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Ádám Lajos Váradi
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Abstract—In high speed drives both the sampling over
reference frequency ratio F and the carrier over reference
frequency mf is a low value. The low mf ratio results voltage
and current harmonic spectra far more unfavorable than at
standard ratios. The low F ratio can result uncertainty and
inaccuracy in the calculation of the magnitude and angle of
stator or rotor flux vector or in the estimation of the actual
value of the speed.

The current paper derives the discrete equations of different
flux and speed estimator algorithms by using Tustin approxi-
mation. The performance of the algorithms, both in open and
closed loop, is demonstrated via numerical simulation using a
high speed motor drive with a low sampling to fundamental
frequency ratio.

Keywords—Induction machine, Estimator, High speed drives,
Discretization

I. INTRODUCTION

Nowadays increasing attention has been paid to high speed
induction and permanent magnet sychronous machines [1].
The high rated fundamental frequency f1 (from few hundred
up to thousand Hz) and the limited carrier (switching)
frequency fc (≤ 15 − 25 kHz) result in low mf = fc/f1

frequency ratios (usually mf < 21). The low frequency
ratios result in a far more unfavorable stator voltage, flux
and current harmonic spectra that obtained at high frequency
ratios.

In modern closed loop controlled high speed drive sys-
tems, all the signal processes including the speed and current
regulation loop and also the PWM block are implemented in
the digital domain. Even with the up-to-date digital devices
with clock frequency in the range of tens of MHz, the
sampling frequency (fs) is limited. Its outcome is that the
ratio of the sampling frequency and the actual fundamental
frequency F = fs/f1 around the maximum speed of a high
speed motor is also low, resulting in stability problems and
sampling error in the regulation loop.

Therefore, the low F ratio is a source of possible error in
digitally controlled drives. In recent years drives with low
F ratio have gained more attention and have been analyzed
in research papers [2]–[5]. To improve the available flux
and speed estimator techniques for induction machines an
adequate discrete estimation methodology should be found.
In this way, high speed drives with low F ratio can provide
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robust, reliable and high dynamic performance similar to
standard drives with high F ratio.

The goal of the paper is to derive the discrete recursive
equations of different flux and speed estimator algorithms
and analyze their performance for different F ratio values
and for machine parameter sensitivity.

II. THEORETICAL BACKGROUND

The squirrel cage induction machine in a rotating refer-
ence frame d − q, which rotates with an arbitrary selected
ωR angular speed, can be described by the following two
differential equations expressing the stator and rotor voltage
balance

vs = Rsis +
dΨs

dt
+ jωRΨs (1)

vr = Rrir +
dΨr

dt
− j(ωR − ω)Ψr = 0 (2)

and by the stator Ψs and rotor Ψr flux relations

Ψs = Lsis + Lmir (3)
Ψr = Lmis + Lrir, (4)

where ω is the mechanical angular speed. Rs and Rr are
the resistance in one stator and rotor phase, respectively.
The total inductance of the stator and rotor can be given as
Ls = Lm + Lls and Lr = Lm + Llr, where Lls and Llr
denote the leakage inductance of the stator and rotor.

A. Flux estimators

In closed loop vector control of induction machines it is
essential to obtain the magnitude and the actual angle of the
rotor flux. Due to the complexities and lack of mechanical
robustness of the airgap flux measurement, the stator and
rotor flux is estimated by real-time calculations. Many flux
estimator and observer techniques have been developed over
the years [3], [6]–[8]. Most of them use the measured stator
current and the applied stator voltage vector to calculate the
rotor flux.

1) Flux observer based on the stator voltage: In station-
ary reference frame (ωR = 0) the stator flux vector can be
easily obtained by integrating the difference between stator
voltage and the voltage drop across the stator resistance.
From the stator flux vector the rotor flux vector can be
calculated directly. The equations are as follows

dΨs

dt
= vs −Rsis (5)

Ψr =
Lr
Lm

(
Ψs − σLsis

)
(6)



.
The main drawback of the method is that it applies an

open-loop integrator. In practical application, to improve and
stabilize the performance, a feedback path is often used [6].

Figure 1(a) presents the block diagram of this method.
2) Flux observer based on stator current: By selecting

the angular speed of rotating reference frame to be the
mechanical angular speed ωR = ω, (1)-(4) can be simplified
as

dΨr

dt
=
RrLm
Lr

is −
Rr
Lr

Ψr (7)

Ψs = σLsis +
Lm
Lr

Ψr, (8)

where σ = 1 − L2
m

LrLs
. This method has the advantage over

the previous one, that it applies a closed-loop integrator.
However, it requires the mechanical angle for coorindate
transformation. Figure 1(b) shows the block diagram of this
current model.

3) Gopinath estimator: Gopinath estimator combines the
flux estimation based on the stator voltage and stator current.
The rotor flux vector calculated by the voltage model is sub-
tracted from the rotor flux calculated by the current model.
The difference is forced to zero by a PI type controller. The
output of the PI controller is added to the input stator voltage
vector as

dΨs

dt
= vs + vPI −Rsis (9)

Its block diagram can be seen on Fig.1(c).
As it will be demonstrated later on, this observer is able

to perform well even when the sampling over reference fre-
quency ratio F and the carrier over reference frequency mf

is a low value. Furthermore, it is robust against parameter
uncertainties.

B. Speed estimators

The actual value of the mechanical speed is required to
control the speed of the drive or to calculate the flux using
stator current based or Gopinath stlye flux observer. The
mechanical speed sensors, attached to the machines shaft,
increase the overall cost. Furthermore, in the case of high
speed drives, it is very hard and expensive to find a speed
sensor, which provides good accuracy from zero speed up to
rated speed. By using speed estimator the mechanical speed
sensor can be avoided.

1) Current based MRAS: Model Reference Adaptive Sys-
tem (MRAS) observers are widely used to calculate the
mechanical speed of the induction machine. MRAS observes
consist of a reference model and an adaptive or adjustable
model, which is the function of the estimated variable.
The difference between the two models is evaluated by an
adaptation mechanism. This mechanism, generally a PI-type
controller, forces the difference between the two models to
be zero [9].

In the so-called current based (CB) MRAS observer [7],
the induction motor is used as a reference system. The flux
estimator based on stator current together with a current
estimator form the adaptive model (Fig.2(a)).

In stationary reference frame (ωR = 0) the stator current
can be estimated by using (1)-(4) as

is,est =
1

σLs

∫
vs −

(
Rs +

L2
mRr
L2
r

)
is,est −

Lm
Lr

jωΨr + ...

+
LmRr
L2
r

Ψr dt, (10)

where the subscript est referes to ”estimated”. As it can be
seen, the current esimator needs the rotor flux, which can be
obtained from the flux estimator based on the stator current.

The adaptation mechanism uses the following equations

ζ = (isα − isα,est)Ψrβ + (isβ − isβ,est)Ψr,α (11)

ωest = KP ζ +KI

∫ t

0

ζdt, (12)

where α and β denote the real and imaginary components
of the vectors in the stationary reference frame. KP and KI

are the gains of the PI controller. It should be noted, CB-
MRAS provides not only the mechanical speed, but thanks
to the flux observer part the rotor flux vector as well.

In the literature other MRAS observer techniques are
also analyzed. Paper [9] compares the so called reference
frame (RF) MRAS with the CB-MRAS. A model predictive
MRAS speed estimator based on the finite control set-
model principle is introduced in [8]. Its advantage is that, it
eliminates the need for the PI type controller.

2) PLL-type estimator: A simpler method to estimate the
mechanical speed as well as the electrical angle ρest is based
on the calculation of the Back Electro Motive Force (BEMF)
later denoted by vector e. It can calculated in the stationary
reference frame (ωR = 0) as

eest = vs −Rsis − σLs
dis
dt

(13)

After this, e should to be transformed to a rotating reference
frame (ωR = ω1) with the estimated electrical angle ρest.
Furthermore, it is assumed that the real axis is aligned with
the rotor flux vector (Ψ = Ψd = Ψ). In this field oriented
coordinate system e is leading by 90◦ the rotor flux Ψr in
steady-state, so its real d axis component should be zero as

ed =
Lm
Lr

dΨd

dt
(14)

eq =
Lm
Lr

ω1,estΨ (15)

From the latter equation ω1 can be calculated theoretically
as

ω1,est =
Lr
LmΨ

eq (16)

Error in the estimation generates a non-zero d axis com-
ponent of the BEMF. The larger the value ed,est, the larger
the error is. It can be corrected as

ω1,est =
Lr

LmΨr

(
eq,est − sqn(eq,est)ed,est︸ ︷︷ ︸

correction

)
(17)

By integrating ω1,est the estimated electrical angle ρest can
be obtained.

The compensation forces ed to be zero, in this way forces
the estimated electric angle ρest to be the same as the real
one. This behaviour is similar to a PLL method.
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The mechanical speed can be calculated from ω1,est as

ωest = ω1,est − ω2,est = ω1,est −
RrLm
Lr

1

Ψr
isq (18)

where ω2,est is the slip speed, which can obtained from (1)-
(4) by assuming ωR = ω1 and steady-state condition for the
stator and rotor fluxes (their derivatives are zero).

Figure 2(b) presents the block diagram of the PLL based
speed estimator.

It should be noted, in the case of the PLL based estimator,
the magnitude of the rotor flux Ψr is an input value. It can
be assumed to be constant and equal to its rated value, or it
can be calculated by using one of the flux observer presented
previously.

III. DISCRETIZATION USING TUSTIN APPROXIMATION

In modern high-performance closed loop drive systems,
all signal processes including the processes in speed and
the current regulation loop and also the PWM block are
implemented in the digital domain. The signal flow of the
estimator algorithms presented in the previous section in the
continuous time domain has to be discretized by sampling.

The applied discretization technique has a great impor-
tance on the performance, therefore the selection of the
approximation method plays a crucial role.

Paper [2] introduces a power series approximation for real
time implementations of a discrete flux observer. Different
numerical integration methods for discretization of the cur-
rent based MRAS estimator are compared in [5]. A modified
Euler approximation is used to discretize flux estimation is
presented in [4].

In the current paper, to obtain a more accurate and stable
flux or speed estimation the so-called trapezoidal (Tustin)
integral approximation was used. It increases the com-
putational complexity, but it provides stable performance.
Today processors with capability of calculation of complex
algorithm using floating point arithmetic are available even
at low cost.

The Tustin or bilinear approximation provides the best
frequency-domain match between the continuous and dis-
cretized systems.

By applying Tustin approximation, the discrete integral
can be calculated as follows between two consecutive time
steps

f((k + 1)Ts)− f((k)Ts) =

(k+1)Ts∫
kTs

g(τ)dτ, (19)

where Ts is the sampling period.

A. Flux observer based on stator current

It should be noted, this observer can estimate the present
value of the rotor flux in the kth period and it cannot be
used to estimate the next sample as it has no advanced in-
formation for accomplishing this [6]. Therefore (19) should
be calculated between (k − 1)Ts and kTs instants.

Using (7)

Ψr(kTs)−Ψr((k − 1)Ts) =
RrLm
Lr

kTs∫
(k−1)Ts

is(τ)dτ−

Rr
Lr

kTs∫
(k−1)Ts

Ψr(τ)dτ (20)

The sinusoidal stator current viewed in the RRF appears
to be a slow moving sinusoidal signal at the slip frequency
and can be modelled as a ramp signal with an average value
of (is(kTs) + is((k − 1)Ts))/2.

The flux integral is approximated with the trapezoid
according to Tustin definition as

kTs∫
(k−1)Ts

Ψr(τ)dτ =
Ts
2

(
Ψr(kTs) + Ψr((k − 1)Ts)

)
(21)



The discrete version of the flux estimator

Ψr(kTs) =K1Ψr((k − 1)Ts) +K2(is(kTs)+

+ is((k − 1)Ts)) (22)

where

K1 =
1− RrTs

2Lr

1 + RrTs

2Lr

and K2 =
RrLmTs

2Lr

1 + RrTs

2Lr

(23)

B. Flux observer based on stator voltage

This type of observer inherently estimates the next sample
instant. Thus

Ψs((k + 1)Ts)−Ψs(kTs) =

(k+1)Ts∫
kTs

vs(τ)dτ

−Rs

(k+1)Ts∫
kTs

is(τ)dτ (24)

By assuming vs is constant during sampling period (vs(τ) =
vs(kTs), Ts ≤ τ < (k+ 1)Ts), the discrete form of (5) and
(6) can be written as

Ψs((k + 1)Ts) = Ψs(kTs) + Tsvs(kTs) +
Ts
2

(
is(kTs)

+ is((k + 1)Ts
)

(25)

Ψr((k + 1)Ts) =
Lr
Lm

(
Ψs((k + 1)Ts) + σLsis((k + 1)Ts)

)
(26)

As it can be seen, to avoid lagging response, the value of
the stator current in the (k + 1)th period is required. As it
is not available, it should be estimated by (10).

C. Gopinath estimator

The Gopinath estimator combines the flux estimation
based on the stator voltage and stator current. In the
Gopinath estimator the estimated rotor flux vector Ψr(kTs)
based on the stator current is calculated first using (22). After
this, a discrete PI controller, using Tustin approximation,
forces the error between the Ψr(kTs)

SC (calculated based
on the stator current (SC)) and Ψr(kTs)

SV (calculated
by the voltage model using (26) in the previous sampling
period) to be zero.

The vPI(kTs) output of the controller is used to estimate
the stator flux as follows (see (25) and (9))

Ψs((k + 1)Ts) = Ψs(kTs) + Ts
(
vs(kTs) + vPI(kTs)

)
+
Ts
2

(
is(kTs) + is((k + 1)Ts

)
(27)

Ψr((k + 1)Ts) can be calculated using (26). However, as
it was mentioned previously, the estimated value of is((k+
1)Ts) is required in (26) and (27).

Current estimator using Tustin approximation: The stator
current in the (k + 1)th period can be estimated by using
(10) and (19) as

is,est((k + 1)Ts)− is,est(kTs) =
1

σLs

(k+1)Ts∫
kTs

vs(τ)dτ

− Re
σLs

(k+1)Ts∫
kTs

is,est(τ)dτ − Lm
σLrLs

(k+1)Ts∫
kTs

jω(τ)Ψr(τ)dτ

+
LmRr
σL2

rLs

(k+1)Ts∫
kTs

Ψr(τ) (28)

where Re = Rs +
L2

mRr

L2
r

. It can be assumed, the
mechanical speed and the value of the stator voltage are
constant over one sampling period (vs(τ) = vs(kTs),
ω(τ) = ω(kTs), kTs ≤ τ < (k + 1)Ts). The flux integral
can be approximated with the trapezoid according to Tustin
definition as

(k+1)Ts∫
kTs

Ψr(τ)dτ =
Ts
2

(
Ψr(kTs) + Ψr((k + 1)Ts)

)
(29)

There is no advanced information on the value of Ψr((k +
1)Ts). However, it can be assumed, the amplitude of the
rotor flux is constant over one period as the time constant
of the rotor flux is considerably higher than the sampling
time. Therefore Ψr((k + 1)Ts) can be estimated as

Ψr((k + 1)Ts) = Ψr(kTs)e
jω1Ts ≈ Ψr(kTs)e

jωTs (30)

as for high speed drives the slip speed is small comparing
to the fundamental angular frequency and ω1 ≈ ω (and
assuming that the number of pole pairs is 1).

To stabilize the current estimator algorithm, an additional
PI controller is used, which forces the difference between
the measured and the estimated stator current to be zero [6].
The input of the PI controller is the error signal is(kTs) −
is,est(kTs), where is,est(kTs) is the estimated stator current
calculated in the previous sampling period. The vPI,is(kTs)
output of the PI controller is added to the vs(kTs) in (28).

In summary, the stator current vector in the (k + 1)th

sampling period can be estimated as

is,est((k + 1)Ts) = K1C(vs(kTs) + vPI,is(kTs))+

+K2C is,est(kTs)− jωK3CΨr(kTs)
(
1 + ejϑ)+

+K4CΨr(kTs)
(
1 + ejϑ

)
(31)

where Ψr(kTs) is the rotor flux calculated in the previous
sampling period using (27) and

K1C =
Ts

σLs

1 + ReTs

2σLs

K2C =
1− ReTs

2σLs

1 + ReTs

2σLs

K3C =
LmTs

2σLrLs

1 + ReTs

2σLs

K4C =

LmRrTs

2σL2
rLs

1 + ReTs

2σLs

and ϑ = ωTs.



It should be noted, in [6] a method based on Euler
approximation is introduced to estimate the stator current.
Based on our experience using Tustin approximation and
estimating Ψr((k+ 1)Ts) by (30), a much more robust and
stable performance can be obtained even at low F ratios.

The advantage of Gopinath estimators is that, it can
estimate the rotor flux vector valid in the next sample, thus
removes the computational delay and it can improve the
closed loop performance of the drive.

D. Current based MRAS

The discrete version of the CB-MRAS combines the
discrete flux estimator based on stator current with a discrete
current estimation.

The equation of the discrete flux estimator is given in (22).
The only difference is that, the estimated mechanical speed
ωest((k−1)Ts), calculated in the previous sampling period,
is used for coordinate transformation.

The discrete current estimator algorithm is similar to the
one, which was presented previously. However, the flux
estimator based on stator current can provide the present
value of Ψr, which is valid in the the kth period. Therefore,
the (28) should be discretized by Tustin method between the
(k − 1)Ts and kTs sampling instants. It results that, there
is no need to estimate Ψr in the k + 1 period using (30).
Furthermore, there is no need for the additional PI controller
used in the current estimation as the adaptation algorithm of
the MRAS forces the estimated current to be the same as
the measured one.

The discrete version of the current estimator used in CB-
MRAS can be given as

is,est(kTs) = K1Cvs(kTs) +K2C is,est((k − 1)Ts)

− jωest((k − 1)Ts)K3C

(
Ψr(kTs) + Ψr((k − 1)Ts)

)
+

+K4C

(
Ψr(kTs) + Ψr((k − 1)Ts)

)
(32)

The discrete inputs signal of the adaptation mechanism
(PI controller) by using (11)

ζ(kTs) =
(
isα(kTs)− isα,est(kTs)

)
Ψrβ(kTs)

+
(
isβ(kTs)− isβ,est(kTs)

)
Ψr,α(kTs) (33)

The discrete PI controller outputs ωest(kTs).
To obtain a stable behaviour with CB-MRAS, the KP and

KI gains of the PI controller should be selected to be large
values. Based on our findings, it is worth to use variable
gain KP , and change its parameter as the function of the
error signal. In this way the unwanted oscillations can be
reduced.

E. PLL-type estimator

One of the advantages of the PLL-type speed estimator
is its simple structure. The discrete version of the BEMF
estimation (see (13)) can be written as

eest(kTs) = v(kTs)−Rsis(kTs)− ...

−σLs
is(kTs)− is((k − n)Ts)

nTs
(34)

As the discrete derivative can result in additional noise,
the value of the eest, after the coordinate transformation,
should be filtered.

Deriving the discrete equations of the rest of the estimator
algorithm based on Fig.2(b) is straightforward.

F. Compensation of frequency warping phenomena

In the case of trapezoidal type of discretization, fre-
quency warping phenomena should be expected [10]. This
phenomena cannot be neglected at low F ratio. It can be
compansated by scaling the synchronous speed ω1 in the
equations of the estimator algorithms with a gain k, which
can be calculated as

k =
ω1Ts

2

1

tan(ω1Ts/2)
(35)

As the slip frequency is very small, the same gain k can be
used for scaling the mechanical speed ω in the equations as
well (and assuming that the number of pole pairs is 1).

IV. DIGITAL IMPLEMENTATION

A. Sequence of current sampling and calculations

By using carrier based PWM techniques, like SVM as in
the current paper, the stator phase currents are synchronously
sampled twice at the negative and positive peaks of the
carrier signal (see Fig.3) [11]. In this way it can be ensured
that, the current is measured in the middle of the zero vector
times. In ideal case it provides ripple-free feedback signals
for the controllers.

The drawback of the solution is that, the sampling fre-
quency is limited and the delay caused by the PWM periph-
eral (see later) introduces a phase lag limiting the achievable
control bandwidth and deteriorating the performance of the
control loop. In general-purpose ac drive applications this
effect can be neglected, but it can be crucial, when both the
sampling over fundamental frequency ratio F and the carrier
over fundamental frequency mf is low.

It should be noted, in practical drives, the lockout time, the
delays of the anti-aliasing filters or the motor cable length
can cause additional noise in the current signals even if they
are synchronously sampled. Paper [12] introduces a method
to avoid these unwanted effects.

In a processor (µC or DSP) based system after the sam-
pling and the conversion of the phase currents an interrupt
service routine (abbreviated as ISR) is called (Fig.3). In
this routine the discrete version of the estimator and the
controller algorithms can be found. The controller, based on
the measured and the estimated signals, generates the output
reference voltage vs for the induction machine. The PWM
algorithm, Space Vector Modulation in our case, calculates
the reference signals for each phase. They are latched into
the Compare Registers (CR) of the PWM peripheral of the
processor to generate the switching signals.

As it was shown previously, estimator algorithms, except
for the flux observer based on the stator current, use the
value of the stator voltage vector vs (in stationary reference
frame). In practical applications, the phase voltages are not
measured for simplicity and the value of the calculated
reference voltage vector is used by estimators.

The sampling of the current signals, the calculation of
the estimator algorithm, the control and the PWM algorithm



take less time than Ts. In spite of this, the microcontroller
vendor suggests to update the registers of the digital PWM
peripheral only in the next half carrier period (see Fig.3).
It means that the voltage reference signals calculated before
the negative peak are latched into the CR registers only at
the negative peak and vice versa. It results in a constant
Ts time delay in the control algorithm between the current
sampling and the update of the duty ratios.

ADC
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ia,sampled

vcarrier
PWM

PWM PWM
PWM

kth(k-1)th(k-2)th (k+1)th (k+2)th
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ADC
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ADC
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Fig. 3. Sequence of sampling, calculation and PWM update in a processor
based drive system

B. Effect of discretization

At low F ratio the effect of model discretization magni-
fies, and some additional errors in the estimation can occur.
According to our findings, one possible source of error can
arise from the mismatch between the sampled current and
sampled voltage values. Let us assume the estimator reads
the current signal at the negativ peak of the carrier signal
in the kth period (see Fig.3). Due to the delay in the PWM
module, the value of the sampled current was caused by
the applied voltage vector which was calculated during the
(k−2)h period. If the estimator algorithm uses the value of
the stator voltage vector calculated in the previous (k−1)th

period, a mismatch occurs which can cause error or even
instability in the estimator algorithm when the frequency
ratio is a low number. This can be avoided by using the
voltage vector which belongs to the actual current vector or
by predicting the current vector in the next sampling instant.

Another problem, which is crucial at low F ratio, is the
phase error between the real and estimated flux or BEMF
vectors caused by the discretization and the delay. It can be
avoided by adding a compensating angle during the rotation
of the vectors. The compensating angle can be assumed to be
ωTs or ω1Ts, however, depending on the loading conditions
this value can change. Paper [3] introduces a controller,
which calculates the value of the compensating angle using
an integral type controller for MRAS observer.

V. SIMULATION RESULTS

A detailed simulation analysis was carried out using Mat-
lab/Simulink environment. The parameters of the machine
with rated speed 18 000 rpm can be found in the appendix.

During the simulation the delays occuring in a microcon-
troller or DSP based system are also taken into consideration.

A. Flux observers

In this section, the parameter sensitivity analysis of the
flux observer based on the stator current and the Gopinath
estimator is performed. The parameters under the scope

are the rotor resistance Rr and the mutual inductance Lm.
The sampling fs and the switching fc frequency are also
changed to demonstrate the effect of the mf = fc/f1 and
F = fs/f1 = 2mf ratios.

The simulation analysis was performed in open-loop and
closed loop as well.

1) Open-loop operation: During this test the machine
is supplied by its rated voltage at its rated fundamental
frequency (f1 = 300 Hz) and it is loaded by the rated torque.

To demonstrate and compare the performance of the flux
observers the relative error in the estimation of the rotor flux
amplitude and the error in the rotor flux angle estimation
were calculated in steady state. The first one is calculated
as ∆Ψr =

|Ψr,real−Ψr,est|
Ψr,real

, while the error in the rotor flux
angle estimation is obtained as %err = |%Ψr,real − %Ψr,est|.

Figure 4 summarizes the simulation results for parameter
sensitivity in table form. As it can be seen the Gopinath
estimator has a much better performance than the flux
observer based on the stator current. It is less sensitive on the
change in the parameters and estimates both the amplitude
and the angle of the rotor flux with good accuracy even at
low frequency ratios.

As it can be seen both estimator is more sensitive on
the value of Rr. Based on 4, it is worth to point out that,
the magnitude of the error is not the same for positive and
negative changes in Lm and Rr parameters.

(a) Sensitivity of flux observer based on stator current to Rr parameter

(b) Sensitivity of flux observer based on stator current to Lm parameter

(c) Sensitivity of Gopinath flux estimator to Rr parameter

(d) Sensitivity of Gopinath estimator to Lm parameter

Fig. 4. Simulation results, sensitivity of flux observers at rated speed and
at rated loading torque (f1 = 300 Hz, Mn = 1.6 Nm)
Color code: Green (Good): ∆Φr < 5%, %err < 0.08rad, Yellow
(Moderate): 5% ≤ ∆Φr < 10%, 0.08rad≤ %err < 0.15rad, Red (Bad):
10% ≤ ∆Φr , 0.15rad≤ %err



2) Closed-loop operation: The performance of the flux
observers was evaluated in closed loop as well. In this
case the machine was controlled by Field Oriented Control
method and the flux estimators provided the amplitude and
the angle of the rotor flux.

Figure 5 presents the simulated time function of the
mechanical speed and the electric torque in closed loop
both when the flux observer based on stator current and
when the Gopinath estimator was used. The reference speed
was selected to be ω∗ = 1750 rad/sec (f1 ≈ 275 Hz).
The machine loading torque was changed suddenly in both
direction. The sensitivity of the flux observer to parameter
variation is also tested. Both the value of Lm and Rr, which
is used in the estimator are changed in both directions.

Figure 5(a) presents the time function of ω and M when
the switching frequency was selected to be fs = 3.6 KHz
(mf ≈ 13, F ≈ 26). The value of the rotor resistance
used in the estimation was suddenly change by 10% in both
direction (see lower diagramm on Fig.5(a)). As it can be seen
the vector control works properly for both flux observers.
As it was demonstrated in the previous subsection, the flux
observer based on the stator current is more sensitive on the
value of Rr. If the rotor resistance used in the estimator
is changed by 20% in the negative direction (see Fig.5(b))
the flux observer based on the stator current cannot provide
correct results and the closed loop control becomes unstable.
By using Gopinath estimator the system remains stable.

As it was shown previously, the estimators are less sen-
sitive on change in the parameter Lm. Figure 5(c) presents
the simulated Ω and M when the switching frequency is
only 3 kHz (mf ≈ 11, F ≈ 22) and the value of Lm used
in the estimator is changed by 20% in both direction. The
controller works properly in both cases.

B. Speed Estimators
1) Open-loop operation: During this test the machine

is supplied by its rated voltage at its rated fundamental
frequency (f1 = 300 Hz).

It should be noted, the PLL-type estimator requires the
magnitude of the actual rotor flux (the actual angle of
the rotor flux is calculated by the algorithm). During the
simulation study, it is provided by the Gopinath estimator.

Figure 6 presents the time function of the real and the es-
timated mechanical angular speed, when the loading torque
as well as the value of Rr and Lm used in the estimation
are changed suddenly when the switching frequency is only
fc = 3.3 kHz (mf ≈ 11, F ≈ 22). The relative error in the
speed estimation is calculated as ω−ωest

ω .
As it can be seen both the CB-MRAS and PLL-type speed

estimator works properly and the error in the speed estima-
tion is less than 1% even when the machine parameters used
in the algorithm deviate from the real ones. Comparing the
two methods, it can be seen the PLL has a slightly better
performance.

2) Closed-loop operation: The performance of the speed
estimators was evaluated in closed loop as well. In this
case the machine was controlled by Field Oriented Control
method and the estimators provided the mechanical speed,
as well as the actual rotor flux angle.

Figure 7 presents the simulated time function of the
mechanical speed and the electric torque in closed loop

(a) Sensitivity on Rr , fs = 3.6 KHz, mf ≈ 13(F ≈ 26)

(b) Sensitivity on Rr , fs = 3.6 KHz, mf ≈ 13(F ≈ 26)

(c) Sensitivity on Lm,fs = 3 KHz, mf ≈ 11(F ≈ 22)

Fig. 5. Simulation results, performance of flux observers in closed loop
operation

using both speed estimator algorithms. The reference speed
was selected again to be ω∗ = 1750 rad/sec (f1 ≈ 275
Hz). The machine loading torque was changed suddenly in
both directions. The sensitivity of the speed estimator to
parameter variation is also tested. Both the value of Lm
and Rr used in the estimator are changed suddenly in both
direction.

As it can be seen the closed loop control has stable op-
eration. The mechanical speed follows the reference speed,
the error is around 1%. By comparing the performance of
CB-MRAS and PLL-type speed estimators it can be seen the
response of the PLL-type estimator became more oscillatory
if there is a positive mismatch between the real and the
estimated Rr value (see Fig.7(a)). Similarly to the flux
observers, the speed estimators are less sensitive on the value
of Lm (see Fig.7(b)).

VI. CONCLUSIONS

The paper focuses on high speed drives, where the low F
ratio can be a source of possible error during the discretiza-
tion of the estimator algorithms.



(a) Sensitivity on Rr , fs = 3.3 KHz, mf ≈ 11(F ≈ 22)

(b) Sensitivity on Lm, fs = 3.3 KHz, mf ≈ 11(F ≈ 22)

Fig. 6. Simulation results, performance of speed estimators in open loop
operation

(a) Sensitivity on Rr , fs = 3.6 KHz, mf ≈ 13(F ≈ 26)

(b) Sensitivity on Lm, fs = 3.6 KHz, mf ≈ 13(F ≈ 26)

Fig. 7. Simulation results, performance of speed estimators in closed loop
operation

The paper introduces the theoretical background of the
selected flux and speed estimator techniques. The discrete-
time equations of each algorithm is derived by using Tustin
approximation. The discrete form of each algorithm can be
implemented by the recursive equations presented in this
paper.

The performance of the algorithms both in open and
closed loop is validated via numerical simulation using a
high speed motor drive with a low sampling to fundamental
frequency ratio.

Another paper will discuss the laboratory measurements
with additional information on the practical implementation.

APPENDIX

The rated data and main parameters of the machine are: power:
PN = 3 kW, ULL,RMS = 380V, IN,RMS = 7.7A, f1N = 300 Hz,
RS = 1.125Ω, RR = 0.85Ω, XLS = 4.71Ω and XLR = 2.63Ω,
Xm = 84.82Ω (all reactance are at rated frequency), p = 1
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