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Hydrogen sulfide (H2S) is a gaseous mediator in various physiological and pathological processes, including neuroimmune
modulation, metabolic pathways, cardiovascular system, tumour growth, inflammation and pain. Now the hydrogen polysulfides
(H2Sn) have been recognised as signalling molecules modulating ion channels, transcription factors and protein kinases. Transient
receptor potential (TRP) cation channels can be activated by mechanical, thermal or chemical triggers. Here, we review the
current literature regarding the biological actions of sulfide and polysulfide compounds mediated by TRP channels with special
emphasis on the role of TRPA1, best known as ion channels in nociceptors. However, the non-neuronal TRPA1 channels should
also be considered to play regulatory roles. Although sulfide and polysulfide effects in different pathological circumstances and
TRPA1-mediated processes have been investigated intensively, our review attempts to present the first comprehensive overview of
the potential crosstalk between TRPA1 channels and sulfide-activated signalling pathways.
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Introduction
The superfamily of the transient receptor potential (TRP) ion
channels consists of six subfamilies: TRP canonical, TRP
melastatin, TRP vanilloid (TRPV), TRP ankyrin (TRPA), TRP
mucolipin and TRP polycystin (TRPP or PKD). TRP receptors
form non-selective cation channels, preferentially high cal-
cium ion permeability. Calcium influx triggers several intra-
cellular pathways. TRP channels are sensitive to a variety of
stimuli includingmechanical or thermal triggers, or chemical
ligands. Based on such interactions, they are likely to be sen-
sors for several physiological or pathophysiological stimuli.
(Khalil et al., 2018). The main goal of this review paper is to
discuss the TRP-mediated effects of sulfide and polysulfide
compounds, with particular emphasis on the role of TRPA1
channels.

H2S as a gaseous transmitter
At the beginning of the 1990s, H2S appeared as a new exam-
ple of agaseous molecule modulating a number of biological
functions, such as nociception, inflammation and vascular
responses. Its potential biological effect on capsaicin-
sensitive sensory nerves was first suggested in the lung (Prior
et al., 1990). In 2004, Patacchini et al. identified the H2S do-
nor sodium hydrosulfide (NaHS) as the activator of the
capsaicin-sensitive neurons in the rat isolated urinary
bladder. They concluded that H2S either acts on TRPV1
channels or stimulates a still unidentified TRP-like channel
co-expressed with TRPV1 channels on sensory neurons
(Patacchini et al., 2004). Four years later, Streng et al. (2008)
suggested that NaHS acts on TRPA1 channels in the urinary
bladder. The next key findings were published by Miyamoto
et al. (2011) presenting evidence that the NaHS-evoked in-
crease in [Ca2+]i was inhibited by Ca2+ free condition and by
a selective antagonist for TRPA1 channels, HC030031, sug-
gesting that H2S stimulates sensory neurons via activation
of these channels. Generation of Ca2+ signals in response to
H2S were first described in astrocytes, but the authors could
not conclude that TRPA1 channels were the mediators (Nagai
et al., 2004). TRPA1 ion channels were first described as being
sensitive to cold and later to be receptors for mustard oil
(Story et al., 2003; Jordt et al., 2004). Several papers also sug-
gest that TRPA1 channels may also be expressed by non-
neuronal cells (Chen and Hackos, 2015). Vasodilator effects
of H2S were decreased in TRPA1 knockout (TRPA1�/�) mice
or in wild-type mice after treatment with HC030031 (Pozsgai
et al., 2012), indicating a primary role of TRPA1 channels in
mediating the vascular effects of H2S in the skin. Activation
of TRPA1 receptors by sulfide-released CGRP with conse-
quent vasodilation (Pozsgai et al., 2012; Eberhardt et al.,
2014; Hajna et al., 2016).

Structure and function of TRPA1
channels
TRPA1 channels were originally called ANKTM1 channels, as
they were identified by a homology search for ankyrin repeats
and six transmembrane domains. TRPA1 channels have a

particularly long ankyrin repeat region within the
N-terminus and contain calcium-sensitive regions in the
N-terminal EF-hand motif and in the S4 transmembrane seg-
ment. The flexible ankyrin domains may serve the structural
basis for protein–protein interactions (Brewster and Gaudet,
2015). In the TRP superfamily, TRPA1 channels have unique
aspects and, reflecting a a wide range of ligands; it is a promis-
cuous receptor. Low and high temperature, osmotic changes,
natural and synthetic irritants are all known to activate
TRPA1 channels. Several TRPA1 channel agonists are reactive
electrophilic ligands. Channel gating by these compounds is
based on covalent modification of cysteine and lysine resi-
dues within the N-terminus and the transmembrane domain.
Regarding sulfide-evoked TRPA1 channel activation, the for-
mation of an intramolecular C422–C622 disulfide bond has
been proposed (Kimura, 2015). TRPA1 channels can also be
activated by non-reactive compounds that bind with non-
covalent interactions as well as low or high pH or
polyunsaturated fatty acids (Viana, 2016). Activated TRPA1
channels interact with signalling downstream mechanisms
of several GPCRs, such as bradykinin B2 receptors or
PAR2. TRPA1 channels behave as integrators of endoge-
nous and exogenous activating stimuli, including tempera-
ture, light, bacterial toxins, mechanical and chemical
stimuli (Baraldi et al., 2010). As TRPA1 channels can be
triggered by endogenous compounds generated during
tissue injury and inflammation, the main trend of their
development treats these channels as novel potential drug
targets for analgesics and anti-inflammatory drug candi-
dates. Recent papers have presented evidence that TRPA1
channels are also expressed in the brain and play pivotal
roles in neurodegenerative disorders and neuroinflamma-
tion, such as multiple sclerosis and Alzheimer’s disease,
opening another potential benefit of TRPA1 channel antag-
onists (Sághy et al., 2016; Lee et al., 2016a).

Generally, TRPA1 channel subunits constitute
homotetrameric complexes on the cell membrane, but there
is evidence that these subunits also co-localize with TRPV1
subunits into heterotetrameric complexes to form a single
channel in sensory neurons (Garrison and Stucky, 2011).
The structure of the TRPA1 channel at near-atomic (4 A°) res-
olution has been determined by single-particle electron
cryomicroscopy (cryo-EM) (Paulsen et al., 2015). This is essen-
tial for understanding TRPA1 channel function and deter-
mining the binding sites for drug interactions. Another
comprehensive study of the structural characteristics and po-
tential binding sites of agonists and antagonists of TRPA1
channels has been published recently (Brewster and Gaudet,
2015). The cryo-EM analysis confirmed that TRPA1 channels
are tetrameric proteins formed by the assembly of four sub-
units (1119 amino acids in humans) with six transmembrane
α-helices (S1–S6). Their structure includes a series (14–18 de-
pending on species) of ankyrin repeat domains (ARDs) within
the long intracellular N-terminus (Zygmunt and Högestätt,
2014; Brewster and Gaudet, 2015). At the structural level,
the permeation pathway shows two major constriction sites
(Paulsen et al., 2015). The channel is highly Ca2+ permeable
and the permeating divalent cations contribute to channel
regulation, characterized by initial potentiation followed by
desensitization (Kádková et al., 2017; Zimova et al., 2018). Re-
cently, Brewster and Gaudet (2015) have edited a novel
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schematic map of TRPA1 channels demonstrating and pro-
posing the functions of different parts of the receptor protein.
They also reveal an unexpected novel ligand-binding site and
an unusual C-terminal coiled coil stabilized by myo-inositol-
1,2,3,4,5,6-hexakisphosphate (phytic acid, IP6). They suggest
that endogenous soluble intracellular ligands, such as IP6, are
required to maintain the receptor in an agonist-receptive
state (Brewster and Gaudet, 2015). Following channel activa-
tion, removal of IP6 by the influx of Ca2+ could act a molecu-
lar kill switch to trigger inactivation. In spite of much
experimental effort, the exact role of TRPA1 channels in
thermo- and mechanosensation has not been elucidated yet
(Chen and Hackos, 2015). On the basis of recent studies,
these channels might not be primary cold sensors, but are
associated with cold allodynia and mechanical hyperalgesia
where endogenous activation mechanisms are present
(Brewster and Gaudet, 2015; Viana, 2016) (Figure 1A, B).

Neuronal and non-neuronal TRPA1
channels
Expression of TRPA1 channels by somatic and visceral
primary sensory neurones is well known. Peptidergic
nociceptors, also known as capsaicin-sensitive sensory
neurones, co-express TRPV1 and TRPA1 channels (Story
et al., 2003). Activation of these channels induces membrane
depolarization by Na+ influx, while the inward Ca2+ current
increases [Ca2+]i, which releases neuropeptides such as
CGRP, substance P (SP) or neurokinin A from large
dense-core vesicles via Ca2+-dependent exocytosis (Kádková
et al., 2017). Pro-inflammatory neuropeptides amplify
nociception and mediate neurogenic inflammation through
the local efferent function of the capsaicin-sensitive sen-
sory nerve endings. Neurogenic inflammation results in vas-
cular changes such as vasodilatation and plasma protein
extravasation followed by recruitment of inflammatory
and immune cells (Pintér et al., 2006; Bodkin and Brain,
2011; Szolcsányi, 2014; López-Requena et al., 2017). Other
events involving TRPA1 channels modulate a number of
chronic pain conditions associated with inflammation.
Thus , pro-inflammatory and algogenic mediators released
within the injured or inflamed tissue, such as PGs, brady-
kinin, 5-HT and proteases, modulate TRPA1 channels via
GPCRs and phospholipase C-coupled signalling cascades.
These mediators, including lipid peroxidation products
such as 4-oxo-2-nonenal, 4-hydroxy-2-nonenal, 4-
hydroxyhexenal as well as 15-deoxy-12,14-prosta-
glandin J2, stimulate PKA, PKC and phospholipase
C (PLC) pathways to induce phosphorylation of TRPA1
channels (ChenandHackos, 2015;Viana,2016;Kádková et al.,
2017). The putative roles of the PKA- and PLC-dependent sig-
nalling pathways in TRPA1 channel-mediated nociception
have been very well reviewed (Zygmunt and Högestätt, 2014;
Viana, 2016).

Following the activation of TRPA1 channels, not only
pro-inflammatory but anti-inflammatory peptides are also re-
leased from the nerve ending, such as somatostatin
(Pozsgai et al., 2017). Somatostatin is a cyclic peptide found
in the CNS and peripheral tissues. Neuronally derived so-
matostatin could exert systemic antinociceptive and anti-

inflammatory effects (Pintér et al., 2006), mediated by sst4
receptors (Pintér et al., 2002; Helyes et al., 2009). This could
explain why activation of TRPA1 channels in wild-type
mouse diminishes mild heat injury-induced thermal
hyperalgesia; nevertheless, it cannot be observed in TRPA1 re-
ceptor knock out animals. Alkylated polysulfide compounds,
such as dimethyl trisulfide (DMTS), activate TRPA1 channels
of primary sensory neurons inducing release of the neuropep-
tide somatostatin that might elicit analgesic effect in animal
models of nociception via sst4 receptors (Pozsgai et al., 2017).

Several non-neuronal cell types express TRPA1 channels.
In human and murine lung, apart from the sensory fibres,
non-neuronal cells including fibroblasts, alveolar epithelial
cells, and smooth muscle cells express these channels. TRPA1
channels were also detected in melanocytes, keratinocytes
and fibroblasts and, therefore, these channels have been sug-
gested to regulate keratinocyte differentiation and inflamma-
tion in the skin. In addition to sensory fibres innervating the
urinary tract, TRPA1 channels have been found in epithelial
cells and might play a role in urinary micturition (Khalil
et al., 2018). Activation of TRPA1 channels in insulin pro-
ducing beta cells of the pancreatic islet results in insulin se-
cretion (Cao et al., 2012). Astrocytes also express these
channels in different brain structures, which may play a role
in calcium homeostasis, influence GABA transporter GAT-3
and regulate the oligodendrocyte apoptosis with consequent
exacerbation of demyelination (Shigetomi et al., 2012; Sághy
et al., 2016). Hydrogen polysulfides were first reported to acti-
vate TRPA1 channels of astrocytes more potently than H2S
(Kimura et al., 2013). There are few data on the expression
of these channels in immune cells. The functional role of
TRPA1 channels in macrophages was recently investigated
in the pathogenesis of atherosclerosis by Zhao et al., 2016. Ex-
pression of these channels was increased in macrophage
foam cells in atherosclerotic aortas of apolipoprotein E
(apoE)-deficient mice. Atherosclerotic lesions, hyperlipidae-
mia and systemic inflammation were worsened with chronic
administration of the channel antagonist HC030031 or ge-
netic ablation of TRPA1 channels in apoE knockout mice.
These findings suggest that TRPA1 channels may serve to reg-
ulate the pathogenesis of atherosclerosis and cholesterol me-
tabolism of macrophage foam cells (Zhao et al., 2016). TRPA1
immuno-positive macrophages have also been identified by
merged fluorescent double staining in the human oral sub-
mucosa. The number of TRPA1 positive macrophages was sig-
nificantly elevated in samples from patients suffering oral
lichen planus (Kun et al., 2017). Expression of TRPA1 chan-
nels was also detected by Northern blot, Western blot and im-
munohistochemical methods in Jurkat T cells and in human
splenocytes. Expression of these channels has been con-
firmed in murine and human T cells at mRNA and protein
level (Bertin et al., 2017). While the pro-inflammatory effects
of the activation of TRPA1 channels are well established,
there is emerging evidence for its protective effects. Deletion
of TRPA1 channels enhanced inflammatory responses in var-
ious colitis animal models (Kun et al., 2014; Bertin et al.,
2017). Kemény et al. (2018) provided clear evidence that
psoriasiform dermatitis induced by topically applied
imiquimod was enhanced in TRPA1 KO mice and after
treatment with the TRPA1 channel antagonist A967079,
compared to the wild-type controls. Their
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Figure 1
Panel (A) depicts the four protein units of the human TRPA1 ion channel. Panel (B) shows a diagram of the domains of a single protein unit of the
channel. ARD1–16, ankyrin repeat domains 1–16 within cytoplasmic domain 1 shown as pink boxes; CPD1–4, cytoplasmic domains 1–4 shown as
green thread; ECD1–4, extracellular domains 1–4 shown as red thread; and PFD, pore-forming domain shown as brown box. Panel (C) represents
the structure of human TRPA1 ion channel subunits as published by Paulsen et al. (2015). This model only contains residues 446–1078. Most of
the N-terminus including ankyrin repeats 1–11 (residues 1–445) and some of the C-terminus (residues 1079–1119) are not included. The figure
shows two out of four protein subunits of the ion channel to allow identification of key amino acid residues. The other two subunits not shown
here would be located below and above the plane of the paper. One protein shows ankyrin repeats 12–16 in pink and the six transmembrane do-
mains in light blue. Domains of the protein are colour coded and labelled as in the previous panel. The position of the plasma membrane is indi-
cated by the grey stripe. Residues proposed to be involved in electrophilic activation are highlighted in orange and those phosphorylated by
signalling kinases in red. Some serine, threonine and tyrosine amino acids targeted by such kinases are located in the proximal N-terminus and
are not shown in the figure. For an extensive review, see Kádková et al. (2017). Panel (D) shows target residues of electrophiles and signalling ki-
nases in the human TRPA1 ion channel. Ankyrin repeats are highlighted in pink; transmembrane domains are highlighted in light blue. Cytoplas-
mic domains are olive, and extracellular domains are red. The pore-forming domain is green. The bold section is included in the model of Paulsen
and colleagues and is represented in panels (B) and (C). Amino acids participating in activation by electrophiles are highlighted in yellow, and
those phosphorylated by signalling kinases are shown in purple.
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immunohistochemical data revealed that CD4+ T helper cells
expressed TRPA1 channels in murine skin. They concluded
that protective effects in psoriasiform dermatitis could beme-
diated by the activation of neuronal and non-neuronal
TRPA1 channels (Kemény et al., 2018). Although the best
known site of TRPA1 channels is the nociceptive primary sen-
sory neuron, these channels in non-neuronal sites should
also be considered when assessing the regulatory role of
TRPA1 channel activation. As TRPA1 channel antagonists
are under active development for pain and inflammation, it
is important to allow for the possibility of on-target side ef-
fects mediated by non-neuronal TRPA1 channels.

Activators of TRPA1 channels
In contrast with other chemoreceptors, which are usually
stimulated by ligands with rather conserved structures, a
unique feature of TRPA1 channels is that they appear to be ac-
tivated by a variety of structurally unrelated compounds.

Exogenous compounds

Plant-derived organosulfur compounds
Allium sativum is commonly known as garlic and its active
compounds include thiosulfinates that are responsible for
the distinctive pungent and spicy aroma of garlic. Allicin is
an unstable organosulfur component generated from alliin
by the vacuolar enzyme alliinase after the clove has been
cracked. Like other highly reactive thiosulfinates, allicin is
converted to more stable organosulfur compounds such as
diallyl sulfide (DAS), diallyl disulfide (DADS) and diallyl tri-
sulfide (DATS). While alliin is odourless, these derivatives
are volatile compounds responsible for the pervasive garlic
aroma and flavour. Thiosulfinates have structural similarities
with allyl isothiocyanate (AITC), the pungent agent of wa-
sabi, horseradish and mustard oil. These compounds activate
TRPA1 channels on primary sensory neurons causing the re-
lease of pro-inflammatory neuropeptides with consequent
pain sensation and neurogenic inflammation (Bautista
et al., 2005). Highly reactive isothiocyanates such as propar-
gyl isothiocyanate, benzyl isothiocyanate and phenethyl iso-
thiocyanate also act on TRPA1 channels, but their
experimental use is strongly limited due to their toxicity.
AITC activates other TRPs (including TRPV1). These
organosulfur compounds could be conjugated with cysteines
in the TRPA1 channel structure to form disulfide bridges
(Baraldi et al., 2010; Viana, 2016).

Irritant chemicals from air pollution or cigarette
smoke
TRPA1 channels are activated by almost all oxidizing in-
dustrial electrophiles, including aldehydes (e.g. formalde-
hyde and acetaldehyde), alkenals (e.g. acrolein and
crotonaldehyde), hypochlorites, toluene diisocyanate
and tear gases, most likely through covalent protein mod-
ification (Bessac and Jordt, 2008).

Endogenous substances
TRPA1 channels act as sensors of toxic signals and molecular
integrators of cellular stress, including ROS. Algogenic activa-
tors of these channels are released from the sites of inflamma-
tion or tissue injury. They are lipid peroxidation products
such as 4-oxo-2-nonenal, 4-hydroxy-2-nonenal and 4-
hydroxyhexenal, and oxidized lipids such as the
cyclopentenone PG (PGA1, PGA2, 8-isoPGA2, 15-deoxy-
Δ12,14-PGJ2 and Δ12-PGJ2, formed by non-enzymic dehydra-
tion of the respective PGs (PGD2, PGE2 and PGE1). These
compounds are TRPA1 channel ligands and directly gate the
channel to cause acute nociception (Chen and Hackos,
2015). Activators of the inflammasome, such as monosodium
urate crystals, stimulate TRPA1 channels by an indirect mech-
anism involving production of H2O2 (Trevisan et al., 2014).

Neuronal and non-neuronal expression patterns of
TRPA1 channels allow a broad activation profile and enable
it to be a versatile sensor of tissue injury. Inflammatory
mediators and reactive electrophilic agents bind to TRPA1
channels covalently as electrophilic attack can damage cellu-
lar components by Michael addition. Nitrated fatty acids
such as nitro-oleic acid that are generated during inflamma-
tion by phospholipids and NO are other examples endoge-
nous lipidergic TRPA1 activators. DAG and arachidonic
acid, generated through bradykinin B2-receptor/PLA2/PLC
pathways, are also activators of these channels and may rep-
resent a downstreammechanism of bradykinin-induced pain
(Brewster and Gaudet, 2015) (Table 1).

Sulfide (H2S)-NO, polysulfides
Several papers provided evidence suggesting the signalling
pathways that are shared by NO and hydrogen sulfide (H2S)
(Takahashi et al., 2012). The synergistic effect of the two
gasotransmitters was first identified in the late 1990s (Hosoki
et al., 1997). The chemical basis of this interaction has not
been elucidated properly. Moreover, polysulfides (H2Sn)
recently emerged as potential mediators of H2S/sulfide
signalling, but their biosynthesis and relationship to NO
are still under intensive investigation (Kimura, 2017).
Some recent papers have suggested that the reaction be-
tween sulfide and NO leads to formation of different bioac-
tive intermediates [including nitrosopersulfide (SSNO), H2Sn
and dinitrososulfite (SULFI/NO)] capable of scavenging,
transporting and releasing NO and generating its redox con-
geners, nitroxyl (HNO), nitrous oxide (N2O) and sulfane sul-
fur (Eberhardt et al., 2014; Cortese-Krott et al., 2015;
Kimura, 2017; Miyamoto et al., 2017). These reports con-
clude that SSNO is a potent NO donor, resistant to the re-
ducing milieu of the cell, and able to release both NO and
H2Sn. SULFI/NO is a weak combined NO/HNO donor and
generator of N2O with potent effects on the heart.
Formation of its precursor sulfite and generation of sulfur
and/or oxygen-centred free radicals may be responsible for
the scavenging effects of sulfide on NO bioavailability.
Polysulfides may be formed secondary to the reaction of sul-
fide with NO, either through HSNO or after decomposition
of SSNO, and may also contribute to NO scavenging and
sulfane sulfur signalling. These findings open new areas of
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Table 1
Publications on TRPA1 channel-mediated effects of inorganic sulfide donors

Sulfide source
Cell type, organ,
in vivo setting Readout References

Hydrogen sulfide donors

NaHS Rat TRG neurons Electrophysiology activation inhibited
by HC030031

Koroleva et al. (2017)

NaHS Chicken thoracic aorta
epitheloid cells

5-HT release by HPLC inhibited by
TRPA1 antagonist

Delgermurun et al. (2016)

NaHS Human ureter Precontraction by electrical stimulation
was relaxed.

Weinhold et al. (2017)

NaHS RIN14B cells Ca2+ imaging and 5-HT release activation
inhibited by HC030031

Ujike et al. (2015)

NaHS Murine cerulein-induced
pancreatitis

Elevated spinal cFOS expression by
immunohistochemistry inhibited by AP18
mechanical abdominal allodynia inhibited
by AP18 and CaV3.2 channel inhibitor

Terada et al. (2015)

NaHS CHO hTRPA1 Ca2+ imaging Hajna et al. (2016)

NaHS CHO hTRPA1
Murine TRG neurons

Ca2+ imaging activation inhibited by
HC030031 and TRPA1 knockout

Hajna et al. (2016)

NaHS Murine skin Increased blood flow by laser Doppler
imaging inhibited by RTX pretreatment,
CGRP and NK1 antagonists, glibenclamide

Hajna et al. (2016)

NaHS RIN14B cells Ca2+ imaging and 5-HT release response
enhanced by acidosis

Takahashi and Ohta (2013)

NaHS Rat lung vagal afferents Ca2+ imaging and respiratory changes
respiratory effect inhibited by HC030031

Hsu et al. (2013)

NaHS Murine DRG neurons Ca2+ imaging and electrophysiology inhibited
by TRPA1 knockout potentiated by acidosis

Andersson et al. (2012)

NaHS CHO mTRPA1 Electrophysiology Andersson et al. (2012)

NaHS Murine hind paw Mechanical hyperalgesia inhibited by AP18
and TRPA1 knockout

Andersson et al. (2012)

NaHS Murine colon Nocifensive behaviour present in
TRPA1 knockout

Andersson et al. (2012)

NaHS Rat mesenteric artery Dilatation prevented by capsaicin
pretreatment, HC030031, CGRP receptor
antagonist and Cl� channel inhibitor

White et al. (2013)

NaHS Murine colon Nocifensive behaviour inhibited by AP18
and CaV3.2 channel inhibitor

Tsubota-Matsunami
et al. (2012)

NaHS Rat trachea nerve endings CGRP release by RIA inhibited by HC030031 Pozsgai et al. (2012)

NaHS Murine skin Elevated blood flow by laser Doppler imaging
inhibited by HC030031 and TRPA1 knockout

Pozsgai et al. (2012)

NaHS Murine DRG neurons Ca2+ imaging activation inhibited by HC030031
and TRPA1 knockout

Ogawa et al. (2012)

NaHS HEK293 mTRPA1 Ca2+ imaging activation inhibited by mutation
of key cysteines potentiated by acidosis

Ogawa et al. (2012)

NaHS Murine hind paw Nocifensive behaviour inhibited by TRPA1
knockout potentiated by acidosis

Ogawa et al. (2012)

NaHS Murine hind paw Nocifensive behaviour inhibited by AP18, gene
silencing of TRPA1, inhibition and silencing
of CaV3.2 channels

Okubo et al. (2012)

NaHS Rat DRG neurons Ca2+ imaging activation inhibited
by HC030031

Miyamoto et al. (2011)

NaHS Human prostate Relaxation of precontracted smooth
muscle

Gratzke et al. (2010)

continues
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research with SSNO, HSn and SULFI/NO as biologically im-
portant mediators of both the NO and H2S transduction
pathways. These interactions could be important in the car-
diovascular, neuronal and immune systems (Cortese-Krott
et al., 2015) (Tables 2 and 3). Endogenous polysulfides were
produced in the mouse brain by 3-mercaptopyruvate
sulfurtransferase, making this pathway physiologically
highly relevant (Kimura et al., 2015, 2017). Reports of the
effects of various products of the sulfide/NO interaction
are shown in Tables 2 and 3 and Figure 2.

Effects of sulfur species mediated by
TRPA1 channels
As neurons are themain cell type expressing TRPA1 channels,
apart from astrocytes, numerous scientific accounts describe
activation of the ion channel by sulfide in these cells (Kimura
et al., 2013). The most abundantly investigated expression
systems are Xenopus oocytes, RIN14B rat pancreatic islet cells,
CHO and HEK293 cells. Murine and rat trigeminal and dorsal
root ganglion (TRG and DRG) neurons as well as isolated rat
vagal afferents and neurons were also investigated. NaHS
and sodium sulfide nonahydrate (Na2S) were mostly used as
sulfide donors. Ion channel opening was either detected as a
Ca2+ signal indicated by Ca2+-sensitive fluorescent dyes, elec-
trophysiology in case of nerve fibres, patch-clamp or seroto-
nin release from RIN14B pancreatic islet cells. Involvement
of TRPA1 channels in the increased [Ca2+]i and cation cur-
rents was confirmed with selective receptor antagonists
AP18, HC030031 or genetic deletion of the gene encoding
the ion channel (Miyamoto et al., 2011; Ujike et al., 2015;
Hajna et al., 2016). Some papers report a potentiating effect
of acidic pH on sulfide-evoked responses of TRPA1 channels
(Andersson et al., 2012; Ogawa et al., 2012; Takahashi and

Ohta, 2017). Others identified critical cysteine residues in-
volved in activation of TRPA1 channels by sulfide, using cells
expressing mutated ion channel (Ogawa et al., 2012). A rela-
tively recent publication detected activation of TRPV1 chan-
nels in rat TRG neurons by NaHS based on inhibition by
capsazepine. However, the majority of investigators in the
sulfide field consider the gasotransmitter as selective for
TRPA1 channels and evidence for activation of TRPV1 chan-
nels is scarce (Trevisani et al., 2005; Ang et al., 2010; Medeiros
et al., 2012; Lu et al., 2014; Koroleva et al., 2017; Yu et al.,
2017). No individual excitatory action but potentiation of
the capsaicin-induced response by NaHS was reported in iso-
lated vagal neurons from rat lungs . Even in this model, respi-
ratory effects of sulfide could be abolished by HC030031 (Hsu
et al., 2013). CGRP release from peptidergic nerves of rat tra-
cheae was reported in response to stimulation with NaHS.
Peptide release was prevented by the TRPA1 channel antago-
nist (Pozsgai et al., 2012).

Contribution of TRPA1 channels to sulfide-induced
smooth muscle relaxation was examined in rat mesenteric ar-
teries, pig bronchioles and intravesical ureter, as well as hu-
man ureter and prostate. Besides the obvious inhibition by
defunctionalization of peptidergic nociceptors or
HC030031, dilator effects of sulfide in rat mesenteric arteries
was diminished by a CGRP receptor antagonist or a Cl� chan-
nel inhibitor (White et al., 2013). Precontracted porcine bron-
chiole rings were relaxed by a slow-release sulfide donor,
GYY4137. Sulfide-induced relaxation was ameliorated by el-
evated extracellular K+ concentration and inhibition of large
conductance Ca2+-activated K+ channels. Endogenous
sulfide and TRPA1 channel activation were involved in elec-
trical stimulation-evoked relaxation (Fernandes et al., 2016).
Porcine intravesical ureter precontracted with a TXA2 ana-
logue was relaxed by GYY4137. The response was prevented
by the selective antagonist HC030031. Release and

Table 1
(Continued)

Sulfide source
Cell type, organ,
in vivo setting Readout References

NaHS Rat urinary bladder Intravesicular NaHS increased micturition
frequency and lowered voiding volume

Streng et al. (2008)

NaHS CHO m/hTRPA1 Ca2+ imaging Streng et al. (2008)

Na2S RIN14B cells Ca2+ imaging activation inhibited by
HC030031

Ujike et al. (2018)

Na2S CHO hTRPA1 Ca2+ imaging Hajna et al. (2016)

Na2S Rat TRG neuron,
brainstem slice,
dura mater

CGRP release by ELISA Wild et al. (2015)

GYY4137 Porcine bronchioles Relaxation electrical stimulation-induced
relaxation inhibited by CSE-inhibitor and
TRPA1 antagonist

Fernandes et al. (2014)

GYY4137 Porcine intravesical
ureter

Relaxation of precontracted smooth
muscle prevented by HC030031, CGRP
and PACAP receptor antagonists

Fernandes et al. (2014)

CaV3.2, a member of voltage-gated T-type calcium channels; CSE, cystathionine-γ-lyase; NK1, neurokinin 1 receptor; PACAP, pituitary adenylate cy-
clase-activating polypeptide; RTX, resiniferatoxin.
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participation of neuropeptides is indicated by inhibitory ef-
fect of either pituitary adenylate cyclase-activating
peptide or CGRP receptor antagonists. In this model, relax-
ation produced by GYY4137 was also inhibited by a TRPV1
channel antagonist (Fernandes et al., 2014). NaHS prevented
contractions evoked by electrical stimulation in human ure-
ter and prostate smooth muscle (Weinhold et al., 2017). In
vivo studies on TRPA1 channel-mediated effects of sulfide fo-
cused on vasodilatation, somatic and visceral nociception, as

well as bladder function. Vasorelaxant effect of NaHS was in-
vestigated in the mouse ear. The sulfide donor was applied
topically, and blood flow changes were detected by laser
Doppler imaging. Sulfide-evoked elevated blood flow could
be lowered by the TRPA1 channel antagonist, desensitization
of peptidergic nerve endings by resiniferatoxin pretreat-
ment and genetic lack of the ion channel. The role of vasodi-
lator peptides CGRP and SP was implied by the inhibitory
action of the corresponding receptor antagonists. Inhibition

Table 2
Publications on TRPA1-mediated effects of reaction products of sulfide and NO

Products of sulfide and NO interactions

Na2S Rat middle meningeal artery Vasodilatation inhibited by HC030031,
L-NMMA and CGRP receptor antagonist

Dux et al. (2016)

Na2S Rat dura mater CGRP release by ELISA potentiation by
DEA-NONOate inhibition by L-NMMA

Dux et al. (2016)

Na2S Rat meningeal artery Vasodilatation inhibited by HC030031,
L-NMMA, L-NAME and CGRP receptor
antagonist

Eberhardt et al. (2014)

Na2S Murine BP Hypotensive effect inhibited by knockout
of TRPA1, CGRP and L-NMMA

Eberhardt et al. (2014)

Na2S Murine mesentery CGRP release by ELISA inhibited by
L-NMMA

Eberhardt et al. (2014)

Na2S Rat mesenteric artery Vasodilatation inhibited by L-NMMA,
capsaicin pretreatment, CGRP receptor
antagonist and HC030031

Eberhardt et al. (2014)

DEA-NONOate Rat middle meningeal artery Vasodilatation inhibited by oxamic
acid and ODQ

Dux et al. (2016)

Na2S + DEA-NONOate Rat spinal trigeminal nucleus Electrophysiology potentiating effect Teicher et al. (2017)

Na2S + DEA-NONOate Rat DRG neurons Ca2+ imaging potentiation activation
inhibited by HC030031

Miyamoto et al. (2017)

Na2S + DEA-NONOate Murine DRG neurons Ca2+ imaging activation inhibited by
HC030031, DTT and mutation of key
cysteines

Eberhardt et al. (2014)

Na2S + DEA-NONOate Murine heart CGRP release by ELISA inhibited by
knockout of TRPA1

Eberhardt et al. (2014)

Na2S + DEA-NONOate Human skin Flare by laser Doppler imaging pain
and itch potentiation

Eberhardt et al. (2014)

Na2S + DEA-NONOate Rat TRG neuron, brainstem
slice, dura mater

CGRP release by ELISA potentiation Wild et al. (2015)

HNO Murine DRG neurons Ca2+ imaging activation inhibited by
HC030031, TRPA1 knockout and
mutation of key cysteines

Eberhardt et al. (2014)

HNO Rat dura mater CGRP release by ELISA inhibited by
HC030031

Eberhardt et al. (2014)

HNO Murine dura mater CGRP release by ELISA inhibited by
HC030031 and knockout of TRPA1

Eberhardt et al. (2014)

HNO Murine sciatic nerve CGRP release by ELISA inhibited by
HC030031 and knockout of TRPA1

Eberhardt et al. (2014)

HNO Rat meningeal artery Vasodilatation inhibited by HC030031
and CGRP receptor antagonist

Eberhardt et al. (2014)

HNO Mouse BP Hypotensive effect inhibited by
knockout of TRPA1

Eberhardt et al. (2014)

HNO Human skin Vasodilatation by laser Doppler
imaging

Eberhardt et al. (2014)

DEA-NONOate, diethylamine NONOate; L-NMMA, NG-monomethyl-L-arginine; ODQ, 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one.
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of ATP-dependent K+ channels reversed vasodilatation
(Pozsgai et al., 2012; Hajna et al., 2016). Intraplantar adminis-
tration of NaHS leads to nocifensive behaviour inmice shown
as mechanical and cold hyperalgesia. Such responses are
weakened by trpa1-gene deficiency, gene silencing of TRPA1
channels and a TRPA1 channel antagonist. Several papers

claim relieving activity of inhibitors or gene silencing of
T-type Ca2+ channels, especially CaV3.2 channels. A contri-
bution of endogenous sulfide to intraplantar LPS-evoked
pain was indicated by amelioration after the TRPA1 channel
antagonist AP18 or inhibition of sulfide synthesis. Acidic
pH potentiated nocifensive reaction to sulfide (Andersson

Table 3
Publications on TRPA1 channel-mediated effects of inorganic and organic polysulfides

Inorganic polysulfide

Na2S2 and Na2S3 Rat DRG neurons Ca2+ imaging Miyamoto et al. (2017)

Na2S3 Chicken thoracic aorta
epitheloid cells

5-HT release by HPLC inhibited by TRPA1
antagonist

Delgermurun et al. (2016)

Na2S3 RIN14B cells Ca2+ imaging activation inhibited by HC030031 Ujike et al. (2018)

Na2S3 HEK293 mTRPA1 Ca2+ imaging and electrophysiology activation
prevented by mutation of key cysteines and DTT

Hatakeyama et al. (2015)

Na2S3 Murine hind paw Nocifensive behaviour and oedema formation
inhibited by TRPA1 knockout

Hatakeyama et al. (2015)

Na2S3 RIN14B cells Ca2+ imaging and electrophysiology Hatakeyama et al. (2015)

Na2S3 and Na2S4 Murine DRG neurons Ca2+ imaging activation inhibited by HC030031
and TRPA1 knockout

Hatakeyama et al. (2015)

Na2S3 and Na2S4 Rat astrocytes Ca2+ imaging inhibition by AP18 and HC030031 Kimura et al. (2013)

Sodium polysulfide Murine hind paw
carrageenan-induced
inflammation

Antihyperalgesic effect inhibited by TRPA1 and
sst4 knockout

Bátai et al. (2018)

Organic polysulfides

Ajoene Xenopus oocyte Electrophysiology enhances activation by
TRPA1 agonists

Yassaka et al. (2010)

Allicin Rat TRG neurons Ca2+ imaging Bautista et al. (2005)

Allicin HEK293 hTRPA1 Ca2+ imaging Bautista et al. (2005)

Allicin Xenopus oocyte hTRPA1 Ca2+ imaging Bautista et al. (2005)

Allicin Rat mesenteric artery Relaxation prevented by capsaicin pretreatment
and CGRP receptor antagonist

Bautista et al. (2005)

Asadisulfide HEK293 rTRPA1 Ca2+ imaging Shokoohinia et al. (2013)

DAS CHO hTRPA1 Ca2+ imaging activation inhibited by HC030031 Koizumi et al. (2009)

DADS CHO hTRPA1 Ca2+ imaging activation inhibited by HC030031 Koizumi et al. (2009)

DADS Rat TRG neurons Ca2+ imaging Bautista et al. (2005)

DADS HEK293 hTRPA1 Ca2+ imaging Bautista et al. (2005)

DADS Xenopus oocyte hTRPA1 Ca2+ imaging Bautista et al. (2005)

DADS Rat mesenteric artery Relaxation prevented by capsaicin pretreatment
and CGRP receptor antagonist

Bautista et al. (2005)

DATS CHO hTRPA1 Ca2+ imaging activation inhibited by HC030031 Koizumi et al. (2009)

DMTS CHO hTRPA1 Ca2+ imaging, automated patch-clamp activation
inhibited by HC030031

Pozsgai et al. (2017)

DMTS Murine TRG neurons Ca2+ imaging activation inhibited by HC030031
and TRPA1 knockout

Pozsgai et al. (2017)

DMTS Murine skin Somatostatin release by RIA inhibited by
HC030031

Pozsgai et al. (2017)

DMTS Murine hind paw
heat injury

Anti-hyperalgesic effect inhibited by
TRPA1 and sst4 knockout

Pozsgai et al. (2017)

DMTS Murine hind paw
carrageenan-induced
inflammation

Anti-hyperalgesic effect inhibited by sst4
knockout; lowered oedema formation
inhibited by sst4 knockout; decreased
MPO activity

Bátai et al. (2018)

MPO, myeloperoxidase.
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et al., 2012; Ogawa et al., 2012; Okubo et al., 2012). Applica-
tion of NaHS into the pancreatic duct in mice undergoing
cerulein-induced pancreatitis led to elevated cFos expression
in the spinal cord and mechanical alldoynia. Visceral pain
was relieved by a TRPA1 channel antagonist and a CaV3.2
channel inhibitor (Terada et al., 2015). Intracolonic adminis-
tration of NaHS induced visceral nociception, which was sim-
ilarly inhibited by a TRPA1 channel antagonist and Ca2+

channel blocker (Tsubota-Matsunami et al., 2012). However,
another study detected visceral pain in TRPA1 knockout mice
after intracolonic sulfide treatment (Andersson et al., 2012;
Tsubota-Matsunami et al., 2012). Intravesical administration
of NaHS in rats produced increased micturition frequency
and decreased voiding volume as observed with known
TRPA1 channel agonists. Expression of TRPA1 channels was
demonstrated by immunohistochemistry in the urothelium
(Streng et al., 2008) (Table 1).

An emerging field of sulfide research proposes that prod-
ucts of the reaction of sulfide with NO are responsible for var-
ious biological actions, including those mediated by TRPA1
channels. The most investigated derivatives are HNO,
polysulfides, SSNO and SULFI/NO (Cortese-Krott et al.,
2015). Combined application of sulfide and NO activated
TRPA1 channels in rat TRG and DRG neurons, astrocytes
and brainstem slices, as well as murine DRG cells. Responses
were abolished by TRPA1 channel antagonists or reciprocal
inhibition of sulfide or NO synthesis or downstream signal-
ling. CGRP release in response to the sulfide/NO combination
was detected in rat neurons and dura mater. A functional role
of HNO in elevated dura skin blood flow, as well as its effect
on murine BP was demonstrated by Eberhardt and colleagues
in very elegant experiments. They also detected CGRP release

in response to HNO from various tissues including murine
heart, mesentery, sciatic nerve and rat dura (Eberhardt et al.,
2014; Wild et al., 2015; Dux et al., 2016; Miyamoto et al.,
2017; Teicher et al., 2017). Interaction of inorganic polysul-
fide with TRPA1 ion channels was examined in RIN14B,
HEK293, chicken thoracic aorta epitheloid cells and murine
DRG neurons. Calcium signal readouts were inhibited by a
TRPA1 channel antagonist. In some reports, inhibitors of L-
and N-type Ca2+ channels as well as NO synthesis amelio-
rated activation of TRPA1 channels. Critical cysteine residues
of these channels involved in the activation by polysulfide
were identified using cells expressing mutant receptor pro-
tein (Hatakeyama et al., 2015; Delgermurun et al., 2016; Ujike
et al., 2018). Intraplantar injection of sodium polysulfide
evoked reduced pain and oedema formation in TRPA1 gene
deficient mice compared to wild-type controls (Hatakeyama
et al., 2015). Repeated i.p. administration of sodium polysul-
fide was reported to relieve mechanical hyperalgesia due to
carrageenan-induced paw inflammation in mice. The effect
was inhibited if TRPA1 channels or somatostatin sst4 recep-
tors were knocked out (Bátai et al., 2018) (Table 2).

Plant-derived asadisulfide produced Ca2+ signals in
TRPA1-expressing HEK293 cells. Ajoene from garlic did not
produce membrane currents inXenopus oocytes alone but po-
tentiated the action of various TRPA1 channel agonists. Or-
ganic sulfide compounds from garlic – DAS, DADS, DATS
and DMTS – activated TRPA1 channels in CHO cells. Effects
of diallyl compounds were not only diminished by a TRPA1
channel antagonist but also by capsazepine. Similar activity
of allicin and DADS was found in rat TRG neurons. DMTS ac-
tivated TTRPA1 channels in murine TRG cells but did not
have any effect on neurons from knockout animals. DMTS

Figure 2
Products of the interaction of sulfide and NO and their documented effects in neurons and astrocytes. Related publications are listed in Tables 2
and 3. 3MST, 3-mercaptopyruvate sulfurtransferase; Arg, L-arginine; CSE, cystathionine-γ-lyse; Cys, L-cysteine; HS�, sulfide; HSn

�, hydrogen poly-
sulfide; n/e/iNOS, neuronal/endothelial/inducible NO synthase; SO3H(NO)2

�, dinitrososulfite.
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activated nerve endings in mouse isolated skin and provoked
somatostatin release. This effect was abolished in skin sam-
ples dissected from TRPA1 channel knockout mice. Allicin
and DADS dilate rat mesenteric arteriesand this vasodilata-
tion was inhibited either by desensitization of peptidergic
nerve fibres by capsaicin pretreatment or a CGRP receptor an-
tagonist. In vitro, DMTS reduced the mechanical hyperalgesia
due to mild heat injury in a manner dependent on TRPA1
channels and sst4 receptors. In contrast, repeated i.p. admin-
istration of DMTS inhibited nociception, oedema formation
and myeloperoxidase activity in murine carrageenan-evoked
paw inflammation. These inhibitory effects were still present
in TRPA1 knockout mice, indicating actions independent of
TRPA1 channels (Bautista et al., 2005; Koizumi et al., 2009;
Yassaka et al., 2010; Shokoohinia et al., 2013; Pozsgai et al.,
2017; Bátai et al., 2018) (Table 3).

Putative mechanisms of sulfide-TRPA1
channel interactions
Functional modulation of TRP channels – including TRPA1
channels – by phosphorylation is a well-known phenome-
non (Kádková et al., 2017). In this section, we attempt to give
a summary of indirect sulfide–TRPA1 channel interactions

based on the effect of sulfide on kinases. Reports of the sensi-
tization or activation of TRPA1 channels by signalling kinases
should be assessed cautiously, as elevated neuronal [Ca2+]i
can also reflect PLC activation or simply being included in ex-
ternal patch-clamp solutions could activate the channel
(Figure 3).

Protein kinase A
The activation of TRPA1 channels by agonists is potentiated
by bradykinin. This effect is partly mediated via PKA, as it is
reproduced by PKA activators and prevented by its inhibitors
(Kádková et al., 2017). The most likely serine and threonine
phosphorylation sites of human TRPA1 channels are located
in ARD 1 (S86 and S87), 2 (T274), 8 (S317) and C-terminal cy-
toplasmic domain (S972 and S1101) (Kádková et al., 2017). A
wide range of reports claim modulation of PKA by sulfide or
polysulfides. Sulfide treatment increases cAMP concentra-
tion in neuronal and glial cell lines, as well as in Xenopus oo-
cytes (Kimura, 2000). The sulfide donor NaHS leads to
persulfidation and activation of PKA in rat hippocampal neu-
rons (Li et al., 2016). NaHS raised [Ca2+]i in human neuroblas-
toma SH-SY5Y cells partly by PKA-mediated phosphorylation
of plasma membrane Ca2+ channels. The effect was blocked
by a PKA inhibitor (Yong et al., 2010). Sulfide-induced PKA ac-
tivation was also described in microglial cells (Lee et al.,

Figure 3
Putative mechanisms of the modulation of TRPA1 function or expression by sulfide. Modulation of the activation or expression of TRPA1 ion chan-
nel by the signalling kinases, transcription factors, hormones and reactive species is documented in the literature. Effect of sulfide on these signal-
ling mechanisms was proven independently. Modulation of TRPA1 channels via these pathways has never been confirmed directly. In case of PKA
persulfidation and disulfide formation in the are indicated. In case of IκB-α, p38, PKC, Src and TRPA1 phosphorylation or the lack thereof are
shown. Arrows mean activation, and capped lines mean inhibition. CR, cytokine receptor; RTK, receptor TK.
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2006). Apart from neuronal cells, similar effects were ob-
served in hepatocytes (Untereiner et al., 2016). Cysteine
persulfides created in reactions with polysulfides might be
reduced in a reaction with thiols of the same or other pro-
teins leading to disulfide formation. Disulfide bond forma-
tion between two regulatory subunits of PKA involving
cysteines C17 and C38 leads to enzyme activation in rat tis-
sues (Burgoyne and Eaton, 2009). Sulfide might not only acti-
vate PKA by direct interaction but by inhibition of PDE
enzymes. Sulfide-induced relaxation of rat aortic smooth
muscle is mediated by elevated cGMP and is prevented by a
pretreatment with a PDE inhibitor (Bucci et al., 2010). Besides
being an alternative electron acceptor in oxidative phosphor-
ylation in a certain concentration range, inhibition of
PDE2A in the mitochondrial matrix contributes to protec-
tive effects of sulfide, too (Módis et al., 2013). Dimethyl disul-
fide, an organic disulfide compound, leads to pulmonary
vasodilatation in rats by activating NOS via phosphorylation
by PKA (Han et al., 2017).

PKC
The interaction of PKC and TRPA1 channels is only sup-
ported by indirect data and still awaits direct evidence. PLC
inhibitors – preventing PKC activation – ameliorate TRPA1
channel sensitization in response to activation of bradykinin
or protease-activated receptors (Dai et al., 2007; Pethő and
Reeh, 2012). This effect might be simply mediated by lower
Ca2+ efflux from the endoplasmic reticulum and consequent
lower activation of TRPA1 channels. The A kinase anchor pro-
tein (AKAP79/150) that is able to bind PKA and PKC was re-
ported to attach to TRPA1 channels. Several possible
phosphorylation sites of PKC were identified in the sequence
of TRPA1 protein (Kádková et al., 2017). In order to provide a
realistic view of the interaction of sulfide and PKC, it has to be
noted that at least as many papers report inhibitory effect of
the gasotransmitter on enzyme activity as those proposing
activation. Activation of PKC by sulfide was documented in
various cell types and tissues. Chronic pancreatitis leads to in-
creased expression of cystathionine β-synthase (CBS) –

the key enzyme of sulfide synthesis – andPKCγ in the arcuate
nucleus. (Zheng et al., 2016). Inhalation of H2S gas activated
PKC in the affected brain area and ameliorated the damage
(Wei et al., 2015). The protective effect of NaHS in an in vitro
model of Parkinson’s disease was mediated by the induction
of PKCα and PKCε in SH-SY5Y neuronal cells (Yong et al.,
2008). NaHS induced PKC phosphorylation and activation
in the rat hippocampus (Li et al., 2016). The PKC inhibitor
chelerythrine blunted Ca2+ responses to NaHS in SH-
SY5Y cells (Yong et al., 2010). The protective effect of NaHS
against hypoxic damage in SH-SY5Y cells was prevented by
various PKC inhibitors (Tay et al., 2010). Outside the nervous
system, murine bone marrow mesenchymal stem cells het-
erozygous for CBS or with the enzyme being inhibited
showed smaller PKC activity. PKC activity was elevated by
NaHS treatment (Liu et al., 2014). Beneficial effect of ischae-
mic postconditioning on rat cardiac myocytes was blunted
by the inhibition of endogenous H2S synthesis due to dimin-
ished activity of PKCα and PKCε (Yong et al., 2008). Precondi-
tioning of rat cardiac cells with NaHS produced translocation
of PKCε and PKCδ into the plasma membrane (Hu et al.,
2008; Pan et al., 2008).

Src kinase
Unlike the signalling kinases discussed above, Src kinase is a
non-receptor, protein-tyrosine kinase (TK). Src integrates
growth factor signalling, including that from nerve growth
factor, as it can either switch on Ras/Raf/MEK/ERK or the
PI3K/Akt signalling routes (Roskoski, 2015). Brain-derived
neurotrophic factor and glial cell-derived neurotrophic factor
were reported to induce TRPA1 channels in rat DRG neurons
and increase the responsiveness to agonists (Ciobanu et al.,
2009). There is no direct evidence of phosphorylation of the
TRPA1 channel by Src. On the other hand, sensitivity of neu-
ronal SH-SY5Y cells to a TRPA1 channel agonist – lost during
several passages of the cells – could be restored by an Src ki-
nase inhibitor (Kádková et al., 2017). The site of interaction
might be tyrosine 69 (Y69) in the first ARD (Morgan et al.,
2015). Based on in silicomodels, there are two other tyrosines
in TRPA1 channels proposed for phosphorylation by Src:
number 22 and 680 in the N-terminal cytoplasmic domain.
Few accounts on the interaction of sulfide and Src are avail-
able. NaHS increased neuritogenesis in NG108-15 cells. The
effect was blocked by Src inhibition. It has to be mentioned
that supraphysiological concentrations of NaHS were applied
(Tarui et al., 2010). Interaction of sulfide and Src was also re-
ported in non-neuronal cells. Phosphorylation of Src due to
NaHS treatment contributes to migration of RAW264.7 mu-
rine macrophages (Miao et al., 2016). Activation of Src upon
NaHS treatment was described in murine pancreas acini
(Tamizhselvi et al., 2010).

p38 MAPKs
Odontoblast cells respond to stimulation by TNF-α with in-
creased reaction of TRPA1 channels to agonist ligands and
membrane stretch. The effects were mediated by MAPKs 38
(p38)-evoked induction of TRPA1 channels (El Karim et al.,
2015). There is limited evidence that sulfur compounds are
able to increase phosphorylation and activation of p38 ki-
nase. NaHS increases glucagon-like peptide-1 (GLP-1) se-
cretion in mice via activation of p38 (Pichette et al., 2017).
Activation of p38 in response to NaHSwas detected in human
monocytes (Sulen et al., 2016). Garlic-derived DATS amelio-
rates cisplatin-induced oxidative injury in NCI-H460 human
lung carcinoma cells in a similar manner (Jiang et al., 2017).

Inhibitory effects of sulfide on p38 kinase is more widely
accepted. Inhibition of p38 by sulfide was detected in human,
murine, rat neuronal tissues and cell lines (Li et al., 2016; Lee
et al., 2016b). Inhibitory action of sulfide on p38 MAPK was
reported in non-neuronal cells, (Wu et al., 2017). The organic
compound DADS inhibited p38 in C28/I2 human chondro-
cyte cell line (Hosseinzadeh et al., 2017).

Casein kinase 2 (CK2)
CK2 is a highly conserved and ubiquitous serine/threonine
protein kinase. CK2 is currently gaining significance in the
regulation of Th17 immune response and inflammatory pro-
cesses involving glomerulonephritis, intestinal inflamma-
tion, pulmonary disease, multiple sclerosis and contact
dermatitis (Gibson and Benveniste, 2018). One suggested
phosphorylation site of TRPA1 channels by CK2 is threonine
number 1078 in the C-terminal cytoplasmic part of the ion
channel. Replacement of threonine 1078 with aspartate,
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mimicking phosphorylation, strongly influences electro-
physiological properties of the channel in response to Ca2+

(Kádková et al., 2017). Protection of rat myocardial cells from
ischaemia-reperfusion injury and amelioration of apoptosis
by NaHS involved increased CK2 activity (Yao et al., 2012).
The activity of CK2 is increased when intramolecular
disulfides are reduced to the corresponding thiols (Zhang
et al., 1998). Recently, sulfide has been demonstrated to par-
ticipate in the reduction of disulfides under physiological
conditions, offering another possible mechanism for the in-
teraction with CK2 (Vasas et al., 2015).

AMP-activated protein kinase (AMPK)
AMPK functions as an energetic sensor of cells being acti-
vated by increased AMP (and therefore decreased ATP) con-
centrations. AMPK is either activated by phosphorylation or a
Ca2+ signal via Ca2+/calmodulin-activated protein ki-
nase kinase β. Recently, the role of AMPK has been demon-
strated in the regulation of cell autophagy, atherosclerosis,
inflammatory disease and cancer. AMPK down-regulated
TRPA1 channels in DRG neurons, as shown by a lowered
amount of membrane-bound TRPA1 protein in response to
metformin and elevated level of TRPA1 protein when AMPK
activity was decreased (Wang et al., 2018). Altogether the link
between TRPA1 channels and AMPK is rather weak and is in-
cluded to provide a full view of the area. Wang et al. (2017)
provide an excellent review on the modulation of AMPK by
sulfide. No evidence on the interaction of sulfide with AMPK
is available in neurons. However, microglia-mediated neuro-
inflammation was ameliorated by various donors of sulfide
via activation of AMPK (Wang et al., 2017). Na2S increased
AMPK activity and attenuated myocardial damage due to
smoking, high fat diet, ischaemia or cardiac arrest
(Minamishima et al., 2009; Wang et al., 2017). Similar posi-
tive effects were recorded in rat aortic endothelial cells follow-
ing challenge by high glucose and palmitic acid. Sulfide
elicited this action by activating nuclear factor erythroid
2-related factor 2 (Nrf2), a transcription factor involved in
the response to oxidants and electrophiles (Wang et al.,
2017). Activation of Nrf2 involves thiol modification and in-
hibition of a regulatory protein – Kelch-like ECH-
associated protein 1 (Keap1) – that normally promotes
ubiquitination and degradation of Nrf2 (Taguchi et al.,
2011). Nrf2-mediated protection against oxidative stress was
detected in mouse neuroblastoma cells and glomerular endo-
thelial cells in response to NaHS and polysulfide (Koike et al.,
2013; Wang et al., 2017). Viability of rat embryonic cardiac
cells in a high glucose environment was enhanced by the
slow-release sulfide donor GYY4137 due to AMPK phosphor-
ylation (Wang et al., 2017). Elevated phosphorylation of
AMPK in response to sulfide was detected in hepatic cells, co-
lonic epithelial cells, osteoblasts and human monocyte cell
line (Wang et al., 2017). Garlic-derived organic disulfide
ajoene initiated similar signalling mechanisms in hepato-
cytes (Wang et al., 2017).

IκB kinase complex (IKK)
Activation of the pivotal and ubiquitous transcription factor
NF-κB might occur via phosphorylation and consequent
degradation of its inhibitory protein IκB-α by the IKK.
Functional data on nociceptor neurons genetically lacking

IKK suggest that the kinase complex suppresses expression
of TRPA1 channels (Bockhart et al., 2009). There is evidence
that both inorganic sulfide and organic polysulfides modu-
late IKK and in this way could affect the expression of
TRPA1 channels. Regulation of the IKK complex by sulfide
was only investigated in non-neuronal tissues. Garlic-
derived DATS promoted apoptosis in primary effusion lym-
phoma cells by inhibiting IKK activity, preventing
proteasome-driven degradation of IκB-α and consequently
suppressing NF-κB (Shigemi et al., 2016). Similar effect of
DADS was detected in carbon tetrachloride-exposed rat he-
patocytes (Lee et al., 2014). Inhibition of NF-κB signalling
by modulation of IKK by inorganic sulfide was described
in rat cardiomyocytes exposed to haemorrhagic shock
(Gao et al., 2012). Sulfide-releasing diclofenac could prevent
breast cancer-induced osteoclast formation via a compara-
ble mechanism (Frantzias et al., 2012).

Oestrogen
The mechanism of modulating TRPA1 channels by oestrogen
shown below is highly debatable and rests upon relatively
limited evidence, but the authors feel obliged to include it
in order to provide a full picture. There is a single report of
ovariectomy-related apoptosis of rat hippocampal and DRG
neurons partly relies on Ca2+ influxmediated by TRPA1 chan-
nels (Yazğan and Nazıroğlu, 2017). It is well known that
oestrogen increases the expression of sulfide-synthesizing en-
zymes (Li et al., 2017) and some data suggest that sulfide
might reciprocally affect oestrogen synthesis or metabolism.
Treatment with the sulfide precursor cysteine for 8 weeks ele-
vated the serum concentration of 17β-oestradiol in rats
(Han et al., 2016). A garlic-derived organic sulfide, DAS, was
reported to interact with intracellular constitutive
androstane receptor and induce oestrogen metabolizing
sulfotransferases. However, this did not affect the serum
oestrogen concentration but only that of exogenously ap-
plied hormone (Green et al., 2007; Sueyoshi et al., 2011).

Hypoxia inducible factor 1α (HIF-1α)
Cigarette smoke extract induces expression of TRPA1 chan-
nels viaHIF-1α activation in A549 human alveolar adenocar-
cinoma cells (Nie et al., 2016). The influence of sulfide on
HIF-1α activity and expression is still debatable. Some authors
have reported destabilization and lowered expression of the
transcription factor in various cell lines (Wu et al., 2012).
Others found the opposite, with activation and stabilization
of HIF-1α by sulfide in human THP-1macrophages and rat en-
dothelial cells (Liu et al., 2010; Flannigan et al., 2015;
Lohninger et al., 2015).

Mitochondrial dysfunction and oxygen radicals
Inhibition of complex III of themitochondrial electron trans-
port chain by antimycin A leads to the activation of TRPA1
channels in murine bronchopulmonary C fibres. The effect
was mediated by ROS resulting from mitochondrial dysfunc-
tion (Nesuashvili et al., 2013). Large amounts of sulfide are
well known to inhibit complex IV (cytochrome c oxidase)
and open the way for the production of ROS and depletion
of GSH. The effect of sulfide on oxidative phosphorylation of-
fers an indirect way of activating TRPA1 channels (Figure 3).
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Concluding remarks
The biological importance of H2S and polysulfides has been
extensively investigated in vitro and in vivo. The role of
TRPA1 channels and the signalling effects of sulfide com-
pounds have been demonstrated separately in different or-
gans either in the CNS or on the periphery in numerous
physiological and pathological processes, including
neuroimmune modulation, metabolic pathways, cardiovas-
cular system, tumour growth, inflammation and pain. The
present review provides a comprehensive overview about
potential interactions between TRPA1 channel- and
sulfide-activated signal transduction pathways. There are
several sets of experimental data demonstrating direct
binding and agonist effect of sulfide containing ligands
on TRPA1 channels. They open the ion channel presum-
ably by covalent modification of cysteine and lysine resi-
dues within the N-terminus and transmembrane domain.
Analysing the list of recently published data, it is very
likely that, apart from direct activation, sulfides modulate
TRPA1 channels indirectly, via signalling kinases, as well.
The key link to reveal the molecular mechanism is that
sensitization or activation of TRPA1 channels has followed
the phosphorylation of the protein. There is substantial ev-
idence that sulfides can activate several kinases (PKA, PKC,
Src, p38 MAPK, CK2, AMPK and IkB) in the signal trans-
duction pathways. Modulation of TRPA1 channels by tran-
scription factors, hormones and reactive species is also
documented in the literature. TRPA1-independent and
TRPA1-dependent effects – resulting from either by direct
or indirect mechanisms – of sulfides play pivotal roles in
regulation of cellular functions. Understanding interactions
between TRPA1 channels and sulfides may contribute to
the discovery of novel drug targets for the treatment of a
range of diseases.

Nomenclature of targets and ligands
Key protein targets and ligands in this article are
hyperlinked to corresponding entries in http://www.
guidetopharmacology.org, the common portal for data from
the IUPHAR/BPS Guide to PHARMACOLOGY (Harding
et al., 2018), and are permanently archived in the Concise
Guide to PHARMACOLOGY 2017/18 (Alexander et al.,
2017a,b,c,d,e,f).
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