, c) + b2Di,j−1(b, c)

+ Cij(c) otherwise

(23)

and

Cij(c) =





0 if i < 0 or j < 0

1 if i = j = 0

c1Ci−1,j(c) + c2Ci,j−1(c) otherwise
(24)

Using only the equations (22)–(24), we can thus perform
the exact computation of the contribution of every triangle
to all the geometric moments of the image region in a very
efficient way. The different quantitiesCij(c), Dij(b, c),
andSij(T ) are computed at orderN from their values at
orderN − 1 using the recursive formulas given above and
they are initialized to1 at order0. The resultingSij(T ) are
then multiplied by the area of the triangleT and summed
up according to (20).

2.2.1 Initialization

As in Section 2.1.1, an initial rotationR0 is applied to
ensure that the camera is looking at the correct face of
the surface followed by an optional rotationRz around
the optical axis of the camera, that brings the up looking
directional vector parallel to the camera’s vertical axis, then
apply a translationtc to center the region in the origin. The
initialization of the parametersR andt is done in a similar
way as in Section 2.1.1: first the translationt along theZ
axis is initialized such that the image regionD and the
projected 3D region are of the same size, thenR is the
rotation that brings the centroid of the projected 3D region
close to the centroid of the corresponding image regionD.

Algorithm 2 Absolute pose estimation algorithm for per-
spective cameras

Input: The calibration matrixK, 3D triangulated region
F△ and corresponding 2D regionD as a binary image.

Output: The camera pose.
1: Produce the normalized imageI usingK−1 as in (12)
2: Prealign the 3D regionF△ by rotating it first withR0

then withRz as described in Section 2.2.1, then center
the region in the origin usingtc.

3: Initialize t = [0, 0, tz]
⊤ such that the area of the

regions are roughly the same (see Section 2.2.1).
4: Initialize R to ensure that the regions overlap inI as

in Section 2.2.1.
5: Construct the system of equations (16) and solve it for

(R, t) using theLevenberg-Marquardtalgorithm.
6: The absolute camera pose is then given as the compo-

sition of the transformationsR0, Rz, tc, and(R, t).

The steps of the numerical implementation of the pro-
posed method are presented in Algorithm 2. Note that for
non-coplanar regions, as in Algorithm 1, we first use a
single arbitrarily selected region for an initial pose esti-
mation, then in a second step we solve the system using
all the available regions, which provides and optimal pose
estimate.
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se: 0% 12% 20%

Fig. 2: Examples of various amount of segmentation errors
(se). First an omnidirectional image withoutse, then the
same test withse= 12%, lastly the same template from a
perspective test case withse= 20%.

3 EVALUATION ON SYNTHETIC DATA

For the quantitative evaluation of the proposed method,
we generated different benchmark sets using25 template
shapes as 3D planar regions and their images taken by
virtual cameras. The 3D data is generated by placing1/2/3
2D planar shapes with different orientation and distance in
the 3D Euclidean space. Assuming that the longer side of
a template shape is1m, a set of 3D template scenes are
obtained with1/2/3 planar regions that have a random
relative distance of±(1 − 2)m between each other and a
random relative rotation of±30◦.

Both in the perspective and omnidirectional case, a
2D image of the constructed 3D scenes was taken with
a virtual camera using the internal parameters of a real
3Mpx 2376 × 1584 camera and a randomly generated
absolute camera pose. The random rotation of the pose
was in the range of±40◦ around all three axes. The
random translation was given in the range±(0.5 − 2)m
in horizontal and vertical directions and(2 − 6)m in the
optical axis direction for the perspective camera, while the
omnidirectional camera was placed at half the distance,i.e.
(1−3)m in the direction of the optical axis, and±(0.5−1)m
in the X and Y axis directions to obtain approximately
equal sized image regions for both type of cameras.

In practice, we cannot expect a perfect segmentation of
the regions, therefore the robustness against segmentation
errors was also evaluated on synthetic data (see samples in
Fig. 2): we randomly added or removed squares distributed
uniformly around the boundary of the shapes, both in the
2D images and on the edges of the 3D planar regions, yield-
ing different levels of segmentation error expressed as the
percentage of the original shape’s area. Using these images,
we tested the robustness against 2D and 3D segmentation
errors separately by performing a systematic series of tests
using 1, 2, and 3 planes gradually increasing the segmen-
tation error in each tests case individually. Based on these
results we determined the noise level for each considered
plane configurations such that the median rotation error
around any of the axes remains under1◦ and we show
combined error plots of these particular noise levels.

Theoretically, one single plane is sufficient to solve for
the absolute pose, but it is clearly not robust enough. We
have also found, that the robustness of the1-plane minimal
case is also influenced by the shape used: Symmetric or
less compact shapes with smaller area and longer contour,

and shapes with elongated thin parts often yield suboptimal
results. However, such a solution can be used as an initial-
ization for the solver with more regions. Adding one extra
non-coplanar region increases the robustness by more than
4 times! This robustness enhancement quickly saturates
with the number of regions, thus in our experiments we
limited the number of non-coplanar patches to 3. We also
remark, that the planarity of the regions is not strictly
required. In fact, the equations remain true as long as
the 3D surface has no self-occlusion from the camera
viewpoint (see [4] for a cultural heritage application). Of
course, planarity guarantees that the equations remain true
regardless of the viewpoint.

Since the proposed algorithms work with triangulated 3D
data, the planar regions of the synthetic 3D scene were
triangulated. For the perspective test cases a plain Delaunay
triangulation of only the boundary points of the shapes
were used, thus the mesh contains less but larger triangles,
which are computationally favorable. For the spherical
solver, however, a higher number of evenly sized triangles
is desirable for a good surface approximation, which was
produced by thedistmesh2D function of [55] with the
default parameters.

For a quantitative error measure, we used the rotation
errors along the 3D coordinate axes as well as the overall
rotation error as the rotation angle (or angular distance)
ǫ = R̂R

⊤, R being the true rotation matrix and̂R the
estimated one; and the difference between the ground truth
t and estimated̂t translation vectors as‖t− t̂‖.

Furthermore, as a region-based back-projection error,
we also measured the percentage of non-overlapping area
(denoted byδ) of the reference 3D shape back-projected
onto the 2D image plane and of the 2D observation im-
age. The algorithms were implemented in Matlab and all
experiments were run on a standard six-core PC. A demo
implementation is available at http://www.inf.u-szeged.hu/
∼kato/software/ The average runtime of the algorithm varies
from 1−3 seconds in the perspective case to4−7 seconds
in the omnidirectional case, without explicit code or input
data optimization. Quantitative comparisons in terms of the
various error plots are shown for each test case.

3.1 Omnidirectional cameras

The results with1, 2 and 3 non-coplanar regions using
omnidirectional camera are presented in Fig. 3. In Fig. 3a
- Fig. 3d, the rotation and translation errors for various
test cases are presented. In the minimal case (i.e.1 region),
errors quickly increase, but using one more region stabilizes
the solution: not only the error decreases but the number
of correctly solved cases is also greatly increased. Theδ
error plot in Fig. 3e also confirms the robustness provided
by more regions, while it has to be noted that with more
regions the back-projection error does not improve in the
way the pose parameter errors would imply, since even
a smaller error in the pose yields larger non-overlapping
area because of the longer boundary of the distinct re-
gions. While using a second non-coplanar region brings
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Fig. 3: Omnidirectional rotation errors along theX, Y , andZ axis (first row) and translation,δ error and runtime plots
(second row).m denotes median error,se2Dandse3Dstand for segmentation error on the 2D and 3D regions respectively
(best viewed in color).
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Fig. 4: Backprojection (δ) errors and runtime comparison
for point and triangle based spherical surface integral
approximation on a1 plane dataset (best viewed in color).

a rather big improvement, adding subsequent coplanar or
non-coplanar regions yield only slight improvement over
2 regions. Fig. 8 shows the performance using 3 planes
with 1 and 2 regions per plane, and 5 non-coplanar regions.
Practically the increase of the number of regions above 3
does not improve significantly the performance.

While the perfect dataset is solved with median trans-
lation errors as low as2mm (see Fig. 3d), the error is in-
creased by an order of magnitude, but still being under3cm,
for regions corrupted with segmentation error. According
to our previous experience [46], aδ below5% corresponds
to a visually good result. Combining this metric with the
rotation error limit of1◦, we conclude that our method is
robust against segmentation errors of up to≈ 12% if at
least3 non-coplanar regions are used.

We have experimentally shown that the size of the

spherical regions is greatly influencing the performance of
the solver. While placing the camera closer to the scene
produces larger spherical projections of the regions and the
pose estimation becomes more robust, we aimed to use real
world camera parameters instead, thus the camera-to-scene
distance was limited. In our test cases, the median area of
the spherical projections for the1 and3 region cases were
0.07 and0.13 units respectively on the unit sphere.

For computing the spherical surface integrals, we com-
pared two different approaches for the area approximation
of the spherical regions. Our earlier approach is using stan-
dard numerical integration over the pixels projected onto the
unit sphere [46], while the current one in Algorithm 1 is
integrating over spherical triangles instead. Theδ error and
runtime of these numerical schemes are compared in Fig. 4,
which clearly shows that the CPU time of Algorithm 1 is an
order of magnitude faster while the precision remains the
same as for the earlier scheme in [46]. The slight precision
change is caused by the pixel level discretization of the
regions, since the triangulated shapes are generated using a
subset of the boundary pixels, thus the triangles practically
average out the rasterized edges to a smoother edge, making
the integrals slightly more precise.

The algorithm’s CPU runtime is shown in Fig. 3f, where
the slightly increased runtime of the 3D segmentation error
test cases (noted byse3D) is due to the triangulation of
the corrupted planar regions, that increases the number of
triangles around the edges and thus the computational time.
Practically our algorithm can solve the pose estimation
problem of an omnidirectional camera in≈ 5 seconds using
2 regions.
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Fig. 5: Perspective pose estimation results: rotation and translation errors,δ error and algorithm runtime plots.se2D
stands for observation segmentation error,se3D for template side segmentation error andm for median values (best
viewed in color).
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Fig. 6: Perspective pose estimationδ errors comparing
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spherical solution.m stands for median values (best viewed
in color).
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3.2 Perspective cameras

Pose estimation results using a perspective camera are
presented in Fig. 5, including the same test cases with1,
2 and3 non-coplanar regions and with segmentation errors
as in the omnidirectional case. The rotation and translation
error plots in Fig. 5a - Fig. 5d clearly confirm the advantage
of having more non-coplanar regions.

The median translation error (see Fig. 5d) on the perfect
dataset is as low as2mm, which increases by an order of
magnitude in the presence of20% segmentation error, but
still being under5cm in case of 3 regions. Theδ error
plot in Fig. 5e also shows the robustness provided by the
additional regions. Obviously, the back-projection error also
increases in the presence of segmentation errors. However,
as Fig. 5a - Fig. 5d shows, the actual pose parameters are
considerably improved and the robustness greatly increases
by using1 or 2 extra non-coplanar regions. Similar to the
omnidirectional case, the increase of the number of regions
above 3 does not improve significantly the performance of
the pose estimation (see also Fig. 8).

The algorithm’s CPU time on perspective test cases
is shown in Fig. 5f. The increased runtime of the 3D
segmentation error test cases (noted byse3D) is due to the
triangulation of the corrupted planar regions, that greatly
increases the total number of triangles and thus the compu-
tational time. Practically our algorithm can solve the pose
estimation problem of a perspective camera in around2.5
seconds using2 regions.

As mentioned in Section 2.2, a perspective camera can
also be represented by the spherical model developed in
Section 3.1. However, as we have shown in the previous
section, this model’s main limitation is the small size of
the spherical regions, because a perspective camera has a
narrower field of view and has to be placed at a larger
distance from the scene, to produce the same size of regions
on the image. The resulting spherical projections of the
planar regions in median are typically4 times smaller
than in the omnidirectional camera’s case. Thus solving
the perspective case using the spherical solver yields a
degraded performance, as shown by theδ error plot in
Fig. 6. Comparing the algorithm’s runtime plot in Fig. 7
also shows that using the spherical solver for the perspective
camera greatly increases the computing time due to the cal-
culation of surface integrals on the sphere, which confirms
the advantage of using the perspective solver proposed in
Section 2.2, instead of a unified spherical solver.

3.3 Degeneracy analysis

In order to analyze the degeneracy characteristics of the
proposed method, two separate tests were performed: one
along theX axis rotation (rotations along theY axis
would have similar effects) and another one for the in-
plane rotation (along theZ axis). Both test cases are also
linked to the robustness of the initialization step of the
algorithm. For these experiments, a series of new datasets
with 100 test cases each were generated using one region

with non-symmetric template shapes (symmetric ones were
considered separately).

In each dataset,RX was set to a fixed absolute value
such that the viewing angle between the plane and the
camera optical axis was ranging from50◦ down to 2◦

in steps of 5◦, yielding gradually increased perspective
distortions up to the extreme2◦ case. The other rotation
parameters were set to0, and the translation along the
optical axis was randomly generated to ensure roughly
equally sized projections on the image plane. This is needed
to a correct evaluation where results are not influenced by
other pose parameters or the changes in the size of the
projected regions. Experimental results in Fig. 9 show that
if the camera’s orientation is initialized within±60◦ of the
true rotation (i.e.a quite rough initialization suffices), the
algorithm can robustly find the correct solution even in case
of degenerate viewing angles: at least80% of the cases are
solved withǫ < 1◦ rotation error forRX >= 5◦, but below
5◦ viewing angle, the errors increase significantly. Symme-
try of the template shapes doesn’t affect significantly the
results, since the projectively distorted shapes usually don’t
preserve the symmetry.

Degeneracy analysis along theZ axis (in-plane rotations
only) practically translates into the initialization problem
of the in-plane rotation, which can be performed in a
real application using a rough estimate ofe.g. the vertical
direction. As in the previous case, we generated our datasets
with a pureRZ rotation around theZ axis going from30◦

to 90◦ in absolute value, while setting all other rotations to
0 and the translation along the optical axis was randomly
generated to ensure roughly equally sized projections on
the image plane. Since the initialization ofRZ = 0 was
used throughout the test cases, these rotations directly
translate into a rotation error in the initialization ofRZ .
Experimental results show, that if the in-plane rotation is
initialized within a±60◦ (±80◦ for the perspective) of the
true rotation, the proposed method robustly finds a correct
solution (conditioned to the use of non-symmetrical shapes)
as this is visible in the second and last histogram plots of
Fig. 9. In contrast to the plane rotation alongX andY axes,
the in-plane rotation preserves the symmetry of the template
shapes in our setup, thus results are greatly affected if
symmetric shapes are used, but30◦−40◦ initialization error
is easily tolerated even for symmetric shapes.

4 EVALUATION ON REAL DATASETS

To thoroughly evaluate our method on real world test cases,
we used several different 3D data recorded by commercial
as well as a custom built 3D laser range finder with
corresponding 2D color images captured by commercial
SLR and compact digital cameras with prior calibration
and radial distortion removal. Whatever the source of the
2D-3D data is, the first step is the segmentation of planar
region pairs used by our algorithm. There are several
automated or semi-automated 2D segmentation algorithms
in the literature includinge.g. clustering, energy-based or
region growing algorithms [56]. In this work, a simple
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Fig. 9: Histograms of the overall rotations with errors less than 1 degrees (from left to right): for the perspective camera
along theX and Z axis and for the omnidirectional camera along theX and Z axis. First row shows results on
non-symmetric shapes, second row on the symmetric ones.

region growing was used which proved to be robust enough
in urban environment [57]. As for 3D segmentation, a
number of point cloud segmentation methods are available,
e.g.based on difference of normals [58] or robust segmen-
tation [59]. Like in 2D, region growing based on surface
normals gave stable results for extracting planar 3D regions
in our experiments. Corresponding 2D-3D regions were
simply selected during the seed selection of region growing
as a one-click user input. We remark, however, that a fully
automatic region correspondence could be implemented by
detecting and extracting planar objects like windows [60]
(seee.g.Fig. 10) which are typically planar surfaces present
in urban scenes. The 2D-3D correspondence search often
can be transformed into 2D-2D image based matching, as
the 3D models are built from 2D images. Application spe-
cific solutions such as building facade segmentation [61],
[62] or traffic sign extraction [63] support the matching
of high level features (such as windows, doors, walls,
tables,. . . ) in 2D and 3D data. Object extraction approaches
relying on semantic segmentation [64], [65] or semantic
scene completion [66] yield high level 2D-3D feature sets
especially in semantically rich environments, from which
the corresponding region pairs can be filtered out. If the

segmented 3D region is a simple point cloud, the boundary
of the region is detected using Alpha Shapes [67], which
is then used for generating a triangular mesh. As in the
synthetic case, for the omnidirectional case the method
of [55] generated a uniform mesh, while for the perspective
case a simple Delaunay triangulation was sufficient. The
absolute pose obtained from Algorithm 1 or Algorithm 2
was used to fuse the depth and RGB data by projecting the
images onto the 3D point cloud.

In Fig. 10, we show the fusion of an RGB perspective
camera image and a sparse 3D point cloud recorded by a
custom built 3D laser range finder containing a tilted Sick
LMS200 ranger. The absolute pose of the RGB camera was
computed using Algorithm 2, which was then used to back-
project the RGB image onto the 3D point cloud. Despite of
the relatively large displacement between the camera and
the Lidar, the absolute pose was successfully estimated.

For the omnidirectional real data experiments we first
tested the proposed method on 2D fish-eye camera im-
ages and a 3D triangulated building model obtained by
registering a set of sparse 3D laser scans recorded by a
Velodyne HDL-64E with a depth resolution up to1cm and
an angular resolution up to0.5◦. The best results were
obtained by large non-coplanar regions. Such a test case

Fig. 10: Pose estimation example with (left-right) central perspective camera and custom Lidar data: color 2D image
(original frame) with corresponding regions (purple); 3D data with the segmented regions (green); color information
overlaid on 3D data using the estimated camera pose (best viewed in color).



0162-8828 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TPAMI.2019.2931577, IEEE Transactions on Pattern Analysis and Machine Intelligence

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. ?, NO. ??, MAY 6, 2019 12

Fig. 11: Pose estimation example with (left-right) central dioptric (fish-eye) and commercial (Velodyne) Lidar images:
color 2D image (original frame) with corresponding regions (purple); 3D data with the segmented region (green); color
information overlaid on 3D data using estimated pose parameters (best viewed in color).

Fig. 12: Pose estimation example with omnidirectional camera image and dense Lidar data (left to right): color 2D
image and 3D triangulated surface with corresponding segmented regions marked with purple and green respectively;
lastly color information projected onto 3D data using the estimated extrinsic parameters, green dots mark the reference
positions of the markers while red dots mark the projected positions (best viewed in color).

Fig. 13: Pose estimation example with perspective cameras and dense Lidar data (left to right): color 2D image and 3D
triangulated surface with corresponding segmented regions marked with purple and green respectively; color information
projected onto 3D data using the estimated pose, green dots mark the reference position of the markers while red dots
mark the projected position. First row: wide field of view camera image; second row: normal field of view UAV camera
image. (best viewed in color).
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is shown in Fig. 11, where the fish-eye camera image
was reprojected onto the 3D surface using the absolute
pose obtained by Algorithm 1. Note that in case of the
omnidirectional cameras, even a relatively small rotation
or translation error in the pose yields large differences in
the non-linear distortions on the omnidirectional data. In
spite of this sensitivity, Algorithm 1 proved to be robust
enough as the segmented regions in Fig. 11 overlap well
even if the total area of selected regions is relatively small
compared to the whole image size.

Finally, test cases with a high precision Riegl Lidar and
different cameras are shown in Fig. 12 and Fig. 13. The
static Riegl scanner has a range of400m with a depth
precision of less than0.5cm and angular resolution up to
0.003◦. In this dataset, the high density precise 3D model
also includes the 3D positions of marker points that were
set up on the building facade. Using these markers, we
could evaluate the precision of our pose estimation by the
forward projection of each marker from the 2D image into
3D space and then calculated the distance from their ground
truth position.

For the omnidirectional case shown in Fig. 12, we used a
full frame Canon EOS 5 DSLR camera with a8mm fish-eye
lens. Segmenting only two simple, relatively small regions,
the proposed Algorithm 1 estimated a precise pose with
a forward projection mean error measured in the marker
points of only 7cm. The ground truth marker positions
are visualized in green while the projected markers in
red. Note that the camera-to-scene distance was≈ 14m
in this case. For comparison, we also show in Table 1
the error of the absolute pose obtained by the state of
the art UPnP [7] method, which directly used the ground
truth marker positions as input 2D-3D point matches. In
spite of working with perfect point correspondences, UPnP
achieved only2cm better forward projection error in those
marker points than our method which used inherently
imperfect segmented region pairs.

For the perspective case in Fig. 13, we used a full
frame Nikon DSLR camera with a wide field of view
20mm lens, one of the typical RGB cameras that comes
calibrated with these Riegl scanners. The mean forward
projection error of the proposed Algorithm 2 measured in
the marker points was3cm. The advantage of using multiple
regions from differently oriented surfaces is clearly visible
here. In Table 1, we compare our results to the factory
calibration of the setup. It was interesting to find, that at
18m distance from the wall, the factory calibration param-
eters produce20cm mean forward projection error, due to
the interchangeable camera mounting system. Applying a
marker based refinement to the calibration in the scanners
own software, this can be reduced to1.3cm, which is only
slightly better than our marker-less result achieved purely
using 3 segmented region pairs.

The proposed Algorithm 2 was also tested with images
taken by a flying DJI Phantom 3 drone. As can be seen in
Fig. 13, the viewing angle of such a camera is very different
from that of a ground level imaging device. Using two
corresponding segmented regions was sufficient to estimate

UPnP RPnP Riegl Riegl(fine) Prop.

Omni 5 n/a n/a n/a 7
Pers. HR 0.9 4 20 1.3 3

Pers. Drone 2.2 6 n/a n/a 9

TABLE 1: Comparisons on high resolution Lidar data in
terms of the mean forward projection errors in marker
points in cm. Note that results of UPnP [7], RPnP[6] and
Riegl(fine) all rely on markers.Riegl stands for factory
calibration, Prop. for the proposed method, and HR for
high resolution full frame camera perspective test case.

transl. Rx Ry Rz δ(%) time(s)

Prop. 0.592 2.970 0.402 0.393 12.49 1.23
Norm. 0.441 0.522 4.740 0.745 74.01 166

Int. 0.397 3.254 4.826 1.543 46.77 147

TABLE 2: Comparative results with the proposed method
(Prop), normal based MI(Norm)[17] and intensity based MI
(Int)[17] in terms of translation(m), rotation(deg) andδ (for
reference:δ for the ground truth pose is9.49%) errors.

a correct pose with a mean forward projection error of
9cm, which is a good result considering the extreme angle
of the camera and the camera-to-scene distance of≈ 9m.
In comparison, the state of the art UPnP [7] and RPnP[6]
methods using the high precision marker points as input
2D-3D point correspondences produced2cm and6cm mean
error, respectively.

The qualitative comparison of all the mentioned methods
is presented in Table 1, where n/a stands for not available,
since factory calibration parameters were only available
in one case, and RPnP[6] cannot be used with omnidi-
rectional cameras. Let us emphasize, that all the point-
correspondence-based methods (except the Riegl factory
parameters) rely on 2D-3D special markers, that were
precisely measured in 3D and 2D. Thus to achieve these
results with UPnP and RPnP, a careful setup of special
markers in required before data acquisition, thus both 2D
and 3D data capture must be performed at the same time. In
contrast, the proposed method does not require any special
target or setup, hence images recorded at different time
can be fused as long as at least one planar region pair is
available.

4.1 Algorithm evaluation on the KITTI dataset

Comparison with other camera pose estimation methods
from the main literature could be performed only in a
limited manner due to the fundamental differences of the
proposed algorithm with respect to existing ones presented
in Section 1. Methods using artificial markers like the ones
described in [35], [31] were tested using the codes provided
by the authors. The detailed comparisons are presented in
our previous work [47]. Due to the limitations of [35], [31]
on real datasets, we also tested the proposed method on the
KITTI dataset [68] with available ground truth information.
In Fig. 14 the extrinsic calibration of a color camera and
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Fig. 14: Pose estimation on the KITTI dataset (top-bottom):
color 2D data with the selected regions (purple); 3D data
with the corresponding regions (green); color information
overlaid on 3D data using the estimated camera pose.

sparse 3D Lidar data from the KITTI drivenr = 5 is
shown. Using3 segmented non-coplanar regions marked in
purple and green in Fig. 14, the camera pose was estimated
with the precision shown in Table 2.

For comparison, we used the mutual information based
method described in [17] working on 3D data with intensity
and normal information. The algorithm of [17] was run on
the same 2D-3D data pair both in the normal based and
intensity based configurations as presented in Fig. 14. The
comparative results of absolute errors are also shown in
Table 2. Note that while the algorithm of [17] is able to use
multiple separate 2D-3D data pairs (if a sequence of such
data is available with a rigid Lidar-camera setup like the
KITTI dataset) to optimize the results, for a fair comparison
we only provided the same single image frame and point
cloud pair as the one that the proposed method was tested
on. Since [17] is non-deterministic, the MI based results in
Table 2 show the best ones out of 5 independent runs of
the algorithm.

The results of the proposed method proved to be compa-
rable to the results of [17], the normal based method being
slightly better in the translation parameters, but worse in the
rotation errors. Nevertheless the registration result of the
proposed method visually was accurate, and the CPU im-
plementation runtime was two orders of magnitude smaller
than the GPU implementation of the mutual information
method of [17].

5 CONCLUSION

A generic, nonlinear, explicit correspondence-less pose
estimation method was proposed in this work. The absolute
camera pose estimation is based on the 3D-2D registration
of a common Lidar-camera planar patch. The proposed

method makes use of minimal information (plain depth
data from 3D and radiometric information from 2D) and
is general enough to be used both for perspective and
omnidirectional central cameras. The algorithm has been
tested on a large scale synthetic dataset and on various
real life date acquired by different types of sensors. The
method could be further extended to handle internal camera
parameter estimation as well. The state of the art perfor-
mance of the proposed method was confirmed both on a
large synthetic data set as well as on various real data
experiments using different depth sensors, perspective and
omnidirectional cameras.
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man, “Region based fusion of 3D and 2D visual data for cultural
heritage objects,” inProceedings of International Conference on
Pattern Recognition, IEEE. Cancun, Mexico: IEEE, Dec 2016,
pp. 2404–2409.

[5] V. Lepetit, F. Moreno-Noguer, and P. Fua, “Epnp: An accurate o(n)
solution to the pnp problem,”Int. J. Comput. Vision, vol. 81, no. 2,
pp. 155–166, Feb. 2009.

[6] S. Li, C. Xu, and M. Xie, “A robust o(n) solution to the perspective-
n-point problem,”IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, vol. 34, no. 7, pp. 1444–1450, July 2012.

[7] L. Kneip, H. Li, and Y. Seo, “UPnP: an optimal O(n) solution to the
absolute pose problem with universal applicability,” inProceedings
of European Conference on Computer Vision, ser. Lecture Notes in
Computer Science, vol. 8689. Zurich, Switzerland: Springer, Sep.
2014, pp. 127–142.

[8] C. Xu, L. Zhang, L. Cheng, and R. Koch, “Pose estimation from line
correspondences: A complete analysis and a series of solutions,”
IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 39, no. 6, pp. 1209–1222, 2016.



0162-8828 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TPAMI.2019.2931577, IEEE Transactions on Pattern Analysis and Machine Intelligence

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. ?, NO. ??, MAY 6, 2019 15

[9] N. Horanyi and Z. Kato, “Generalized pose estimation from line
correspondences with known vertical direction,” inInternational
Conference on 3D Vision. Qingdao, China: IEEE, Oct. 2017, pp.
244–253.

[10] N. Snavely, S. M. Seitz, and R. Szeliski, “Photo tourism: Exploring
photo collections in 3D,” inACM SIGGRAPH. Boston, Mas-
sachusetts: ACM, 2006, pp. 835–846.

[11] F. Camposeco, T. Sattler, and M. Pollefeys, “Minimal solvers for
generalized pose and scale estimation from two rays and one
point,” in Proceedings of European Conference Computer Vision, ser.
Lecture Notes in Computer Science, B. Leibe, J. Matas, N. Sebe,
and M. Welling, Eds., vol. 9909. Amsterdam, The Netherlands:
Springer, Oct. 2016, pp. 202–218.

[12] G. H. Lee, “A minimal solution for non-perspective pose estimation
from line correspondences,” inProceedings of European Conference
on Computer Vision. Amsterdam, The Netherlands: Springer, Oct.
2016, pp. 170–185.

[13] S. Baker and S. K. Nayar, “A theory of single-viewpoint catadioptric
image formation,”International Journal of Computer Vision, vol. 35,
no. 2, pp. 175–196, 1999.

[14] C. Geyer and K. Daniilidis, “A unifying theory for central panoramic
systems and practical applications,” inProceedings of the 6th Eu-
ropean Conference on Computer Vision-Part II, ser. ECCV ’00.
London, UK, UK: Springer-Verlag, 2000, pp. 445–461.
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building façade segmentation and opening area detection from point
clouds,”ISPRS Journal of Photogrammetry and Remote Sensing, vol.
143, pp. 134–149, 2018.

[62] M. Mathias, A. Martinovíc, and L. Van Gool, “ATLAS: A Three-
Layered Approach to Facade Parsing,”International Journal of
Computer Vision, vol. 118, no. 1, pp. 22–48, May 2016.

[63] H. S. Lee and K. Kim, “Simultaneous traffic sign detection and
boundary estimation using convolutional neural network,”IEEE
Transactions on Intelligent Transportation Systems, vol. 19, no. 5,
pp. 1652–1663, May 2018.

[64] B. Zhou, H. Zhao, X. Puig, T. Xiao, S. Fidler, A. Barriuso,
and A. Torralba, “Semantic Understanding of Scenes Through the
ADE20K Dataset,”International Journal of Computer Vision, vol.
127, no. 3, pp. 302–321, Mar 2019.

[65] A. Dai and M. Nießner, “3DMV: Joint 3D-Multi-view Prediction for
3D Semantic Scene Segmentation,” inProceedings of the European
Conference on Computer Vision (ECCV), ser. Lecture Notes in
Computer Science, V. Ferrari, M. Hebert, C. Sminchisescu, and
Y. Weiss, Eds., vol. 11214. Springer, 2018, pp. 458–474.

[66] S. Song, F. Yu, A. Zeng, A. X. Chang, M. Savva, and T. Funkhouser,
“Semantic scene completion from a single depth image,” in2017
IEEE Conference on Computer Vision and Pattern Recognition,
CVPR. IEEE Computer Society, Jul 2017, pp. 190–198.

[67] N. Akkiraju and H. Edelsbrunner, “Triangulating the surface of a
molecule,”Discrete Applied Mathematicss, vol. 71, no. 1-3, pp. 5–
22, Dec. 1996.

[68] A. Geiger, P. Lenz, C. Stiller, and R. Urtasun, “Vision Meets
Robotics: The KITTI Dataset,”Int. J. Rob. Res., vol. 32, no. 11,
pp. 1231–1237, Sep. 2013.

Robert Frohlich received the B.Sc. and
M.Sc. degrees in Applied Electronics and
Multimedia Technologies from the Technical
University of Cluj-Napoca (Romania) in 2012
and 2014 respectively. Since then, he is a
Ph.D. student at the University of Szeged
(Hungary) under the guidance of Zoltan Kato.
His main research interests include image
registration, camera calibration, and hetero-
geneous 2D-3D data fusion.

Levente Tamas received the M.Sc. (vale-
dictorian) and the Ph.D. degree in electri-
cal engineering from Technical University of
Cluj-Napoca, Romania, in 2005 and 2010,
respectively. He took part in several post-
doctoral programs dealing with 3D percep-
tion and robotics, the most recent one spent
at the Bern University of Applied Sciences,
Switzerland. He is currently with the Robotics
Research Group, Department of Automation,
Technical University of Cluj-Napoca. His cur-

rent research interests include 3D perception and planning for
autonomous systems. He is a member of the IEEE Robotics and
Automation Society.

Zoltan Kato received the MS degree in com-
puter science in 1990 from the Jozsef Attila
University, Szeged, Hungary; the PhD de-
gree in 1994 from University of Nice doing
his research at INRIA - Sophia Antipolis,
France; and the DSc title from the Hungarian
Academy of Sciences in 2014. He has been
a visiting research associate at the Com-
puter Science Department of the Hong Kong
University of Science and Technology; an
ERCIM postdoc fellow at CWI, Amsterdam;

and a visiting fellow at the School of Computing, National University
of Singapore. In 2002, he joined the Institute of Informatics, Univer-
sity of Szeged, Hungary, where he is heading the Research Group on
Visual Computation. His research interests include camera calibra-
tion, registration, segmentation, multiview reconstruction, statistical
image models, Markov random fields, color, texture, motion, shape
modeling, variational and level set methods. He is a Senior Member
of IEEE and past President of the Hungarian Association for Image
Analysis and Pattern Recognition.


