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Abstract 15 

Soils and their functions are critical to ensure the provision of various ecosystem services. Many 16 

authors nevertheless argue that there are a lack of satisfactory operational methods for quantifying 17 

the contributions of soils to the supply of ecosystem services. Therefore, it is difficult to automate 18 

and standardize the mathematical and statistical methods for the selection of indicators and their 19 

scoring. Our objective is the development of a novel soil quality and ecological indicator selection 20 

and scoring method based on a database representing the most common Hungarian soils typical for 21 

arable lands of Central Europe (Chernozems, Phaeozems, Luvisols, Cambisols, Gleysols, Solonetz, 22 

Arenosols). For evaluation purposes, soil texture, depth to groundwater table, soil organic matter 23 

(SOM), pH, calcium carbonate equivalent (CCE), electrical conductivity (EC), Na, available N, P, K, Mg, 24 

S, Cu, Zn and Mn of 1045 plots representing a total land area of about 5,000 hectares at 0-30 cm 25 

layer were analyzed. We classified the samples into 25 soil types. Using correlation, principal 26 

component analysis and discriminant analysis the direction and strength of the intercorrelation of 27 

indicators and their combinations were determined. Indicators were classified into the following 28 

categories: (1) indicators that characterize nutrient retention and cation exchange capacity: texture, 29 

SOM, EC and Na; (2) available nutrients, relatively independent from management practices: K, Mg, 30 

Cu; (3) indicators that determine base saturation: pH, CCE, available Mn; (4) highly variable available 31 

nutrients: N, S, P, Zn. By reviewing the results of Hungarian long-term experiments, we interpreted 32 

the soil indicators as a function of agricultural suitability. Following the parameterized and non-linear 33 

interpretation of the indicators, we analysed the variance of soils, in terms of their agricultural land 34 

suitability. According to the intercorrelation of input indicators and variance of scored indicators the 35 

minimum data set for soil quality assessment includes texture, depth of groundwater table, SOM, pH, 36 

Na, available K, P and Zn. In order to further advance our soil quality assessment model, our 37 

following goals target the determination the hierarchical ranking and grouping of soil parameters in a 38 

combined manner. 39 

Keywords: indicator scoring functions, principal component analysis, soil quality index, available 40 

nutrients, soil moisture regime 41 
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To prevent and mitigate soil degradation processes, spatial and temporal heterogeneity pedological 44 

data with readily measurable indicators, are essential for appropriate soil management strategies. 45 

Soil quality refers to the capacity of soils to function and sustain plant and animal life within natural 46 

and managed environments (Karlen et al., 1997). Soil quality cannot be directly obtained but rather 47 

inferred by measuring the appropriate soil physical, chemical and biological indicators (de Paul 48 

Odabe and Lal, 2016). 49 

Soil Quality Indices (SQIs) synthesize soil attributes into a format that enhances the understanding of 50 

soil processes and promotes appropriate management. The Soil Management Assessment 51 

Framework (SMAF) is an example of an SQI that operates in three steps (Andrews et al., 2004): (1) 52 

indicator selection; (2) interpretation of the selected indicators (scoring); and (3) aggregation of 53 

indicators in an index through weighted additive technique. Site-specific adaptations of these SQI are 54 

the most commonly used approaches today to evaluate impacts of agricultural practices, cropping 55 

systems (Armenise et al., 2013; Li et al., 2013; Ivezić et al., 2015; Raiesi and Kabiri, 2016; Biswas et al., 56 

2017), land use change and land degradation (Masto et al., 2016; Raiesi, 2017). During a land 57 

suitability assessment (Kurtener and Badenko, 2000; Baja et al., 2007), the most important task is the 58 

evaluation of the productivity function of soils and the impact of soil properties on yield. However, 59 

this is complicated as soil properties, in various combination and to a different degree, influence crop 60 

yields and determine soil functions in a mixed manner. 61 

Among the available soil quality indicators selection methods, Total Data Set (TDS) and Minimum 62 

Data Set (MDS) have been commonly used (Ghaemi et al., 2014; Rojas et al., 2016). In the MDS 63 

indicators are selected based on expert opinion or multivariate statistical analyses, most commonly 64 

through principal component analysis (PCA) (Andrews et al., 2004). 65 

The second step is normalizing the MDS indicators by different numerical scales (usually between 0 66 

and 1) using linear and non-linear scoring functions. The mathematical basis of this scheme is 67 

provided by the Fuzzy logic (Zhang et al., 2004; Busscher et al., 2007). This method is a clustering 68 

approach in which the true values of variables (membership) may be any real number between 0 and 69 

1, where, in our case, 0 completely fails to fulfil, while 1 completely fulfils the demands of land use. 70 

Globally, the most commonly accepted linear and non-linear functions and integrating method of 71 

scaled indicators with a weighted additive manner provided by the SMAF (Andrews et al., 2004). In 72 

some cases, the selection, the linear interpretation, and determination of scoring thresholds of the 73 

indicators are based on linear correlation between the indicators and yield (Thuithaisong et al., 2011; 74 

de Paul Obade and Lal, 2016; Biswas et al., 2017). 75 

The need for the standardization of indices is a vital issue (de Paul Obade and Lal, 2016). We believe 76 

that the automation of the statistical selection of MDS is insufficient as the impact of selected soil 77 

parameters for the ecological functions is usually non-linear. Evidently, the functions of soils and soil 78 

quality are manifested under given conditions (climatic, hydrologic and topographic), and can only be 79 

interpreted according to land use type or the specific necessities of the plant grown in a specific soil. 80 

When selecting indicators soil quality indexes should be meet the needs of a variety of soil types 81 

even in relatively small areas (Juhos et al., 2015). 82 

There is a limited number of Central European SQI references available (Ivezic et al., 2015; Teodor et 83 

al., 2018). In Hungary, soil quality indices based on simple indicators, are not in use for land 84 

evaluation (Makó et al., 2007; Debreczeniné et al., 2003; Tóth et al., 2007a). The adaptation of soil 85 

quality indices to different environmental conditions is influenced by the employed soil analytical 86 

methods. In our opinion, the development of soil quality indices, especially for land suitability 87 



assessment, under the temperate climate of Central Europe requires a more complex multivariate 88 

approach. 89 

Our objective, therefore, is the development of a novel soil quality assessment method based on a 90 

database representing some Central European cultivated soil types and Hungarian soil analytical 91 

methods. We intend to elaborate a multivariate soil evaluation method, which expresses the rate, 92 

quality and combination of the limiting factors on soil productivity. Our specific goals in this study 93 

included (1) the multivariate assessment of indicators determined according to the existing 94 

Hungarian standards (2) the determination of the direction and strength of their intercorrelation and 95 

(3) the comprehensive evaluation of the indicators by mathematical modelling and according to the 96 

scored indicators by soil types identification of limiting factors for plant growth. These goals were 97 

achieved by reviewing the results of Hungarian long-term experiments, the complex and mutual 98 

interpretation of the indicators by mathematical modelling as a function of agricultural land 99 

suitability.  100 

 101 

2. Materials and methods 102 

2.1. Site description  103 

The employed soil database, representative of Hungary’s farmlands, was compiled from the 104 

laboratory analyses of 1045 soil samples collected from a total land area of about 5,000 hectares. 105 

Each soil sample represents a homogeneous land parcel of maximum of 5 hectares. In all cases, 106 

samples were taken from a depth of 0 to 30 cm. The geographical location of the sampling sites is 107 

shown in Figure 1. The soil types of the research sites and their qualifiers are shown in Table 1 108 

according to the World Reference Base (WRB) (FAO, 2014) classification. The climate of the studied 109 

sites is characterized by cool winters and hot, dry, drought-prone summers, with a mean annual 110 

precipitation of 580 mm and mean annual temperature of 10.5°C (Fábián and Matyasovszky, 2010). 111 

Each of the experimental sites is uniformly cultivated by conventional tillage techniques. The 112 

following crops have been grown in a crop rotation: winter wheat (Triticum aestivum L.) and maize 113 

(Zea mays L.), and occasionally alfalfa (Medicago sativa L.), sunflower (Helianthus annuus L.) and 114 

rape (Brassica napus L.). 115 

2.2. Soil analyses 116 

The total analysed soil data set is composed of parameters determined according to the responsible 117 

authorities. Soil pH was determined at a soil/1 M KCl solution ratio of 1:2.5 and electrical 118 

conductivity (EC) was measured in a 1:5 soil/water mixture potentiometrically (MSZ-08-0206-119 

2:1978). Determination of the calcium carbonate equivalent (CCE) was conducted using the 120 

volumetric method (MSZ-08-0206-2:1978). Soil organic matter (SOM) was measured by the Tyurin 121 

method (Kononova, 1966). Available nutrient contents were determined with acidic (pH 3.75) 122 

ammonium lactate extraction (Egnér et al., 1960) for phosphorus (P) and potassium (K), in 1 M KCl 123 

extraction for nitrogen (N), magnesium (Mg) and sulfur (S), in nKCl + EDTA extraction (MSZ 124 

20135:1999) for zinc (Zn), copper (Cu) and manganese (Mn). The determination of soluble and 125 

exchangeable sodium (Na) was based on extraction with acid ammonium lactate (Egnér et al., 1960). 126 

Soil texture was characterized using a plasticity test by the water volume (cm3) for consistency 127 

change to fluid for 100 g of soil (MSZ-08-0205:1978). This water volume highly correlates with the 128 

clay content and the exchangeable Na, and it well characterizes the water retention capacity of soils 129 

(Várallyay, 2008). We also monitored the mean annual groundwater table depths for Solonetz soils 130 

and Gleysols at multiple sites. 131 



2.3. Statistical analyses 132 

The paired relation between the variables was examined by the Pearson correlation coefficient (r). To 133 

determine intercorrelation among the indicators, we also performed a Principal Component Analysis 134 

(PCA) based on the standardized database. For standardization, we used the formulae log(x+1) in 135 

order to enhance normality and linearity and to reduce the effect of outliers. The suitability of the 136 

sampling (selected variables) was determined with Kaiser-Meyer-Olkin (KMO) and Bartlett tests. Only 137 

principal components (PCs) with eigenvalue > 1.0 were analysed (Andrews et al., 2004). The PCs were 138 

evaluated based on the loadings of the individual variables (the correlation between the variable and 139 

the principal component). To determine the explanatory power of the soil forming processes of input 140 

indicators, for the WRB orders as dependent category variable, discriminant analysis (DA) was 141 

performed with the PCs as independent variables. Normality of data was analysed by the 142 

Kolmogorov-Smirnov test and skewness and kurtosis of variables. All data were statistically 143 

processed using IBM SPSS Statistics 22 and MS Excel. 144 

2.4. Indicator scoring and mathematical modelling 145 

To develop novel site-specific soil indicator scoring functions, we analysed the results of the 146 

Hungarian fertilization and soil amendment long-term experiments and land management methods 147 

(Table 2). According to our findings, the indicators and their critical threshold values were analysed 148 

and interpreted. By reviewing the literature, we also incorporated the ecological requirements of the 149 

crops but we did not evaluate indicators plant-specifically. Practically, however, crop rotation is 150 

employed, therefore, a general evaluation was applied to the most common crop cultures. All 151 

indicators were scored on a scale of 0 to 1 expressed either on the linear or non-linear scale, where 0 152 

completely contradicts the demands of land use, while 1 completely corresponds with that. As 153 

individual parameters cannot be evaluated independently, we took into consideration the soil 154 

properties most directly influences each other, i.e. the models were differentiated by soil categories 155 

in some cases. The models of soil quality properties and their parameters are shown in Table 3. The 156 

mathematical modelling was performed in MS Excel software. 157 

The pH was interpreted with a bilogistic model that has a saturation value (p0) with slope and 158 

inflexion parameters in both the increasing (p1, p2) and decreasing phases (p3, p4). Asymmetric 159 

saturation and degradation models were used to score the texture properties. Based on the 160 

groundwater depth their increasing and decreasing slope parameters (p1, p2) and axis shift and peak 161 

point parameters (p3, p4) were changed. The EC and Na were interpreted using logistic models (“less 162 

is better”) where p0, p1, p2, p3 are their limit, slope and inflexion point parameters, respectively. The 163 

logistic models (“more is better”) of the available K and P are significantly influenced by soil texture 164 

and pH hence their parameters were changed accordingly. The SOM, available Mg, Zn and Cu were 165 

interpreted with saturation models (where p1 is the saturation parameter, p2 is the slope parameter) 166 

but when modelling we made a difference by soil texture. In the case of the saturation model of 167 

available Mn, the parameters of function were differentiated by soil pH. The mineralized N and S 168 

contents were linearly ranked („more is better”) using the formulae y =x/xmax where xmax is the 169 

maximum value in the database. 170 

 171 

3. Results 172 

3.1. Bivariate correlations between soil quality indicators 173 



The descriptive statistics and the linear correlation matrix of the pedological indicators are shown in 174 

Table 4 and Table 5, respectively. On the analysed database a strong correlation (r>0.8) was found 175 

between pH and the CCE indicators, while the influence of base saturation was clearly observable on 176 

both parameters., a significant, but weak (r<0.39) or moderate (r=0.40-0.59) correlation exists among 177 

pH, Na and EC since salt accumulation and Na adsorption do not always occur together. In addition, 178 

the depth of CaCO3 accumulation zone also indicated a great variability among the studied soils. Only 179 

a few Solonchak soils were found in the analysed database and in general, this soil type is rarely 180 

cultivated and used as farmland. EC strongly correlated with available Mg and S, therefore, besides 181 

Na, Mg and S must also be present among the water-soluble salts. Although Na did not indicate 182 

exchangeable sodium percentage (ESP), the physical impact of Na-saturated colloids on water 183 

retention and drainage properties of soils is well represented in the texture indicator based on 184 

consistency change. A weak but significant linear correlation was observed between Na and soil 185 

texture. SOM showed a moderate correlation with texture. In the analyzed dataset, available Mg and 186 

Cu indicated a high correlation with texture, while only a weak and moderate correlation was found 187 

between available K, N, S and Zn and texture. Consequently, these nutrients are adsorbed most 188 

commonly to the mineral colloids of soils. Among the available nutrients, Cu, Mn and P showed the 189 

highest but only weak-moderate correlation with soil pH. 190 

3.2. Multivariate statistical analyses 191 

According to the eigenvalues greater than 1, the PCA yielded four principal components (PCs) 192 

explaining a total of 75.658% of the variance for the entire set of variables (Table 6). The 193 

commonality of the variables, which expresses the rate of preserved heterogeneity of the given 194 

parameter, were larger than 0.588. The particle size distribution and the influenced properties by 195 

texture are expressed in PC1 based on the larger loading value of texture, Mg, Cu, EC, SOM, K and 196 

Na. PC1 explains 33.55% of the total variance of the input indicators. The second factor accounted 197 

for 22.044% of the total variance. PC2 was considered as a specific chemical parameter due to the 198 

high loadings of the Mn and CCE and pH indicators. Available P and Zn indicator loading values were 199 

the largest in PC3. The variance reached 10.931% in the latter case. The PC4 accounted for 9.134% of 200 

the total variance. PC4 was labelled as available nitrogen and sulphur due to the high loadings of the 201 

N and S indicators. 202 

The linear discriminant analysis was carried out for the WRB classification at the values of PC1, PC2, 203 

PC3 and PC4 as independent variables. Our results indicated a prediction accuracy of only 47.5% for 204 

the four principal components of the WRB categories. The canonical correlation analyses showed 205 

that the first and second discriminant functions (DFs) explain 70.9% and 27.1% variance of the 206 

independent variables, respectively, i.e. they almost completely account for the total variance. 207 

According to the values of the structure matrix, the ranking order of the principal components is PC1 208 

(0.709), PC2 (-0.497), PC4 (0.100) and PC3 (0.089) in DF1, whereas PC2 (0.792), PC1 (0.542), PC3 209 

(0.354) and PC4 (-0.022) in DF2. Soil types primarily differentiated as a function of PC1 and PC2 210 

values indicating the physical and chemical properties of soils (Fig 2). At the same time, the influence 211 

of PC3 and PC4 proved to be less important. 212 

3.3. Scored indicators 213 

The statistics of the scored indicators is shown in Table 7, whereas the mean values according to the 214 

soil types are presented in Table 8. The distribution of the obtained y_pH values was skewed left 215 

significantly due to the higher frequency of acidic values in the database. The lowest y_pH values are 216 

usually found for dystric Gleysols and dystric fluvic Arenosols (No 11, 16, 20, 23). The distribution of 217 

interpreted Na and EC variables are markedly skewed to the left. The y_EC value was found relatively 218 



low for Solonetz and sodic Gleysols. The mean y_Na value was between 0.28 and 0.67 for the latter 219 

soil types (No 21-25). 220 

Due to their extremely high spatial variability in terms of texture and location, the studied soils of 221 

Hungary showed a relatively high standard deviation of y_texture values. The lowest values were 222 

obtained for reductigleyic and clayic Gleysols soils (No 7 and 8) with a mean value of 0.32 to 0.37. 223 

The mean y_texture value was between 0.57 and 0.68 for arenic Cambisols és Arenosols (No 17-20). 224 

The mean value of y_SOM for the entire database was 0.69 with a normal (Gaussian) distribution. 225 

Values of less than 0.6 were typical for some Gleysols and Solonetz soils due to their high clay 226 

contents and anaerobic conditions (No 8, 10, 15, 16, 22, 23). Values below 0.6 were also found for 227 

Arenosols owing to their low SOM content and loose structure with large pore spaces (No 20). Scored 228 

values between 0.6 and 0.7 were common for Phaeozems, Cambisols and Luvisols formed under 229 

dense forest canopies, where soils are characterized by reduced organic matter and humus 230 

accumulation. Unsurprisingly, the highest y_SOM values were found in Chernozem soils (No 1 and 3). 231 

Among the interpreted parameters, the y_N and y_S parameters have the largest variance, and 232 

unlike the other factors, they are skewed to the right and consequently their mean scored values are 233 

extremely low (0.13 and 0.08). The highest scored values of y_S were characteristic for the saline and 234 

sodic soils (No 22 and 23), thus this parameter indicates the accumulation of water-soluble salts. 235 

Compared with other nutrients, the mean of the scored values of y_P (0.56) is the lowest in the 236 

entire database, indicating lowered and depleted phosphorous availability (and lowered release 237 

rates) in the studied soils. The phosphorus imbalance and deficiency (low dissolution and 238 

mineralization rates) in the soil may have been caused by insufficient fertilization practices or 239 

extreme pH conditions. 240 

Based on the y_K and y_Mg values, potassium imbalance and deficiency likely occurs in the studied 241 

soils, as low potassium availability and concentration may be observed in many different soil types 242 

(e.g. No 5, 6, 11, 16, 20). The magnesium-supplying and releasing capacity of the analysed soils is 243 

generally high, with a mean scored value of y_Mg (0.98) and a standard deviation of 0.058. The 244 

lowest y_Mg values were found for Arenosols due to the highest ratio of nutrient loss by leaching, 245 

low surface charge density and the reduced specific surface area of colloids. 246 

The average values and the standard deviation values of y_Mn were similar to the corresponding 247 

parameters of magnesium. Lower values were commonly found a reducigleyic dystric Gleysols and 248 

acidic soils of sandy textures (No 7, 18, 20). Based on the values of the interpreted variables, we 249 

learned that the Cu-supplying capacity of the studied soils is generally good, with scored values less 250 

than y_Cu <0.8 only found in a very few soil samples. In accord with phosphorous, low Zn-supplying 251 

capacity characterizes each analysed soil type, and y_Zn ranged widely between 0.144 and 1.000 252 

with a mean value of 0.64. 253 

 254 

4. Discussion 255 

4.1. Indicators used for soil quality indices 256 

To estimate the impact of soil chemical properties on nutrient cycle as well as water and nutrient 257 

uptake, most authors studied pH-H2O (occasionally pH-CaCl2), electrical conductivity, cation exchange 258 

capacity (CEC) and exchangeable cations (Zhang et al., 2004; Qi et al., 2009; Masto et al., 2015). 259 

Under arid climates, exchangeable sodium percentage (ESP), sodium adsorption ration (SAR) and 260 



calcium carbonate equivalent (CCE) complete the list of analysed parameters. Nevertheless, due to 261 

the correlation of the above-listed parameters, only one or two indicators have been selected and 262 

used in the development of soil quality indices. From the results of multivariate statistical analyses, it 263 

is claimed that under typical soil conditions in Hungary, pH, CCE, EC and AL-soluble Na were found to 264 

be suitable indicators of soil quality. 265 

Among the indicators that characterize the physical properties of soils, available water retention 266 

capacity, bulk density, aggregate size distribution and stability (especially the mean weight diameter) 267 

and the particle size distribution (clay, silt and sand percentage) have been extensively studied by 268 

former studies (Ghaemi et al., 2014; Rabbi et al., 2014; Göndöcs et al., 2015; Raiesi, 2017). In our 269 

assessments, due to its impact on soil water and air dynamics, soil texture, as a physical parameter, 270 

was preferably implemented during the elaboration of the evaluation algorithm. Under the drought-271 

prone climatic conditions of Hungary, water retention capacity of soils profoundly influences the 272 

yield of dryland crops (Farkas et al., 2005; Tóth et al., 2007). 273 

The organic matter dynamics of soils influences both their nutrient cycle rate and the functional 274 

activity of soil biota (Greiner et al., 2017; Fekete et al., 2017). To characterize this ecosystem 275 

function, many indicators have been applied. Among them, soil organic matter, carbon content 276 

(SOM/SOC or TC) have been used the most commonly (Yao et al., 2014; Nakajima et al. 2015; Biswas 277 

et al. 2017; Nabiollahi et al. 2017). Biological indicators allow the detection of the impacts of 278 

management practices and different crops as they are not limited to specific influences (e.g. Karlen 279 

et al., 1997; Lima et al., 2012; Zobeck et al., 2014; Raiesi and Kabiri 2016). 280 

Chemical and physical properties also impact soil organisms and consequently, biological indicators 281 

would be distinct indicators for the identification of soils in this study (Matics and Biro, 2015; Dudás 282 

et al. 2017). Nevertheless, we did not employ this approach as a comprehensive database on the 283 

biological activity of soils is not available in Hungary. Furthermore, our database was based on the 284 

farmlands of similar cultivation and land use management practices and our primary goal was to 285 

interpret the most basic physical and chemical parameters. After validation, it would be the 286 

incorporation of biological parameters into the evaluation would considerably improve assessment 287 

accuracy. 288 

Comparison of available and soluble nutrient contents, measured with different extracting solutions, 289 

is often difficult, as their comparison and data usability are influenced by the physical and chemical 290 

properties of the studied soils. For the determination of available phosphorous, the most commonly 291 

used extraction solution is the 0.5 M NaHCO2 (pH 8.5) (Armenise et al., 2013; Li et al., 2013). In 292 

contrast, in Hungary the acidic ammonium lactate (pH 3.7) method is used, which dissolves the less 293 

available Ca- and Mg-phosphates of alkaline soils (Buzás et al., 1979; Ivezic et al., 2015). Therefore, it 294 

is indispensable to include the chemical properties of soils in the evaluation algorithms. Some 295 

authors used ammonium-acetate-soluble potassium content (Sharma et al. 2014; Singh et al. 2014; 296 

Yao et al. 2014), which is more in line with the latest Hungarian datasets. Available magnesium is 297 

rarely analysed in soil quality studies and is only interpreted by a few authors (Saglam et al., 2015; 298 

Sharma et al., 2014). DTPH-extractable Fe, Mn, Cu and Zn were interpreted by some authors (Lima et 299 

al., 2012; Ramachandran et al., 2016; Biswas et al., 2017). In Hungary, available sulphur and 300 

magnesium were determined with 1 M KCl solution and metallic micronutrients were measured 301 

using EDTA +1 M KCl extraction (Buzás et al., 1979). This extraction method enables only a limited 302 

comparison with similar parameters published in the international literature. 303 

4.2. Multivariate statistical methods for selecting and weighting soil quality indicators 304 



Based on the literature review, it can be stated that the selection of MDS indicators is automated 305 

using principal component analysis (PCA) (Zobeck et al., Nakajima et al., 2015; de Paul Obade and Lal, 306 

2016; Nabiollahi et al., 2017). PCA generates the linear combination of input parameters, namely 307 

principal components (PCs) that do not intercorrelate. By using PCA results (eigenvalues of PCs and 308 

loadings), indicators, characterized by low intercorrelation, can be selected, in our case, these are the 309 

texture, K, Na, CCE, Mn, P, Zn, N and S (Table 6). These indicators explain the majority of TDS 310 

variance and the results of the PCA are also used to weight the indicators for calculation the soil 311 

quality indices (Andrews et al., 2004). Nevertheless, the question may arise whether the variables of 312 

the highest variance are at the same time the most important? Following our variance analyses of 313 

the parameterized and non-linear interpretation of the indicators, in terms of their agricultural land 314 

suitability, we may ponder whether the MDS variables should be selected before or after the scoring. 315 

In our opinion, the complex interpretation of the principal components (PCs) is more vital regarding 316 

their information source on the latent relationship among the individual indicators, including soil 317 

forming processes and the impacts of land use (Juhos et al., 2015; Raiesi and Kabiri, 2016; Vinhal-318 

Freitas et al., 2017). PC1 specifies the amount of mineral and organic colloids, and consequently, the 319 

cation adsorption capacity of the soil. Eventually and indirectly, it identifies the relative maturity level 320 

of soils, water and nutrient retention capacity which subsequently determines soil fertility and 321 

productivity (Makó et al., 2003; 2007; Rajkai et al., 2015). Indicators that specify the process of 322 

salinization and sodification are not separated in the PCA. The PC2 shows that acidity and alkalinity 323 

very strongly controlled by the CaCO3 content of the analysed soils (Csathó, 2001). Accumulation of 324 

Na-salts is not significantly expressed by pH measured in KCl solution. Mn availability and solubility 325 

are also influenced by CaCO3 content, as pronounced negative linear correlation exists between 326 

these two parameters (Buzás, 1979). The significant correlation between the available P and Zn 327 

indicators and their segregation in the PC3 are explained by multiple factors. Zinc is strongly 328 

adsorbed on the surface of clay minerals and has a low concentration in the soil solution. The 329 

solubility of various Zn-salts is low and increases with decreasing pH (Fomina et al., 2010). In soils of 330 

high phosphate concentration, Zn-phosphates of low solubility are formed, which can be detected by 331 

standard extracting solutions. According to PC4, the elements N and S have similar biogeochemical 332 

cycles and the concentration of their mineral forms rapidly changes in the soil. 333 

According to the significant predictive power of the PC1 and PC2 in discriminant functions, it can be 334 

stated that the zonal, climate-determined soil types, like Luvisols and Chernozems, are easily 335 

identified based on their chemical properties, while Arenosols and sandy Cambisols are recognized 336 

according to their physical (textural) attributes (Makó et al., 2007). Figure 2 reveals the diverse 337 

character of Gleysols and the variable depth of CaCO3-rich and natric horizons of Solonetz soils. Our 338 

results pointed out the common prediction power of the texture, SOM, K, Mg, Na, Cu, EC, CCE, pH 339 

and Mn by soil genetic types and the active soil forming processes. 340 

We propose that the pedological indicators can be classified into four major groups. (1) Water 341 

balance and salt dynamics indicators that characterize nutrient retention and cation exchange 342 

capacity of soils: texture, SOM, EC and Na. (2) Nutrients, relatively independent from and 343 

management practices and associated with and adsorbed on the surface of soil colloids and clay 344 

minerals: K, Mg, Cu (3) Indicators that determine base saturation and available nutrients, where 345 

nutrient availability is primarily determined by the base saturation of soils: pH, CCE, Mn (4) Highly 346 

variable nutrients and/or nutrients greatly influenced by climate and type of land management.  347 

Available nutrient concentrations of N, S, P, Zn, however, are primarily influenced by fertilizer 348 

application intensity. Consequently, the critical evaluation of the PCs and indices according to soil 349 



types may prove useful in multiple analytical algorithms (Mukherjee and Lal, 2014; de Paul Obade 350 

and Lal, 2016; Biswas et al., 2017). 351 

4.3. Indicator scoring functions 352 

We believe that the individual environmental and soil parameters cannot be evaluated 353 

independently. Furthermore, the functions of soils and soil quality are revealed under given 354 

conditions and can only be interpreted specifically according to land use type or the exact necessities 355 

of the plant grown under the given environmental conditions. In contrast, based on former literature, 356 

it is often necessary to use and adapt individually analyzed indicators and scoring functions from 357 

other studies conducted under different ecological conditions. The most common indicator scoring 358 

functions in the literature are summarized in Table 9. 359 

We believe that the linear interpretation of indicator scoring thresholds is based on the linear 360 

correlation between the indicators and yield. However, this correlation only proved successful for 361 

certain a limited number of soil types, where only one or two soil parameters limit yield and soil 362 

productivity (Thuithaisong et al., 2011; de Paul Obade and Lal, 2016; Biswas et al., 2017). In addition, 363 

the soil quality-yield relation is not necessarily linear, while other soil parameters explain yield in a 364 

given combination (Cox et al., 2003; Ayoubi et al., 2009; Juhos et al., 2015). 365 

The scored pH values (y_pH) indicate that the crops favoured the high base saturation in soils and 366 

they were less sensitive to acidity than to high alkalinity (Csathó, 2001; Debreczeniné and Németh, 367 

2009; Nagy, 2011). Therefore, pH-KCl values of 5.5 to 7.5 were considered non-limiting, which 368 

corresponds to the scored values of y = 0.9 to 1.0. Any pH value below 4.5 and above 8.0 were 369 

evaluated as strongly limiting values for crop growth, therefore scored values of lower than 0.5 were 370 

assigned to them. Many crops are commonly unresponsive to high CaCO3 concentration, therefore 371 

CCE was not interpreted separately. CCE is an important indicator in terms of nutrient availability and 372 

solubility, hence it was evaluated and included in the statistical analyses during nutrient dynamics 373 

evaluations. 374 

The interpreted EC and Na values point out the moderate tolerance of crops against salinity and high 375 

sodium contents and the unfavourable impact of adsorbed Na on soil aeration and hydraulic and 376 

physical properties (Prettenhoffer, 1969; Szabolcs, 1971). All investigated crops poorly tolerated high 377 

salinity and excess concentration of alkaline Na-salts. This property was already partially included in 378 

the evaluation of pH. EC values of <0.4 dS m-1 and Na values <75 mg kg-1 were assumed non-limiting 379 

for crop growth (where y>0.9), whereas EC higher than 0.8 dS m-1 and Na values exceeding 200 mg 380 

kg-1 were assumed critical for crop growth, corresponding to y values of less than 0.5. 381 

In terms of the soil physical characterization, our analyses focused on the water retention potentials 382 

of soils and soil aeration; i.e. parameters primarily determined by texture and the depths of the 383 

capillary fringe zone and the groundwater table (Makó et al., 2003; Farkas et al., 2005; Tóth et al., 384 

2007; Tóth et al., 2014; Rajkai et al., 2015). Whereas higher water retention capacities correspond to 385 

better moisture availability during periods of drought, rainy periods enhance the development of 386 

reductive and anoxic soil conditions. Our mathematical model shows that the highest available water 387 

capacity exists for loamy, and clayey loam soils (Várallyay, 2008; Rajkai et al., 2004). Furthermore, the 388 

higher the clay content of the soils is the deeper is located the optimal depth of the groundwater 389 

table (between 85 and 180 cm) (Géczy, 1968; Lóczy and Dezső, 2013; Lóczy et al. 2017). Our model 390 

was poorly applicable for alfalfa due to its preference for deep groundwater table. 391 

When interpreting SOM, the biological functions (nitrogen-supply, water retention and soil structure) 392 

of organic matter was evaluated (Greiner et al., 2017). Since the mineralization and release of 393 



nitrogen is primarily the function of air and water availability and textural properties under the given 394 

climate (Fekete et al., 2017), the same SOM content provides better conditions for sandy loam soils 395 

than clayey soils (Buzás et al., 1979; Debreczeniné and Németh, 2009). SOM, through its influence on 396 

nitrogen-supply, water retention and soil structure, significantly affects yield in Hungary 397 

(Debreczeniné and Németh, 2009; Hermann et al., 2014b). Although the relationship is rather 398 

complex between yield and SOM, using significant non-linear regression between SOM and yields of 399 

winter wheat, maize and alfalfa, saturation functions were given by Csathó (2003a; 2003b; 2003c) for 400 

the period of 1960 to 2000 based on long-term fertilizer experiments. Their results and saturation 401 

functions are in a good correspondence with the model-based findings of the current study. 402 

Our scoring functions indicate the nutrient-response of crops and nutrient availability, as soil fertility 403 

is rather determined by nutrient dynamics (mobilization/mineralization-immobilization) and not 404 

nutrient concentrations (Kismányoky and Debreczeni, 2001; Debreczeniné and Németh, 2009). 405 

The P scoring model illustrates that the same ammonium-lactate-soluble P2O5 content (AL-P) in a 406 

moderately acidic soil provides better nutrient supply for crops than is the case of alkaline and 407 

calcareous soils (Sarkadi et al., 1987; Hermann et al., 2014a). The models of the available K and Mg 408 

indicate that dynamics of these elements (adsorption, desorption and mass flow) is significantly 409 

influenced by soil texture and charge density on the surface of clay minerals (Buzás et al., 1979; Stout 410 

and Baker, 1981). In other words, identical ammonium-lactate-soluble K2O and 1 M KCl-soluble Mg 411 

concentrations represent higher release rates and more readily available nutrient mineralization and 412 

mobilization in a sandy soil compared to clayey soil. Non-linear statistical relations between AL-413 

soluble P and K contents and yields are also significant (Csathó 1997; 2003d; 2003e; 2003f). 414 

As Mn availability is primarily determined by pH (Buzás et al., 1979; Gupta et al., 2008), this indicator 415 

was interpreted by taking into account the pH with a saturation model. Owing to its high adsorption 416 

capacity to the surface of clay minerals (Buzás et al., 1979; Gupta et al., 2008), Zn and Cu were 417 

interpreted as a function of soil texture. Nonetheless, Zn and Cu availability are also significantly 418 

influenced by other factors, including the presence of organic complexes and ion-antagonism 419 

mechanisms. 420 

The majority of N and S is stored in organic compounds under the moderately arid climate of 421 

Hungary and are mineralized (mobilized) by microorganisms if their concentration decreases in soil 422 

solution (Tkaczyk et al., 2017). The mineralized N and S content and release rates are primarily 423 

influenced by soil water balance (precipitation and evaporation) and moisture regime of soils, 424 

therefore the linear interpretation of N and S was found sufficient for the current model („more is 425 

better”). However, the question may arise whether the most changeable mineralized N and S 426 

variables are adequate for a soil quality index? For almost all soil type, the means of scored N and S 427 

values were the lowest but it is highly unlikely that these indicators would be the most important 428 

limiting factors. These indicators rather show a momentary state in soils. 429 

Our goal was to indicate the relative values of the interpreted indicators and show their impacts on 430 

soil properties. However, the simple addition of scores commonly gives a misleading result and 431 

contradicts the findings of the former Hungarian land evaluation studies (Géczy, 1969; Debreczeniné 432 

et al., 2003; Makó et al., 2007). Since the productivity of the soil is generated by the complex 433 

interaction of the simple soil properties, therefore, the combined analysis of indicators is crucial for 434 

the assessment of soil quality (Juhos et al., 2015). For example, some unfavourable properties can be 435 

compensated by other parameters, but in addition to synergies, antagonisms may also occur. 436 

Therefore weighting is usually indispensable.  437 

 438 



5. Conclusions 439 

Instead of the separate interpretation of soil indicators, their inter-correlations should be taken into 440 

account. Various soil physical and chemical properties must be incorporated as the nutrient 441 

availability of the soil is also affected by other soil properties. Soil moisture regime is also a more 442 

complex parameter and it is difficult to express using one simple indicator. 443 

During the development of a soil quality index, the number of variables should be reduced relying on 444 

the outcomes of the multivariate statistical analyses (principal component analysis and discriminant 445 

analysis) of the total data base. However, the selection of the minimum dataset should not be 446 

exclusively based on these findings. Although individual PCs (PC3 and PC4) have a little impact on soil 447 

quality (for a given soil type), still, based on statistical analyses, they could be important indicators 448 

for e.g.: another soil type, or more specifically, could significantly impact soil physical and chemical 449 

properties from an agricultural viewpoint, like the availability of Zn and P. In the case of the 450 

Hungarian indicators and arable lands, we suggest to look at the variance and existing combinations 451 

of the interpreted scores and to rank the limiting factors according to the scores for each soil type. 452 

In the current paper, however, our major objective was the identification of limiting factors for plant 453 

growth on the studied soil types. The most common limiting factors after their non-linear 454 

interpretation are texture, depth of groundwater table, SOM, pH, Na, available K, P and Zn which 455 

would be a minimum data set for a soil quality assessment. However, soil properties do not influence 456 

fertility and soil productivity independently, but rather in a complex and combined manner. When a 457 

land suitability index is based on these scores, the simple additive method for integration insufficient. 458 

In order to further advance a soil quality assessment model and improve the methodology of soil 459 

quality index development, our following goals target the determination the hierarchical ranking and 460 

grouping of soil parameters in a combined manner. For the given specific soil types the combination 461 

of these limiting factors should be studied and their weights need to be determined. 462 
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Fig 1 The geographical location of the sampling sites. 

  

Figure



 

Fig 2 The first and second principal components (PCs) of soil orders.  

Soil types primarily differentiated as a function of PC1 and PC2 values indicating the amount 

of mineral and organic colloids, and consequently, the cation adsorption capacity of the soil 

(PC1) and the acidity and alkalinity (PC2). The results of the discriminant analysis pointed 

out the common prediction power of the texture, SOM, K, Mg, Na, Cu, EC, CCE, pH and Mn 

by soil genetic types and the active soil forming processes. 
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Tables 

 

Table 1 

The soil types of the research sites and their qualifiers according to the World Reference Base (FAO, 2014) classification 

No. Order Principal qualifiers Supplementary qualifiers Depth of groundwater 

table (cm) 

Number of 

samples 

1 CHERNOZEMS Calcic Loamic/Siltic, Cambic >500 178 

2 CHERNOZEMS Endogleyic, Calcic/Endocalcic Loamic/Siltic 250-300 11 

3 CHERNOZEMS Calcic Loamic/Siltic, Endosalic, Endosodic 300 8 

4 PHAEOZEMS Endocalcic, Cambic, Calcaric Loamic >500 29 

5 CAMBISOLS Endocalcaric, Eutric Loamic/ Siltic >800 91 

6 LUVISOLS Haplic  Loamic/Siltic >800 164 

7 GLEYSOLS Mollic, Reductigleyic, Dystric (Eutric) Clayic, (Endosodic) 80-120 73 

8 GLEYSOLS Mollic, Reductigleyic, (Endocalcaric), Eutric Clayic, (Endosodic) 60-120 63 

9 GLEYSOLS Mollic, Fluvic, Reductigleyic, Dystric (Eutric) Siltic/Arenic 50-120 16 

10 GLEYSOLS Mollic, Reductigleyic, (Endocalcaric), Eutric Loamic 80-120 21 

11 GLEYSOLS Mollic, Reductigleyic, Dystric (Eutric) Loamic 80-110 17 

12 GLEYSOLS Mollic, Oxigleyic, Dytric Clayic 150-170 11 

13 GLEYSOLS Mollic, Oxigleyic, (Endocalcaric), Eutric Loamic/Siltic 130-150 13 

14 GLEYSOLS Mollic, Oxigleyic, Dystric Loamic/Siltic 150-180 16 

15 GLEYSOLS Mollic, Oxigleyic, Calcaric/Endocalcaric, Eutric Clayic/(Loamic), Endosodic 140-150 16 

16 GLEYSOLS Mollic, Oxigleyic, Dystric Clayic/Loamic, Endosodic 140-160 16 

17 CAMBISOLS Eutric, (Calcaric) Arenic >800 65 

18 CAMBISOLS Dystric/(Eutric) Arenic >800 103 

19 ARENOSOLS Fluvic, Calcaric/endocalcaric, Eutric (Aeolic) >200 35 

20 ARENOSOLS Fluvic, Dystric - >250 34 

21 SOLONETZ Endogleyic, Endosalic, Calcic Loamic 200-250 7 

22 SOLONETZ Endogleyic, Endosalic (Endocalcic) Clayic/Loamic 200-250 12 

23 GLEYSOLS Oxygleyic, Mollic, Dystric Clayic /(Loamic), Endosalic, Sodic 150-170 30 

24 GLEYSOLS Oxygleyic, Mollic, Endocalcic/(Calcic), Eutric Clayic /(Loamic), Endosalic, Sodic 150-170 10 

25 GLEYSOLS Oxygleyic, Fluvic, (Endocalcic), Eutric/Dystric Siltic, Endosalic, Sodic 150 7 

Table



Table 2 

References used for the indicator scoring and mathematical modelling 

Soil quality indicator 
Hungarian fertilization and soil long-term experiments; 

land evaluation methods 

pH (CCE) 
Géczy, 1968; Ángyán et al., 1982; Csathó, 2001; Debreczeniné 

and Németh, 2009; Nagy, 2011 

Texture (depth of 

groundwater table) 

Géczy, 1968; Várallyay, 2008; Makó et al., 2003; Rajkai et al., 

2004; Farkas et al., 2005; Tóth et al., 2007b; Tóth et al., 2014; 

Rajkai et al., 2015 

EC Prettenhoffer, 1969; Szabolcs, 1971 

SOM 
Buzás et al., 1979; Csathó, 2003a; 2003b; 2003c; Debreczeniné 

and Németh, 2009; Hermann et al., 2014b; 

P 
Sarkadi et al., 1987; Csathó, 2003d; 2003e; 2003f; Hermann et 

al., 2014a 

K Buzás et al., 1979; Csathó, 1997 

Mg Buzás et al., 1979 

Na Prettenhoffer, 1969; Szabolcs, 1971 

Zn Buzás et al., 1979 

Cu Buzás et al., 1979 

Mn Buzás et al., 1979 

S Buzás et al., 1979; Debreczeniné and Németh, 2009 

N Buzás et al., 1979; Debreczeniné and Németh, 2009 

 

  



Table 3 Scoring functions of soil quality indicators 

Dependent 

variables 
Models 

Formula parameters depending on soil properties 

 p0 p1 p2 p3 p4 

y_pH 

Bilogistic 

 
y=p0/(1+exp(-p1*(x-

p2)))-p1/(1+exp(-

p3*(x-p4))) 

- 1.085 1.470 4.416 2.906 7.992 

y_texture 

Asym. saturation and 

degradation 

 
y=(1-exp(-p1*(x-p3)))-(1-

exp(-p2*(x-p4)^2)) 

groundwater t. depth      

<85 cm  0.099 0.001 19.760 24.648 

85-120 cm  0.200 0.002 17.681 34.407 

120-180 cm  0.200 0.001 18.243 39.429 

>180 cm  0.169 0.001 17.661 43.765 

      

y_EC 

Logistic 

 
y=p0+(p1-p0)/(1+exp(-

p2*(x-p3))) 

- 1.150 0.000 3.942 0.784  

y_Na - 1.106 0.092 0.015 173.216  

y_P Logistic 

 
y=p0+(p1-p0)/(1+exp(-

p2*(x-p3))) 

CCE      

<0.1 m/m% 0.000 1.000 0.034 66.649  

0.1-1 m/m% 0.000 1.007 0.031 85.049  

1.1-5 m/m% 0.000 1.002 0.029 108.089  

5.1-10 m/m% 0.000 0.995 0.026 126.954  

>10 m/m% 0.000 0.984 0.024 153.817  

y_K 

Soil texture      

sand 0.000 1.017 0.041 90.469  

sandy loam 0.000 1.018 0.038 124.185  

loam, s.loam 0.000 1.040 0.037 151.272  

c.loam, s.clay 0.000 1.016 0.040 161.541  

clay 0.000 1.011 0.041 171.385  

y_SOM 

Saturation 

 
y=p1*(1-exp(-p2*x)) 

sand  1.039 1.179   

s. loam  1.087 0.770   

loam, s. loam  1.199 0.454   

c.loam, s.clay  1.978 0.167   

clay  4.124 0.060   

y_Mg 

sand  1.032 0.035   

s.loam, loam, s.loam  1.074 0.018   

c.loam, s.clay, clay  1.215 0.009   

y_Zn 

sand, s. loam  1.016 1.646   

loam, s.loam, c.loam, s.clay  1.298 0.408   

clay  2.639 0.120   

y_Cu 

sand, s.loam  1.013 6.002   

loam, s.loam, c.loam, s.clay  1.075 2.278   

clay  2.632 0.345   

y_Mn 

Soil pH      

pH<6  1.090 0.031   

pH 6-8  1.031 0.139   

pH>8  1.000 5.867   

y_N 
Linear 

 
y=x/xmax 

-      

y_S -      

The parameters are valid for 0 ≤ y ≤ 1 

0 

1 

0 

1 

0 

1 

0 

1 

0 

1 

0 

1 



 

Table 4 

Descriptive statistics including mean, standard deviation (SD), kurtosis, skewness, and 

minimum and maximum values for measured soil indicators of the research sites (n=1046). 

Parameter Dimension Min Max Mean SD Skewness Kurtosis 

pH - 3.65 7.80 6.08 1.11 -0.066 -1.269 

Texture
*
 cm

3
 100 g

-1
 25 71 39.24 9.79 0.682 0.071 

EC dS cm
-1

 0.04 0.80 0.14 0.11 1.653 2.763 

CCE m/m % CaCO3 0.00 30.00 1.92 3.88 2.796 10.060 

SOM m/m % 0.32 5.16 1.89 0.77 0.578 0.146 

P mg kg
-1

 P2O5 12 1980 154 171 4.824 33.534 

K mg kg
-1

 K2O 40 1190 241 143 1.945 5.774 

Mg mg kg
-1

 MgO 18 1360 348 270 1.151 0.377 

Na mg kg
-1

 Na 1.00 751.00 36.50 52.94 5.485 48.097 

Zn mg kg
-1

 Zn 0.10 10.20 1.39 0.95 3.641 20.645 

Cu mg kg
-1

 Cu 0.36 21.70 4.08 3.45 1.898 4.042 

Mn mg kg
-1

 Mn 11.00 598.00 175.76 126.69 1.044 0.978 

S mg kg
-1

 SO4-S 0.90 89.00 7.27 10.93 4.318 20.155 

N mg kg
-1

 NO2+NO3-N 0.00 78.13 9.76 8.79 2.671 10.107 

* Soil texture was characterized by the water volume (cm
3
) for consistency change to fluid for 100 g of soil. This 

water volume highly correlates with the particle size distribution. The values can be interpreted as follows: <25 –

coarse sand, 25-30 – fine sand, 31-37 – sandy loam, 38-42 – loam and silty loam, 42-50 – clay loam and silty 

clay, >51 – clay texture. 

  



Table 5 

The Pearson correlation coefficients (r) matrix of the measured soil indicators. 

  pH Text. EC CCE SOM N P K Mg Na Zn Cu Mn S 

pH 1              

Text. -0.01 1             

EC -0.12** 0.71** 1            

CCE 0.64** 0.00 -0.190** 1           

SOM 0.35** 0.60** 0.31** 0.43** 1          

N -0.12** 0.21** 0.42** -0.03 0.07* 1         

P 0.30** -0.06* 0.00 0.17** 0.11** -0.01 1        

K 0.15** 0.42** 0.45** 0.03 0.47** 0.19** 0.46** 1       

Mg -0.24** 0.80** 0.68** -0.26** 0.36** 0.15** -0.12** 0.39** 1      

Na 0.01 0.32** 0.40** 0.17** 0.23** 0.27** 0.01 0.26** 0.41** 1     

Zn -0.10** 0.16** 0.16** -0.14** 0.20** 0.16** 0.36** 0.35** 0.18** 0.09** 1    

Cu -0.33** 0.71** 0.68** -0.29** 0.30** 0.32** -0.04 0.38** 0.75** 0.40** 0.35** 1   

Mn -0.34** -0.10** 0.02 -0.50** -0.26** 0.14** -0.04 0.19** 0.10** -0.02 0.30** 0.10** 1  

S -0.19** 0.32** 0.48** -0.06 0.14** 0.53** -0.04 0.17** 0.26** 0.41** 0.12** 0.55** -0.08* 1 

**. Correlation is significant at the 0.01 level 

*. Correlation is significant at the 0.05 level 

 

  



Table 6 

Results of the principal component analysis of soil indicators 

Principal 

components 
PC1 PC2 PC3 PC4 

Eigenvalues 4.697 3.086 1.530 1.279 

% of variance 33.550 22.044 10.931 9.134 

Cumulated % of 

total variance 
33.550 55.594 66.525 75.658 

     

Indicators 

(communalities) 
Factor loadings 

Texture (0.875) 0.879 0.128 -0.177 -0.234 

Mg (0.871) 0.845 -0.198 -0.071 -0.336 

Cu (0.835) 0.839 -0.321 0.080 -0.145 

EC (0.668) 0.807 -0.098 -0.053 0.066 

K (0.736) 0.672 0.241 0.460 -0.124 

SOM (0.748) 0.645 0.543 -0.002 -0.191 

Na (0.676) 0.638 0.305 -0.391 0.153 

CCE (0.908) -0.073 0.943 -0.117 0.014 

Mn (0.766) 0.094 -0.812 0.298 -0.092 

pH (0.742) -0.073 0.812 0.223 -0.164 

P (0.816) 0.023 0.445 0.717 0.321 

Zn (0.627) 0.425 -0.163 0.602 0.239 

S (0.733) 0.434 0.086 -0.289 0.673 

N (0.588) 0.438 -0.178 -0.079 0.601 

Boldface component-loadings are considered Minimum Data Set according to Andrews et al. (2004) (PCs 

have eigenvalues ≥1; highly weighted indicators have factor loading ≥0.40 and correlation coefficient 

between the indicators with highest loadings are <0.60) 

  



Table 7 

Descriptive statistics including mean, standard deviation (SD), kurtosis, skewness, and 

minimum and maximum values for interpreted soil indicators of the research sites (n=1046). 

Parameter Min Max Mean SD Skew Kurt 

y_pH 0,266 1,000 0,846 0,156 -1,038 0,547 

y_texture 0,066 1,000 0,772 0,232 -1,067 -0,036 

y_EC 0,557 1,000 0,995 0,024 -9,621 128,517 

y_SOM 0,169 1,000 0,689 0,147 -0,100 -0,571 

y_P 0,031 1,000 0,556 0,311 -0,015 -1,459 

y_K 0,007 1,000 0,809 0,240 -1,202 0,396 

y_Mg 0,478 1,000 0,982 0,058 -4,328 21,852 

y_Na 0,049 1,000 0,961 0,123 -4,535 23,264 

y_Zn 0,144 1,000 0,643 0,233 -0,147 -1,188 

y_Cu 0,767 1,000 0,999 0,011 -16,054 299,033 

y_Mn 0,478 1,000 0,991 0,049 -7,015 53,427 

y_S 0,010 1,000 0,082 0,123 4,320 20,172 

y_N 0,001 1,000 0,125 0,112 2,669 10,103 



Table 8 

The means of scored indicators by the soil types (the name of the soil types are given in Table 1) 

Scored 

indicators 

Soil classification 

CH PH CM LV Reductigleyic GL Oxigleyic GL 

CM 

(Arenic) AR SN GL (Sodic) 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 

y_pH 0,83 0,95 0,84 0,95 1,00 0,79 0,77 0,99 0,82 0,97 0,68 0,76 0,98 0,73 0,98 0,69 0,99 0,75 0,93 0,69 0,86 0,84 0,68 0,94 0,91 

y_texture 0,95 0,97 0,94 0,97 0,92 0,92 0,32 0,37 0,85 0,85 0,82 0,82 0,98 0,96 0,81 0,92 0,61 0,57 0,68 0,66 0,97 0,95 0,81 0,86 0,93 

y_EC 1,00 1,00 1,00 0,99 1,00 1,00 1,00 0,99 1,00 1,00 0,99 1,00 1,00 1,00 0,98 0,99 1,00 1,00 1,00 1,00 1,00 0,96 0,93 0,99 1,00 

y_SOM 0,86 0,75 0,81 0,63 0,62 0,65 0,62 0,55 0,81 0,54 0,58 0,67 0,77 0,78 0,53 0,61 0,75 0,71 0,76 0,61 0,71 0,55 0,53 0,63 0,78 

y_P 0,42 0,86 0,51 0,58 0,39 0,56 0,61 0,53 0,57 0,52 0,26 0,77 0,50 0,29 0,64 0,49 0,57 0,81 0,64 0,64 0,96 0,67 0,69 0,68 0,38 

y_K 0,86 0,96 0,90 0,98 0,72 0,65 0,85 0,92 0,94 0,82 0,69 0,99 0,92 0,96 0,96 0,63 0,84 0,75 0,87 0,64 1,00 0,91 0,97 0,98 0,99 

y_Mg 0,98 1,00 0,97 0,99 1,00 1,00 1,00 0,99 1,00 0,97 1,00 1,00 1,00 1,00 1,00 1,00 0,99 0,92 0,95 0,91 1,00 1,00 1,00 1,00 1,00 

y_Na 0,99 0,99 0,92 1,00 1,00 1,00 0,98 0,99 0,99 0,99 1,00 0,99 0,99 0,97 0,86 0,85 1,00 1,00 0,99 1,00 0,28 0,36 0,68 0,64 0,47 

y_Zn 0,51 0,72 0,62 0,61 0,72 0,67 0,59 0,32 0,78 0,50 0,37 0,77 0,78 0,75 0,35 0,56 0,87 0,82 0,87 0,78 0,64 0,63 0,51 0,45 0,91 

y_Cu 1,00 0,99 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 0,98 1,00 1,00 1,00 1,00 1,00 1,00 0,99 0,99 1,00 1,00 1,00 1,00 1,00 

y_Mn 1,00 1,00 1,00 1,00 1,00 1,00 0,94 1,00 0,99 1,00 0,99 1,00 1,00 1,00 1,00 1,00 1,00 0,99 1,00 0,92 1,00 1,00 1,00 1,00 1,00 

y_S * 0,07 0,12 0,09 0,07 0,06 0,06 0,08 0,06 0,04 0,05 0,03 0,15 0,07 0,05 0,08 0,28 0,04 0,05 0,05 0,05 0,08 0,34 0,57 0,06 0,04 

y_N * 0,08 0,29 0,16 0,19 0,10 0,13 0,11 0,11 0,06 0,11 0,12 0,21 0,11 0,17 0,12 0,22 0,12 0,10 0,11 0,15 0,28 0,20 0,40 0,17 0,08 

Normal scores: y=0.81-1.00 No to Slight limitation; Bold-italic scores y=0.61-0.80 Moderate limitation; Boldface scores: strong limitation 

y=0.41-0.60; Underlined boldface scores: y≤0.40 not suitable for crops 

* Low means due to the large scale and skewness  

 



 

Table 9 

The most common indicator scoring functions in the literature 

Soil quality indicator 
bell-shaped curve (‘mid-

point optimum’) 

non-linear 

sigmoid curve  
linear function 

pH  

Rahmanipour et al., 2014; 

Mukherje and Lal, 2014; 

Sharma et al., 2014 

  

Texture, clay content 
Armenise et al., 2013; Vasu 

et al., 2016 
 

„more is better“ 

Masto et al., 2015 

depth of groundwater table 

and relative topography 
  

„less is better“ or „more is 

better“ 

Zhang et al., 2004; Yao et 

al., 2014; Zobeck et al., 

2014; Jamil et al. 2017 

EC and SAR 

„less is better“ 
 

Andrews et al., 2004; 

Rahmanipour et al., 2014; 

Nabiollahi et al., 2017 

Liebig et al., 2001; Raiesi, 

2017; Vasu et al., 2016 

SOM 

“more is better” 
 

Li et al., 2013; Yao et al., 

2014; Ivezic et al., 2015; 

Thomazini et al., 2015; 

Raiesi, 2017 

Mukherje and Lal, 2014; 

Sharma et al., 2014; Singh et 

al., 2014; Nakajima et al. 

2015; Raiesi, 2017; 

Ramachandran et al. 2016; 

Vasu et al. 2016; Biswas et 

al. 2017; Nabiollahi et al. 

2017 

available P 

“more is better” 
 

Armenise et al., 2013; Li et 

al., 2013; Ivezic et al., 2015 

Sharma et al., 2014, Singh et 

al., 2014; Ramachandran et 

al., 2016 

available K 

“more is better” 
Yao et al. 2014 

Armenise et al. 2013; Li et 

al. 2013 

Rahmanipour et al. 2014; 

Sharma et al. 2014; Singh et 

al. 2014 

available  

Mg, Zn, Cu, Mn, S, N 

“more is better” 

Lima et al., 2012 
Andrews et al., 2004; Qi et 

al., 2009 

Saglam et al., 2015; Sharma 

et al., 2014; Singh et al., 

2014; Ramachandran et al., 

2016; Biswas et al., 2017 

 

 


