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Abstract
Purpose  Disrupted mitochondrial functions and genetic variants of mitochondrial DNA (mtDNA) have been observed in 
different human neoplasms. Next-generation sequencing (NGS) can be used to detect even low heteroplasmy-level mtDNA 
variants. We aimed to investigate the mitochondrial genome in pituitary adenomas by NGS.
Methods  We analysed 11 growth hormone producing and 33 non-functioning [22 gonadotroph and 11 hormone immunon-
egative] pituitary adenomas using VariantPro™ Mitochondrion Panel on Illumina MiSeq instrument. Revised Cambridge 
Reference Sequence (rCRS) of the mtDNA was used as reference. Heteroplasmy was determined using a 3% cutoff.
Results  496 variants were identified in pituitary adenomas with overall low level of heteroplasmy (7.22%). On average, 
35 variants were detected per sample. Samples harbouring the highest number of variants had the highest Ki-67 indices 
independently of histological subtypes. We identified eight variants (A11251G, T4216C, T16126C, C15452A, T14798C, 
A188G, G185A, and T16093C) with different prevalences among different histological groups. T16189C was found in 40% 
of non-recurrent adenomas, while it was not present in the recurrent ones. T14798C and T4216C were confirmed by Sanger 
sequencing in all 44 samples. 100% concordance was found between NGS and Sanger method.
Conclusions  NGS is a reliable method for investigating mitochondrial genome and heteroplasmy in pituitary adenomas. 
Out of the 496 detected variants, 414 have not been previously reported in pituitary adenoma. The high number of mtDNA 
variants may contribute to adenoma genesis, and some variants (i.e., T16189C) might associate with benign behaviour.

Keywords  Pituitary adenoma · Next-generation sequencing · Mitochondria · Genome · Genetic variations · Pathogenesis

Introduction

The mitochondrial genome consists of several copies of 
circular, double-stranded DNA molecules, covering 16,569 
base pairs, 37 genes. Of these, 13 encode polypeptides of 
respiratory enzyme complexes, 22 encode transfer RNAs, 
and 2 encode ribosomal RNAs (12S, 16S) [1, 2]. Several 
copies of the mitochondrial DNA (mtDNA) can exist, caus-
ing co-existence of mutant and wild-type alleles in the same 
cell (or tissue), referred to as heteroplasmy [2]. The ratio of 
the mutant allele compared to the wild type is defined as 
degree of heteroplasmy.

Mitochondria have an essential role in apoptosis. Failure 
of apoptosis has been considered as a hallmark of oncogene-
sis. Since the first study about the mtDNA mutations in colo-
rectal cancer has been published in 1998, extensive research 
has started to analyse the mitochondrial genome. The pres-
ence of frequently observed mitochondrial mutations in a 
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variety of human neoplasms (e.g., breast, ovarian, colorectal, 
gastric, hepatocellular, pancreatic, prostate, lung, thyroid, 
renal cell cancers, and brain tumors [3]) along with the 
description of abnormal mitochondria in tumors raised the 
possibility that these mutations might have a casual role in 
tumor initiation and progression [4, 5].

Dasgupta et al. analysed the functional effect of the mito-
chondrially encoded cytochrome B (MT-CYB) gene muta-
tion, and showed that overexpression of MT-CYB-induced 
tumor growth in vitro and in vivo in bladder cancer cells and 
increased the invasive phenotype, underlining the functional 
importance of this mutation [6]. Another study suggested 
that MT-CYB can be an immune target for CD4(+) T cells 
and, therefore, have implications for the immunosurveil-
lance of mitochondrial aberrations in cancer patients [7]. 
In a trans-mitochondrial hybrid (cybrid) model (containing 
a common HeLa nucleus and mtDNA of interest), a patho-
genic mitochondrially encoded ATP synthase subunit 6 
(MT-ATP6) gene variant seemed to promote tumor growth 
by preventing apoptosis [8]. The increasing interest towards 
mitochondrial variants in cancer is probably due to the rec-
ognition that understanding these molecular mechanisms 
would take us closer to develop novel biomarkers and thera-
peutic strategies [9]. Still, the question whether these vari-
ants are cause or consequence of tumor progression remain 
unanswered.

Previous studies mostly used Sanger sequencing and 
MitoChip (microarray-based sequencing following PCR-
amplified mitochondrial DNA) for analysing the whole mito-
chondrial genome. Next-generation sequencing (NGS) is a 
cost-effective, high-throughput, and sensitive method that 
has become a suitable tool to detect any DNA variants even 
if they are present at low level. Thus, this method is likely 
to be superior for identification of heteroplasmy [2, 10, 11].

Pituitary adenomas are common neoplasms account-
ing for 10–15% of intracranial tumors [12]. The majority 
(95%) occur sporadically, and despite extensive research, 
the molecular mechanisms of their pathogenesis are largely 
unknown [13]. Besides GNAS [guanine nucleotide-binding 
protein (G protein), alpha stimulating] mutations that fre-
quently (approx. 40%) occur in somatotropinomas [14], 
mutations in classical tumor suppressor genes (e.g., TP53 
and RB1) and oncogenes (e.g., Ras) are rarely found in 
benign pituitary adenomas [15–18], suggesting the contri-
bution of alternative mechanisms. Earlier studies identified 
epigenetic modifications, altered expression of cell cycle 
regulator cyclins and cyclin-dependent kinases (CDKs), 
growth factors, and their receptors, and disturbances of 
signal transduction pathways [18]. However, none of these 
changes can entirely explain the complex mechanism behind 
adenoma genesis.

In line with these observations, whole-exome (WES) 
and whole-genome sequencing (WGS) data revealed lower 

mutation rate in pituitary adenomas compared to other tumor 
types. These studies also stated that most of the variants are 
single-nucleotide variants (SNVs) [13, 19, 20]. Newey et al. 
examined non-functioning adenomas (NFPAs) by WES. 
They could not identify somatic mutations in genes previ-
ously reported in pituitary tumorigenesis, or associated with 
familial pituitary syndromes or in typical oncogenes/tumor 
suppressor genes. The authors also showed that there were 
no recurrent mutations within specific genes, suggesting that 
there is no common driver genes responsible for pathogen-
esis of NFPA [13]. Similar results were shown by another 
group performing WGS of growth hormone (GH) secreting 
pituitary adenomas [20]. Lan et al. compared invasive and 
non-invasive pituitary adenomas and found that the DPCR1 
(diffuse panbronchiolitis critical region 1), EGFL7 (EGF 
like domain multiple 7), PRDM family (PR/SET domain 
family), and LRRC50 (leucine rich repeat containing 50) 
can function as genetic modifiers and most likely contribute 
to the development of oncocytic change and invasive tumor 
phenotype [19].

Mitochondrial variants have only been assessed in onco-
cytic type of pituitary tumors so far. These studies showed 
high prevalence of Complex I variants which were described 
in association with benign behaviour [21, 22].

Here, we report for the first time data obtained using 
next-generation sequencing technology for analysis of the 
whole mitochondrial genome of pituitary tumors of differ-
ent histological types, including GH-producing (GH) and 
clinically non-functioning [gonadotroph (GO) and hormone-
immunonegative (HN)] pituitary adenomas.

Materials and methods

Patients

The study was approved by the Scientific and Research 
Committee of the Medical Research Council of Hungary 
(0618/15), and the samples were obtained after acquiring 
written informed consent from all patients.

Tissue samples were obtained from 44 patients diagnosed 
with pituitary adenoma, comprising 11 GH-secreting and 
33 clinically non-functioning pituitary adenomas (NFPAs), 
including 22 gonadotroph (GO), and 11 hormone-immunon-
egative (HN) tumors (Table 1). Pituitary adenoma tissues 
were surgically removed at the National Institute of Clinical 
Neurosciences, Budapest, Hungary between 2015 and 2017. 
Histological diagnoses were performed at the 1st Depart-
ment of Pathology and Experimental Cancer Research, 
Semmelweis University, Budapest. The clinical diagnosis of 
adenomas was based on patients’ hormone levels and routine 
histological diagnosis including immunostaining for anterior 
lobe hormones.
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Table 1   Characteristics of 
adenoma tissue samples

Clinical diagnosis Sex Age Immunhistochemistry for 
anterior lobe hormones

Tumor size based on 
preoperative MRI (mm3)

Ki-67 prolif-
eration index 
(%)

GH producing F 43 GH – 1–3
GH producing M 49 GH – < 1
GH producing M 51 GH, PRL – < 3
GH producing M 22 GH, PRL 11,571 3
GH producing M 32 GH, PRL – 3–4
GH producing F 49 GH, PRL 2652 3–4
GH producing F 22 GH, PRL – 4–5
GH producing M 35 GH, PRL – 6
GH producing M 30 GH, PRL 4840.495 8
GH producing F 48 GH, PRL – 10
GH producing F 35 GH, PRL – 5–6
GH producing F 60 GH, PRL – < 3
NFPA F 39 FSH – 1–2
NFPA M 51 FSH 15,488 2–3
NFPA M 44 FSH – 2–3
NFPA F 76 FSH 3825 2–3
NFPA M 38 FSH – 3–4
NFPA F 72 FSH, LH – 1–2
NFPA M 63 FSH, LH 41,055 < 1
NFPA F 49 FSH, LH 3744 < 1
NFPA M 62 FSH, LH – < 3
NFPA M 67 FSH, LH – 3–4
NFPA M 43 FSH, LH – 7–10
NFPA M 64 FSH, LH 126,000 < 3
NFPA F 74 FSH, LH – < 3
NFPA F 73 FSH, LH 12,000 < 2
NFPA F 68 FSH, LH – 3–4
NFPA M 73 FSH, LH – 2–3
NFPA F 80 FSH, LH 19,600 2–3
NFPA F 69 FSH, LH 20,240 < 3
NFPA M 38 FSH, LH – 3–4
NFPA F 37 FSH, LH 1872 7–8
NFPA M 73 LH 13,500 2
NFPA M 72 LH 4590 < 2
NFPA F 43 Negative 4987.5 1
NFPA F 50 Negative – 2
NFPA F 64 Negative – 1
NFPA F 58 Negative 3570 4
NFPA M 73 Negative 12,144 3–4
NFPA F 64 Negative – 5
NFPA M 58 Negative 35,640 5–7
NFPA M 50 Negative – < 2
NFPA F 49 Negative – 3–4
NFPA F 65 Negative 2523.312 3–4
NFPA F 60 Negative – 5
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DNA isolation

Total DNA was isolated from pituitary adenoma tissues 
using QIAamp Fast DNA Tissue Kit (Qiagen). DNA purity 
and concentration were measured using NanoDrop 1000 
Spectrophotometer (Thermo Fisher Scientific). The pres-
ence of normal pituitary tissue was determined similarly to 
Välimäki et al. [20]. In our cohort, 43 of 44 samples con-
tained no healthy cells, and in the remaining one tissue, the 
percentage of healthy pituitary cells was less than 5%.

Next‑generation sequencing for mtDNA analysis

DNA library was prepared using the VariantPro™ Mito-
chondrion Panel Library Preparation Kit (LC Sciences). 
The presence of the desired fragments and the purity of the 
indexed libraries were analysed on Agilent 2100 Bioanalyzer 
(Agilent Technologies) using High-Sensitivity DNA Analy-
sis Kit (Agilent Technologies). The concentrations of the 
libraries were measured using Qubit Fluorometer (Thermo 
Fisher Scientific). Equimolar amounts of the 45 indexed 
libraries were pooled to obtain a 4 nM library mixture. After 
denaturing, and further diluting, the final 10 pM of library 
mixture was loaded into Illumina cartridge. Sequencing was 
performed using the Illumina MiSeq Reagent v2 kit (500 
cycles) on the Illumina MiSeq instrument following the 
manufacturer’s instructions (Illumina).

Bioinformatical analysis of next‑generation 
sequencing

Sequencing data processing was performed following the 
Genome Analysis Toolkit (GATK) best practices guideline 
as follows: paired end sequencing data were exported to 
FASTQ file format. Reads were trimmed using Trim Galore 
(Babraham Bioinformatics, http://www.bioin​forma​tics.
babra​ham.ac.uk/proje​cts/trim_galor​e/) and cutadapt [23] to 
remove adapters and bases, where the quality value was less 
than 20.

The trimmed reads were aligned with Burrows–Wheeler 
Aligner (BWA) [24]. Picard tools were used to sort reads 
(http://broad​insti​tute.githu​b.io/picar​d). Local realignment 
around indels and Base Quality Score Recalibration (BQSR) 
were performed using GATK [25]. Variant discovery was 
performed in two steps: single sample variant calling was 
performed using MuTect2 in GATK tumor_only_mode to 
call all variants. This was followed by CombineVariants the 
single sample gVCFs (genome Variant Call Format) to the 
multi sample VCF (Variant Call Format). Variant effects 
were predicted using SnpEff [26]. Revised Cambridge Refer-
ence Sequence (rCRS) of the Human Mitochondrial DNA 
(NC_012920.1 gi:251831106) was applied as reference 
mitochondrial sequence [27]. Variants were annotated using 

MITOMAP mtDNA Coding Region and RNA Sequence 
Variants.

Reference alleles were coded as 0, variant alleles as 1 and 
heteroplasmy ratio was calculated by variant read number/total 
read for each variant and each sample. A 3% cutoff was used to 
identify heteroplasmy 3% as previously described [28].

Statistical analysis

Nonparametric Kruskal–Wallis Rank test was applied for 
evaluating prevalence of variants among different histo-
logical groups. Multiple comparisons of mean ranks for 
all groups to compute post hoc comparisons of all pairs of 
groups were used [29]. For three groups’ comparison (with 
all pairs), we used the Conover–Iman test of multiple com-
parisons using rank sums as post hoc test in R package. We 
adjusted p values for multiple comparisons with the Benja-
mini and Hochberg method (BH) [30].

For comparison between two groups, the nonparametric 
Wilcoxon rank sum test was performed. BH was used for 
generation of multiple testing corrected p values.

For comparisons within groups, frequency of appearance 
of each variant (heteroplasmic or full variant number/group 
sample number) was also evaluated using Kruskal–Wallis 
Rank test and illustrated on cluster heat maps.

Proportion test was applied with “prop.test” R function 
which can be used for testing the null hypothesis that the 
proportions (probabilities of success) in several groups are 
the same or that they equal certain given values. This test 
gave similar results to Kruskal–Wallis Rank test and non-
parametric Wilcoxon rank sum test.

For hierarchical cluster analysis, we used heatmap R 
package to draw clustered heat maps with clustering method 
“average” and with Euclidean distance method.

Sanger validation of mitochondrial variants

The validation of the single-nucleotide variants (SNVs) was 
performed by Sanger sequencing. We sequenced the same 
44 tissue samples used in NGS. To avoid co-amplification 
of nuclear DNA, we used a well-established method for 
the exclusive amplification of mitochondrial fragments as 
described by Ramos et al. [31, 32]. The specific mitochon-
drial DNA fragments were PCR-amplified and cleaned using 
the Clean Sweep PCR Purification Kit (A29895, Thermo 
Fisher Scientific). Sanger sequencing run was performed on 
Applied Biosystems 3130 Genetic Analyzer (Thermo Fisher 
Scientific) using the BigDye™ Direct Cycle Sequencing Kit 
(4458687, Thermo Fisher Scientific).

http://www.bioinformatics.babraham.ac.uk/projects/trim_galore/
http://www.bioinformatics.babraham.ac.uk/projects/trim_galore/
http://broadinstitute.github.io/picard
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Results

Whole mitochondrial genome sequencing by NGS

Sequencing run generated an average 52,399 reads per sam-
ple (min 24,019; max 242,870) and 95 ± 1% of the reads 
were aligned to the mitochondrial genome. Total coverage 
was avg. 10,439,722 read per sample and coverage depth was 
630 ± 370 (avg ± SE) reads per base.

We detected 496 single-nucleotide variants (SNVs) in 
all tumors. Of these, 269 variants were protein-coding of 
which 135 were non-synonymous and 132 were synonymous 
(Online Resource 1).

Heteroplasmy occurred in 482 of the detected 496 
variants at least in one sample and overall on low level 

(indicated by colours on cluster heatmap, Fig. 1a). Hor-
mone-immunonegative (HN) adenomas showed a slightly 
higher heteroplasmy prevalence compared to GO and GH 
adenomas 8.27% vs. 6.96 and 6.72%, respectively (Table 2). 
This remained the same after dissection of protein-coding 
and non-coding variants (Table 2). In addition, we did not 
find difference in Ki-67 proliferation index or tumor size 
between sample groups harbouring low (< 50%) and high 
(> 50%) heteroplasmy.

On average, 35 variants were detected per sample. Similar 
results were obtained in different histological groups: we 
found 33, 34 and 40 variants per sample in GH-producing, 
gonadotroph, and hormone-immunonegative adenomas, 
respectively. Furthermore, samples harbouring the highest 
number of variants (Fig. 1b) had the highest Ki-67 indices 

Fig. 1   Possible associations with clinicopathological features. a Pro-
file of detected variants showed overall low level of heteroplasmy and 
hierarchical cluster analysis could not discriminate pituitary adenoma 
samples based on either histological type, Ki-67 index, or recurrent/
non-recurrent status. The colour scale indicates the ratio of hetero-
plasmy obtained by NGS, where 0 (blue) shows 100% reference allele 
and 1 (green) shows 100% variant allele. b Number of the found vari-
ants in pituitary adenoma samples, grouped by histological type and 
ranked from fewer to more variants. Analysing the samples harbour-

ing the highest number of variants obtained that they have the high-
est Ki-67 indices independently of histological type. c Regarding the 
number of the variants, we identified 143, 58, and 52 unique variants 
appeared only in GO, HN, and GH-secreting adenomas, respectively. 
Legends: rec: recurrent, non-rec: non-recurrent, Ki-67 group 1: Ki-67 
proliferation index is between 1 and 4%, Ki-67 group 2: Ki-67 pro-
liferation index is between 5 and 10%, Hist histological subtype, GH 
growth hormone producing, GO gonadotroph, HN hormone immu-
nonegative
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[Ki-67: 8% (GH), 7–10% (GO), and 5% (HN)] independently 
of histological type.

When analysing distinct histological groups, we identi-
fied 143, 58, and 52 unique variants that appeared only in 
GO, HN, and GH-secreting adenomas, respectively (Fig. 1c, 
Online Resource 2).

Using hierarchical cluster analysis on all variants, no 
clear separation of the samples was identified based on 
histological type, Ki-67 index, or recurrent/non-recurrent 
status (Fig. 1a).

Nonparametric ANOVA identified eight significant 
variants among different histological groups. The vari-
ants: A11251G, T4216C, T16126C, C15452A, T14798C, 
A188G, and T16093C differentiated GH producing from 
HN adenomas. The prevalence of variants: T14798C, 
G185A, A188G, and T16093C differed between GO and 
HN adenomas (Table 3).

T16189C variant was found in 40% (6/15) of non-
recurrent adenomas compared to recurrent ones, where 
it was not detectable (0/11) (p = 0.02090).

Individual variant prevalence did not show associations 
with Ki-67 proliferation index or tumor size.

Technical validation

Four of the eight variants that showed differences among 
histological groups (G185A, A188G, T16093C, and 
T16126C) were localized in the D-loop region (dis-
placement loop region, “non-coding” part of mtDNA). 
A11251G coded a synonymous variant, while T14798C 
and C15452A represented non-synonymous polymor-
phisms referred as rs28357681 and rs527236209, respec-
tively, in the gene of mitochondrially encoded cytochrome 
B (MT-CYB). T4216C also represented a non-synony-
mous polymorphism as rs1599988 in mitochondrially 
encoded NADH:ubiquinone oxidoreductase core subunit 
1 (MT-ND1). We selected rs28357681 and rs1599988 for 

Table 2   Prevalence of heteroplasmy of mitochondrial genome 
detected in pituitary adenomas

All tumors GO GH HN

All variants
 Avg (%) 7.22 6.96 6.72 8.27
 SD 13.78 13.37 14.73 16.71

Protein-coding variants
 Avg (%) 6.59 6.35 6.18 7.45
 SD 12.56 12.06 13.36 16.16

Non-coding variants
 Avg (%) 7.98 7.71 7.37 9.17
 SD 15.14 14.79 16.24 17.34
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technical validation, since these variants were protein-
coding, non-synonymous variants, and these alterations 
showed no heteroplasmy; hence, Sanger sequencing was 
a reasonable option for validation. We validated the two 
variants on all the 44 samples and we found 100% con-
cordance between NGS and Sanger sequencing results.

Discussion

Mitochondrial dysfunction and mutations in mtDNA have 
been implicated in several human neoplasms. In this study, 
we analysed the whole mitochondrial genome in pituitary 
adenomas by NGS. The VariantPro™ Mitochondria Panel 
kit we used in this study has only been applied in two stud-
ies so far [33, 34]. In one of these the whole mitochondrial 
genome was sequenced, similarly to our study [34], while 
in the other, specific primers for the targeted regions were 
used [33]. In agreement with these studies, we observed 
an excellent alignment rate to mitochondrial genome and 
satisfactory coverage depth. This fact together with the 
results of validation by Sanger sequencing (100% concord-
ance) confirmed the excellent applicability of NGS-based 
methods for mitochondrial genome sequencing.

Overall, we identified 496 variants in pituitary adenoma 
tissues compared to the human mitochondrial reference 
sequence. We also identified variants specific to distinct 
adenoma histological types. Most of the variants showed 
low level of heteroplasmy. This is in line with previous 
publications which claimed that low level of heteroplasmy 
was more frequent in benign tumors and occurrence of 
heteroplasmy increased with metastatic potential [28]. 
Thus, these data support our result, showing that low-level 
heteroplasmy is one characteristic hallmark of pituitary 
adenomas. In addition, samples with high and low levels 
of heteroplasmy did not show difference in Ki-67 prolifera-
tion index or tumor size.

Whole mitochondrial variant pattern did not show clear 
association with clinicopathological features. This find-
ing is in agreement with others showing no significant 
associations with clinicopathological parameters includ-
ing sex, age, tumor size, and duration of clinical course in 
tumors of the central nervous system [35]. However, when 
analysing the number of individual homoplasmic mito-
chondrial variants we found that samples harbouring the 
highest number of variants had the highest Ki-67 indices 
independent of histological type. Interestingly, increased 
mtDNA copy number was previously found in gliomas and 
the relevance of this finding needs further evaluations in 
pituitary adenomas [36].

We also identified eight individual variants that showed 
different prevalence in the different histological groups.

Four (G185A, A188G, T16093C, and T16126C) 
were localized in the D-loop region. Displacement loop 
(D-loop) region (16,024–16,569 nucleotides) is located in 
the mitochondrial control region (16024-576 nucleotides), 
often called the “non-coding” part of the mitochondrial 
DNA (mtDNA). The function of the D-loop is not entirely 
clear yet, which makes more difficult to understand the rel-
evance of the present variants. A growing number of stud-
ies have been published about correlations between D-loop 
variants and clinical features [37–39]. It has been shown 
that D-loop mutations may play role in the pathogenesis 
of breast cancer [39], gastric cancer [40], bladder cancer, 
lung cancer, and hepatocellular carcinoma [41], while Lin 
et al. found that somatic mutations in the D-loop associ-
ated with a better survival in oral squamous cell carcinoma 
patients [42]. However, the exact functional contribution 
of D-loop alterations in tumorigenesis has to be further 
investigated [41].

Another four variants of eight that showed different 
prevalence in the different histological groups encoded MT-
CYB, MT-ND1, and MT-ND4 (mitochondrially encoded 
NADH:ubiquinone oxidoreductase core subunit 4). MT-
CYB is the only subunit of the Respiratory Complex III 
(Cytochrome bc1 complex) that is encoded in the mito-
chondrial genome, and it is essential for the assembly of the 
complex [43, 44]. Moreover, it was shown that disruption 
of Complex III assembly dramatically reduced the level of 
Complex I as well [45, 46]. T14798C has been implicated 
in non-muscle invasive bladder cancer [47]. The MT-ND1 
gene has been examined in association with several diseases 
including recurrent pregnancy loss [48], colorectal cancer 
[49], bladder cancer [47], Parkinson’s disease [50, 51], and 
contradicting results have been published regarding it’s 
possible effect on multiple sclerosis [52] and Leber’s optic 
atrophy [53–55]. MT-ND4 is a subunit of the Respiratory 
Complex I and is needed to the assembly of the complex. 
Variations in ND4 sequence have been associated with mac-
ular degeneration [56], Leber’s hereditary optic neuropathy 
[57], mesial temporal lobe epilepsy [58], and cystic fibrosis 
[59]. In acute myeloid leukaemia, an association between 
ND4 variant and favourable prognosis has been shown [60]. 
In contrast, findings from other groups suggested that vari-
ations in this gene can elevate pancreatic cancer risk, or be 
involved in causing cisplatin resistance [61].

We found that the T16189C variant was frequent in non-
recurrent adenomas, while it was absent in recurrent ones. 
Unfortunately, we could not analyse the primary tumor of 
our recurrent pituitary samples. However, a previous publi-
cation compared primary and recurrent oral squamous cell 
carcinomas and described that although most of the patients 
showed similar distribution of mutations in the index and 
the recurrent tumor, there were differences in the level of 
heteroplasmy [28].
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Currently, there is no other publication about whole 
mtDNA analysis of different types of pituitary adenomas. 
A single study focused on genes encoding proteins of Res-
piratory Complex I in pituitary oncocytomas and another 
one analysed it in head and neck tumors [21, 22]. In total, 
20 variants of mtDNA were identified in pituitary oncocy-
tomas [22], and 12 others in other head and neck tumors 
[21]. Interestingly, none of these variants were found in 
more than one sample. Notably, these variants were not 
present in our samples emphasizing the difference between 
pituitary oncocytomas and pituitary adenomas of anterior 
lobe origin. These data are in agreement with the conclu-
sion made by authors that unique mtDNA variants are spe-
cific for oncocytomas. Our results extend these finding by 
showing that unique mtDNA variants can be found in pitu-
itary adenoma subtypes. With respect to data on pituitary 
tumors, the HmtDB database (http://www.hmtdb​.uniba​
.it/) contains 19 mitochondrial variants in 19 GH ± PRL 
(growth hormone ± prolactin) producing adenomas. Vari-
ants described in these samples contained overlaps with 
our results at 82 positions including the T16189C variant 
(Online Resource 1). The other 414 variants identified in 
the current study have never been reported. However, it 
has to be noted that the low number of samples used in 
our study was a limitation of our work, and the variants 
identified should be further investigated on higher number 
of sample set.

Taken together, in this study, we reported for the first 
time the whole mitochondrial genome pattern of different 
human pituitary adenomas. We identified variants char-
acteristic of gonadotroph, GH-producing, and hormone-
immunonegative pituitary adenomas. We also observed 
that high number of variants may have a role in higher 
proliferation rate and that the T16189C variant can poten-
tially associate with benign behaviour. Although the bio-
logical relevance of these results needs further validation, 
considering our data together with the low level of het-
eroplasmy suggest that mitochondrial genome alterations 
may not play a major role in the pathogenesis of pituitary 
adenomas. We also showed that NGS is a reliable method 
for the analysis of mtDNA variants with no false-positive 
results, and can be used for accurate quantification of even 
a low level of heteroplasmy.
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