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ABSTRACT
Background: The effects of trees on understorey communities is a major driver of vegetation
composition. However, we have little understanding on how isolated forest patches of the
forest-steppe transition affect their herb layer as compared to adjacent grasslands.
Aims: Our aim was to test whether trees had a protective effect on understorey herbaceous
communities in the most arid regions of the forest-steppe transition, where the stress
gradient hypothesis predicts positive net effects.
Methods: We surveyed herbaceous cover and species composition in 135 forest-steppe sites
and recorded soil moisture, microclimate and canopy cover in northern Kazakhstan.
Results: Total cover and species richness were lower in the herb layer of groves than in the
steppe stands and the soil of the groves was not moister than that of the steppes. Groves
were dominated by grassland specialist plants, while forest specialist species remained scarce.
However, these grassland species were different from the ones inhabiting the steppes,
leading to little nestedness between groves and steppes.
Conclusions: Although the presence of groves greatly increase the landscape level diversity of
Middle-Asian forest-steppes, trees in the southern edge of the zone seem to have net negative
effect on the understorey vegetation, seemingly contradicting the stress gradient hypothesis.
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Introduction

Mosaic habitats consisting of grassland and forest
components often harbour high biodiversity
(Scholes and Archer 1997; Manning et al. 2006).
Their dynamics and species composition largely
depend on the interactions between the trees and
their herb layer (Staal and Flores 2015). Tree-herb
interactions occur over a wide array of spatial scales
(Laurence et al. 2001; Cadenasso et al. 2003) from
infra-patch scales (e.g. between solitary trees of a
wood-pasture and the surrounding herbaceous
plants; López-Sanchez et al. 2016) to biome-wide
regions (e.g. along the boreal forest-tundra transi-
tion; D’Odorico et al. 2013).

The occurrence of trees at the global scale is
related to macroclimatic conditions (precipitation
and temperature). D’Odorico et al. (2013) have
emphasised the importance of temperature in deter-
mining the position of treelines at high elevations
and latitudes as trees are mostly more sensitive to
cold stress than their herbaceous counterparts. At

forest-grassland transitions where low temperature
is not limiting, climatic water deficit constrains tree
recruitment and survival (Chhin and Wang 2002;
Dulamsuren et al. 2005). Examples include the tran-
sitions between tropical forests and grasslands (e.g.
Vetaas 1992) and between temperate forests and
steppes (e.g. Magyari et al. 2010). In all these cases,
trees do not occur beyond the transitional zones
because external conditions are beyond their limit
of tolerance. Conversely, grassland communities
would be able to thrive on the forest-ward side of
the treelines without any constraining effect of
macroclimatic filters, but their composition is
altered by biotic constraints (i.e. the presence and
shading effect of closed canopy forming trees). This
deterministic relationship is affected to some extent
by local to regional disturbance factors such as fire
or herbivory, frequently making forested and her-
baceous patches alternative stable states within the
transitional zones (Staver et al. 2011; Hoffmann et
al. 2012). Nevertheless, the resulting biodiversity
patterns in a temporal snapshot are determined by
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the presence or absence of trees, owing to their
ecosystem engineering effect.

Trees can modify the physical properties of their
environment (e.g. light availability, microclimate,
nutrient content, soil moisture) and, through this,
change the conditions for plant assemblages in the
herb layer as compared with adjacent treeless grass-
lands (Manning et al. 2006; Tinya et al. 2009). The
extent and even the direction of the effects can differ
according to tree species, tree stand density and
climatic conditions, highlighting the context depen-
dence of the net effects of trees in forest-grassland
transitions (Scholes and Archer 1997; Armas et al.
2011). A voluminous literature is available regarding
such effects in tropical (e.g. Scholes and Archer
1997; Dohn et al. 2013) and Mediterranean (e.g.
Gea-Izquierdo et al. 2009; Fernández-Moya et al.
2011; Rivest et al. 2011) forest-grassland transitions
while information on tree-herb interactions in the
continental forest-steppe biome is scarce (but see, e.
g., Erdős et al. 2014).

The forest-steppe biome, i.e. the transition
between temperate forests and continental dry
grasslands, stretches across Eurasia from central
Europe to eastern Siberia, covering a total of
2.9 M km2 (Wesche et al. 2016; Erdős et al.
2018). Smaller forest-steppe transition zones with
similar physiognomy can also be found along the
boundaries of North American prairies (Williams
et al. 2009) and South American pampas (Mancini
2009). While trees in most tropical and subtropical
forest-grassland transitions form an intermediate,
sparsely wooded transition, the savanna (Hirota et
al. 2011; Staver et al. 2011), the forest-steppe tran-
sition is mostly a macro-mosaic of compact forest
and grassland patches (Walter and Breckle 1989;
Erdős et al. 2014, 2015a). This difference in phy-
siognomy along with the differences in climatic
regimes indicates that theories developed for for-
est-savanna transitions may not be directly trans-
ferable to the forest-steppe biome.

Understanding how tree-herb interactions drive
biodiversity patterns in forest-steppes is an espe-
cially urgent task for two main reasons. First, for-
est-steppe transitions concentrate the biota of both
the adjacent steppes and temperate forests, leading
to inherently high landscape-scale biodiversity
(Fekete et al. 2010; Habel et al. 2013). Second,
both biomes are among the most threatened ones
in the world, as they provide favourable climatic
and soil conditions for agriculture (Deák et al.
2016). Large areas have been turned into croplands
as a result of large-scale deforestation (Molnár et

al. 2012; Kämpf et al. 2016). In addition, exotic tree
plantations (Biró et al. 2008) and invasive species
(Kelemen et al. 2016) have also been affecting
biodiversity. Due to the long history of humans
in these areas, it is frequently debated whether
landscape patterns are ancient features or results
of human activities (Dulamsuren et al. 2005; Fekete
et al. 2010; Feurdean et al. 2015), making the
definition of appropriate target states for conserva-
tion difficult (Novenko et al. 2016). In addition, the
forest-steppe transition is heavily affected by cli-
mate change (Erdős et al. 2018). Most scenarios
forecast a warming climate, a decrease in precipita-
tion and an increase in the frequency of droughts,
favouring the expansion of steppe and reduction of
forest, eventually leading to the northward displa-
cement of the transitional zone (Tchebakova et al.
2009; Kamp et al. 2016). As part of this process, it
may be expected that tree-herb interactions will
also change, leading to profound changes in the
overall structure and species composition of the
vegetation as simulated by Daly et al. (2000).
Given the forecast changes and uncertainties
shown above (i.e. which are natural properties of
the biome and which are related to anthropogenic
effects), the principles of tree-herb interactions in
the forest-steppe biome should be clarified to avoid
misinterpreting patterns and processes or creating
artefacts during conservation activities.

We aimed to contribute to filling this gap of
knowledge by investigating tree-herb interactions
in the southern edge of Middle Asian forest
steppes, where woody vegetation first appears
along the aridity gradient. These forest-steppes
are also among the most pristine stands of this
vegetation type and hence are expected to exhibit
unbiased natural patterns and mechanisms.
Specifically, we addressed the following questions:
(1) Competition or facilitation - is the net effect of
trees on the productivity and diversity of the herb
layer negative or positive relative to the adjacent
grasslands and what ecosystem engineering
mechanisms of the trees may contribute to this
effect? (2) Community assembly - do forest specia-
list species comprise the herb layer of the groves or
it contains only a filtered subset of the species pool
of the surrounding grassland matrix?

Based on the stress gradient hypothesis, which
postulates that the net effect between coexisting
partners can change from competitive to facilita-
tive at higher stress levels (Bertness and Callaway
1994; Blaser et al. 2013), we hypothesised that the
net effect of trees at the southern edge of the forest-
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steppe transition should be positive, meaning that
the overstorey should create sheltered microenvir-
onments for herbaceous plants, while the plants of
open grasslands would not benefit from this effect.
Furthermore, we expected that the sheltered micro-
environments under the canopy of trees would be
suitable for forest specialists; therefore, they would
significantly contribute to the formation of the
herb layer of forested patches.

Materials and methods

Study areas

We carried out our study in extrazonal forest-
steppes embedded in the northern edge of the
steppe zone of Kazakhstan, i.e. in the southernmost
patches of forest-steppes in the region. There were
two main types of these forest-steppes: one on pure
sand and one on loamy soil (Figure 1). The sandy
study sites were located in the Naurzum Nature
Reserve (N51°27ʹ–51°34ʹ E64°08ʹ–64°29ʹ), 200 km
south of Kostanay city, while the loamy sites were
20–30 km east of Kostanay in a non-protected area
(N53°07ʹ–53°10ʹ E63°58ʹ–64°04ʹ). The climate was
strongly continental in both areas. According to
the WorldClim database (Hijmans et al. 2005),
annual precipitation is 261 mm in the sandy area
and 324 mm in the loamy area. Mean annual
temperature is 5.0°C in the sandy area and 3.0°C

in the loamy one (January: −14.3°C and −16.3°C;
July: 23.3°C and 21.1°C, respectively).

The soil of the sandy area is coarse-grained,
calcareous sand with low organic matter content
and poor water-holding capacity (Bragina 2004).
The surface is slightly undulating with an average
difference of 2–3 m between dune tops and dune
slacks. Groundwater is 2–3 m below the surface of
the dune slacks, enabling the occurrence of birch-
aspen groves with Betula pendula and Populus
tremula as the dominant tree species (hereafter
sandy birch groves). In slightly higher elevations,
there is a random-looking mosaic of pine groves
and xeric grassland patches (hereafter sandy pine
groves and sandy steppes, respectively). Sandy pine
groves are mono-dominant stands of Pinus sylves-
tris with sparse undergrowth. Sandy grasslands are
dominated by psammophytic bunch-grasses (Stipa
pennata ssp. sabulosa and Festuca beckeri). Since
Naurzum is a remote, strictly protected area, no
grazing or any other type of land use occurs
(Bragina et al. 2007).

The soil of the loamy forest-steppe is dark chest-
nut and chestnut soil. Micro-topographic differ-
ences are negligible; land cover is characterised by
compact stands of B. pendula (hereafter loamy
birch groves) embedded in a matrix of grasslands
(hereafter meadow-steppes). Meadow-steppes are
tall grasslands with a high proportion of dicots.
Anthropogenic disturbance is low in this region

Figure 1. Location of the sandy (open circle) and loamy (filled circle) forest-steppe sites studied in northern Kazakhstan (A). The
studied habitat types included sandy pine and birch groves embedded in sandy steppes (B-C) and a loamy birch grove
surrounded by meadow-steppes (D).
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as well, although there were signs of coppicing in
some loamy birch groves. There is no grazing in
the meadow-steppes; some patches are mown but
probably not every year. Only patches with no
apparent signs of recent land use were used for
the study.

Data collection and analysis

We selected three localities spaced 2–3 km apart in
both study areas. In the sandy forest-steppe, we
chose nine sandy birch groves, nine sandy pine
groves and nine sandy steppe patches for vegeta-
tion surveys in each locality. In the loamy forest-
steppes, there were only two habitat types, loamy
birch groves and meadow-steppes, of which we
also selected nine replicates in each locality, mak-
ing a total of 135 sampling sites (5 habitat types × 3
localities × 9 habitat replicates). Sampling sites
within localities were spaced 50–500 m apart, in a
random pattern. In July 2016, we recorded all
vascular plant species in one 25-m2 plot in the
herb layer of every sampling site and estimated
their cover in percent. Trees and shrubs up to a
height of 50 cm were included in the herb layer.

The total cover and species richness of the herb
layer were compared across habitat types using
linear mixed-effects models (LMMs) with locality
as the random factor. To better approximate bio-
mass, we used the summed percentage cover scores
of individual species instead of using real cover
values of the herb layer. Thus, in some cases, the
total vegetation cover exceeded 100%. We used
Gaussian error term for the vegetation cover and
Poisson term for species richness. The composi-
tional distinctness of the habitat types was assessed
with principal coordinate analysis (PCoA) using
Bray–Curtis dissimilarity on square-root trans-
formed percentage cover scores. Since the separa-
tion between sandy birch and sandy pine groves
was not complete, we also carried out a permuta-
tional multivariate analysis of variance
(MANOVA) with 1000 permutations to test their
compositional distinctness.

Compositional pattern was further analysed by
partitioning dissimilarities into components result-
ing from nestedness and turnover. Nestedness is
high if the composition of a habitat type is a subset
of the other one, while the turnover component
reflects species replacement rather than species loss
between the compared habitat types (Baselga
2010). The nine replicates of each habitat type in
each locality were averaged for this analysis,

leading to three large datasets for every habitat
type. We calculated Jaccard dissimilarity index
between the habitat types, resulting in nine pair-
wise dissimilarities for each habitat pair. These
were then partitioned and the nestedness and turn-
over components were compared.

Finally, we sorted the species into four main
groups according to habitat preference: species of
psammophytic grasslands (including species of
sandy semi-deserts), steppes (non-psammophytic
dry grassland species and meadow-steppe species),
moist grasslands and forests (including species of
shrublands and forest edges), following the classi-
fications of Komarov (1968-2002) and Brinkert et
al. (2016) (Table S1). The cover values of species
with a more generalist character (e.g. those occur-
ring frequently in more than one habitat type
according to the literature) were equally divided
among the relevant groups. The cumulative abso-
lute cover of each species group was square-root
transformed and compared within habitat types
using LMMs with Gaussian error term and quadrat
as the random factor. Models were built only for
the three grove types and only the comparisons
with the cover of forest species were considered.

We measured soil moisture in three of the sam-
pling sites of each habitat type in each locality,
making a total of 45 sampling sites. We measured
the volumetric moisture content of the upper 20 cm
of the soil in five random locations in each sampling
site using a FieldScout TDR 300 soil moisture metre.
Thus, in total, we had 225 soil moisture data values
(5 habitat types × 3 localities × 3 habitat replicates ×
5 measurements per replicate). Measurements were
made in July 2016 in late morning hours, with no
rainfall in the preceding five days to confound typi-
cal soil-moisture heterogeneity. We averaged the
five data values of each sampling site and the result-
ing moisture records were analysed with LMMs.

We also measured the microclimate of the five
habitat types in two replicates (10 sampling sites in
total) for a 24-hour period. Measurements were
made with Voltcraft DL-121TH data loggers, cap-
able of recording air temperature and humidity.
Data loggers were installed 5 cm above ground
level and white plastic plates were placed 10 cm
above them to protect them from direct sunlight.
Data were recorded once a minute and then were
averaged for 1-hour periods. Data of the two repli-
cates of each habitat type were averaged, leading to
one dataset per habitat type. The datasets were
divided into daytime (7 a.m.–7 p.m.) and night-
time ones (7 p.m.–7 a.m.) and were compared
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across habitat types within each forest-steppe type
with paired t-tests.

We used tree canopy cover of the three woody
habitat types as a proxy for light availability in the
herb layer. We took digital photographs of the
canopy in the centre of 17 sandy birch groves, 17
sandy pine groves and 24 loamy birch groves. The
spatial arrangement of these sampling sites was
independent of the other measurements and had
no nested design. The camera was positioned 50
cm above ground level, so the shading effect of all
woody species (trees and tall shrubs) that were
excluded from the vegetation data of the plots
was taken into consideration. Photographs were
converted to black and white with manual thresh-
olding in GIMP 2.8 software and canopy cover was
defined as the percentage of black pixels in the
images. These canopy cover data were compared
across grove types with analysis of variance
(ANOVA).

All statistical analyses were made in the R envir-
onment. For building the LMMs, we used the ‘lme’
(for vegetation cover, functional groups and soil
moisture) and ‘glmer’ (for species richness) functions
of the nlme and lme4 packages, respectively. The
significance of the models was tested with the
'anova' (stat package, ‘lme’ models) and the 'Anova'
(car package, ‘glmer’ model) functions. Pair-wise
comparisons of factor levels were enabled by the
‘relevel’ function and the false discovery rate (FDR)
method was applied to correct P-values. Pair-wise
comparisons across sandy and loamy habitats were
mostly ignored because the effect of substrate might
be confounded by the climatic differences. We used
the ‘cmdscale’ and ‘adonis’ functions of the vegan
package for the PCoA and the permutational
MANOVA, respectively. Dissimilarity partitioning
was made with the ‘beta.pair’ function of the betapart
package.

Nomenclature of plant species follows The Plant
List (www.theplantlist.org; accessed in 2017).

Results

On sandy soil, birch groves had the highest total
cover in the herb layer; steppes had significantly
lower values and pine groves the lowest. In contrast,
on loamy soil, meadow-steppes had higher herb
layer cover than birch groves (Figure 2A, Table 1).
The species richness of sandy steppes and sandy
birch groves were similar and both had higher
values than those in the pine groves (Figure 2B,
Table 1). Species richness was higher in the

meadow-steppes (often exceeding 30 species/
25 m2) than in the loamy birch groves.

Sandy steppes, meadow-steppes and loamy birch
groves occupied distinct regions in the ordination
space with no overlap with any other habitat type
according to the PCoA (Figure 3). Sandy pine
groves and sandy birch groves showed some over-
lapping but the permutational MANOVA con-
firmed significant difference between their
composition (F = 11.93, R2 = 0.19, P = 0.001).

The pair-wise dissimilarity partitioning showed
that nestedness was negligible compared with the
turnover component in any habitat pairs (Table 3).

The comparisons of the species groups (Figure 4)
showed that sandy steppes were dominated by spe-
cies of psammophytic grasslands (e.g. Achillea
micrantha, Festuca beckeri and Potentilla incana);
species of the other groups, apart from a low cover
of steppe species, were scarce. Steppe species com-
prised the majority of meadow-steppes (e.g. Festuca
valesiaca, Filipendula vulgaris and Prunus fruticosa),
supplemented with low amounts of psammophytic
grassland (e.g. Carex supina) and moist grassland
species (e.g. Glycirrhiza uralensis). The composition
of the groves was more mixed, with no dominance
of forest species in any of them. Psammophytic
grassland species such as Agropyron fragile were
the most common in sandy pine groves, with a
significantly higher cover than forest species
(t = 4.66, P < 0.001) like Elymus caninus. The
cover of moist grassland (e.g. Galium verum) and
steppe species (e.g. Bromus inermis) did not differ
from that of the forest species (t = 1.25, P = 0.214
and t = 1.79, P = 0.077, respectively). Psammophytic
grassland species of sandy birch groves formed a
minor group and it was the steppe species (e.g.
Bromus inermis, Spiraea hypericifolia and
Thalictrum minus) that took over their place as the
dominant group; their cover was higher than that of
forest species (t = –3.16, P = 0.002). The cover of
moist grassland species (e.g. Glycyrrhiza uralensis)
did not differ significantly from that of forest species
(t = 1.681, P = 0.097), while psammophytic grass-
land species were scarcer than forest species
(t = 3.66, P < 0.001). In the loamy birch groves,
steppe species such as Artemisia pontica and Festuca
valesiaca were the most common, with a signifi-
cantly higher cover than that of forest species
(t = –4.23, P < 0.001) such as Rubus saxatilis.
There was no difference between moist grassland
(e.g. Lathyrus pratensis and Sanguisorba officinalis)
and forest species (t = 1.36, P = 0.179). Sandy steppe
species were virtually absent from this habitat type.

PLANT ECOLOGY & DIVERSITY 5
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Soil moisture was very low (ca. 5%) in all three
habitat types of the sandy forest-steppes. The high-
est values were found in the birch groves, while
pine groves and steppes had significantly lower
ones. Sandy pine groves tended to be even drier
than sandy steppes, the difference being only mar-
ginally significant. Regarding the loamy forest-
steppe, moisture values were significantly lower in
the birch groves than in the meadow-steppes
(Figure 2C, Table 1).

Tree canopy cover differed significantly among the
wooded habitat types (F = 7.89, P = 0.001). It was

higher in the sandy birch groves than in the sandy pine
and loamy birch groves (Tukey’s post hoc test,
P = 0.033 and P < 0.001, respectively). The difference
between the latter two habitats was not significant
(P = 0.495) (Figure 2D).

Microclimatic data generally corresponded to a
typical, cloudless mid-summer day (Table 2).
Average daytime air temperatures were high,
exceeding 30°C in most habitat types. In the sandy
forest steppe, pine and birch groves did not differ
from each other, while sandy steppes were warmer.
The pattern was opposite at night, with lower values
in the sandy steppe and higher ones in the sandy
groves. Meadow-steppes had a higher daytime air
temperature than birch groves in the loamy forest-
steppe and the relationship was opposite at night.
Daytime air humidity in the sandy habitats was
highest in the birch groves, while steppes and pine
groves had lower values. No significant difference
could be detected between the latter two habitats. At
night, pine groves had the driest air, followed by the
birch groves and the steppes were the moistest. Air
humidity in the loamy forest-steppe was higher in

Figure 2. Total vegetation cover values of the herb layer of the five forest-steppe habitat types (A) and their species richness (B),
soil moisture content in the upper 20 cm of the soil (C) and the canopy cover of the woody habitat types (D). Different
lowercase letters indicate significant differences (P < 0.05). SS: sandy steppe, SP: sandy pine grove, SB: sandy birch grove, MS:
meadow-steppe, LB: loamy birch grove. Solitary dots are outliers.

Table 1. Pair-wise results of the linear mixed-effects models
developed for the herb layer cover, species richness and the
soil moisture of the studied forest-steppe habitats (*,
P < 0.05)..

Herb layer cover Species richness Soil moisture

T P z P t P

SS vs. SP −7.109 *<0.001 −6.450 *<0.001 −1.921 0.068
SS vs. SB 4.266 *<0.001 1.252 0.213 6.681 <0.001*
SP vs. SB 11.275 *<0.001 7.634 *<0.001 4.760 <0.001*
MS vs. LB 7.473 *<0.001 11.246 *<0.001 −4.875 <0.001*

Comparisons across loamy and sandy habitats are not shown. SS: sandy
steppe, SB: sandy birch grove, SP: sandy pine grove, MS: meadow-
steppe, LB: loamy birch grove.
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the birch groves than in the steppes during daytime
but no difference was found at night.

Discussion

Competition or facilitation?

Regarding total herb layer cover, which we used as
a proxy for herb layer biomass (Muukkonen et al.

2006), sandy steppes and meadow-steppes have
higher values than the herb layer of adjacent
sandy pine groves and loamy birch groves, respec-
tively (for sandy birch groves see later). Species
richness had an identical pattern, with lower values
in the sandy pine and loamy birch groves than in
the adjacent steppes. These patterns are consistent
with a system in which tree cover suppresses plant
life in the undergrowth, meaning that the net effect
of trees is negative (i.e. competition).

A meta-analysis by Dohn et al. (2013) has sug-
gested that net facilitation along aridity-driven
woodland-grassland transitions is more typical at
the arid end of the spectrum, while competition
prevails when water supply is more adequate, cor-
responding to the stress gradient hypothesis
(Bertness and Callaway 1994; Blaser et al. 2013).
Our forest-steppe system, representing the south-
ernmost occurrences of forest patches in the
region, does not seem to be in line with this as
we did not detect the expected facilitative effect.
The clue may lie in the fact that these areas are not
only arid, but winters are also very harsh. Thus,
trees need to tolerate an intense cold stress in
addition to aridity. And indeed, forest-steppes
north of and embedded in the northern edge of
the steppe biome are dominated by cold-tolerant
trees (Erdős et al. 2018), while tree species with
adaptations for drought tolerance (e.g. with pub-
escent or reduced leaves) or with centres of distri-
bution in warmer climatic belts are absent.
Deciding whether this is due to a trade-off between

Figure 3. Scatterplot of the principal coordinate analysis of
the studied forest-steppe habitat types. Empty circle: sandy
steppe, filled square: sandy pine grove, empty triangle: sandy
birch grove, filled circle: loamy birch grove, filled triangle:
meadow-steppe. Eigenvalues of the first and second axes
were 10.51 and 6.76, respectively.

Figure 4. Average cover values of the distinguished species groups in the five forest-steppe habitat types. White: psammophytic
grassland species, light grey: steppe species, dark grey: moist grassland species, black: forest species. SS: sandy steppe, SP: sandy
pine grove, SB: sandy birch grove, MS: meadow-steppe, LB: loamy birch grove.

PLANT ECOLOGY & DIVERSITY 7



the adaptations of woody species to these different
stressors or to paleo-biogeographic legacies (cf.
Magyari et al. 2010) is beyond the scope of this
study. However, the resulting southern edge of the
occurrences of woody patches is likely to be in a
more northern position than what would be the
case in the presence of drought-adapted trees. So,
extant tree species of forest-steppes may not be
able to reach those dry zones in Middle Asia
where their net effects on the herb layer could
shift to facilitation relative to the adjacent open
grasslands.

The direct mechanism of the net negative effect
may be traced back to some tree-induced micro-
environmental differences between groves and
open steppes. Since the herb layer vegetation per-
sists due to its abilities to endure and take advan-
tage of microsite conditions during the full
growing season, our measurements, which were
made in mid-summer, may not be fully represen-
tative. Nevertheless, mid-summer is the peak of the
growing season and the interaction of trees and the
herb layer can be expected to be the most intensive
at this time. Thus, it is not surprising that the
microsite conditions we detected are in good
agreement with the vegetation pattern. Sandy pine
and loamy birch groves were mostly drier than the
adjacent steppes and, due to canopy shading, light
availability was also lower in their undergrowth
than in the steppes. These conditions can be

responsible for controlling plant growth in the
herb layer of groves. Although the well-known
temperature ameliorating effect of trees (Vetaas
1992), which we also detected, may reduce heat
stress and evaporation in the understorey during
the day, it can also prevent dew formation at dawn.
Dew has been shown to be an important source of
moisture in arid ecosystems (Agam and Berliner
2006), and it is more likely to occur in the steppes
than at ground level in the groves. Besides the
physical microsite conditions, plant growth may
be further suppressed in the sandy pine groves by
the slowly decaying litter layer and by various
allelopathic compounds released from pine needles
(Hänninen et al. 2011).

The absence of more humid conditions in the
sandy pine and loamy birch groves compared with
the adjacent steppes contradicts several other stu-
dies that discuss humidity relations in forest-
steppes. For instance, Dulamsuren et al. (2005)
have considered steppes in a diverse forest-steppe
landscape of northern Mongolia drier than the
driest forest patches (also Pinus sylvestris groves),
Erdős et al. (2013) have reported moister soils in
the Populus alba groves of a Hungarian forest-
steppe than in adjacent grasslands based on
Ellenberg-type indicators, and Wilson and Kleb
(1996) have measured higher soil moisture in P.
tremuloides groves than in adjacent prairies. The
preconception of these authors may have been
based on several general phenomena. Trees reduce
evapotranspiration under their canopy by shading
(Amundson et al. 1995) and can improve the water
economy of the soil by improving soil structure
(Vetaas 1992). However, trees themselves also eva-
porate considerable quantities of water and reduce
the amount of water reaching the ground by inter-
cepting precipitation with their canopy (Gea-
Izquierdo et al. 2009; Barbeta and Penuelas 2016).

Table 2. Microclimatic data of the studied habitat types (mean ±SD) and the test results of the relevant comparisons (paired t-
tests, *, P < 0.05).

SS SB SP MS LB

DT (°C) 38.9 ± 8.8 31.7 ± 4.4 31.2 ± 5.8 30.5 ± 7.1 26.8 ± 5.6
NT (°C) 15.1 ± 2.6 16.4 ± 3.5 16.9 ± 4.0 15.6 ± 3.6 16.7 ± 2.9
DH (%) 40.7 ± 20.7 48.2 ± 13.4 43.7 ± 17.4 66.8 ± 20.4 73.2 ± 20.3
NH (%) 91.5 ± 6.3 85.9 ± 12.0 74.2 ± 13.0 96.0 ± 4.1 96.9 ± 2.4

DT NT DH NH

t P T P t P t P

SS vs. SB −3.61 0.002* 3.30 0.003* 2.17 0.041* −3.69 0.001*
SS vs. SP −3.84 0.001* 4.80 <0.001* 0.87 0.392 −11.48 <0.001*
SB vs. SP −0.24 0.815 1.50 0.148 −1.30 0.208 −7.79 <0.001*
MS vs. LB −5.95 <0.001* 4.63 <0.001* 5.95 <0.001* 1.79 0.101

DT: daytime air temperature, NT: night-time air temperature, DH: daytime air humidity, NH: night-time air humidity, SS: sandy steppe, SP: sandy pine
grove, SB: sandy birch grove, MS: meadow-steppe, LB: loamy birch grove.

Table 3. Nestedness and turnover resultant components of
the Jaccard dissimilarity between habitat pairs (mean ± SD)
expressed in per cents.

Nestedness (%) Turnover (%)

SS vs. SP 10.63 ± 6.80 89.37 ± 6.80
SS vs. SB 1.92 ± 1.96 98.08 ± 1.96
SP vs. SB 20.80 ± 14.02 79.20 ± 14.02
MS vs. LB 21.10 ± 6.35 78.90 ± 6.35

SS: sandy steppe, SP: sandy pine grove, SB: sandy birch grove, MS:
meadow-steppe, LB: loamy birch grove.
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Our findings suggest that the negative effects of
trees on water balance can override the positive
ones in the southernmost forest patches of the
region, where precipitation is lower and/or sum-
mer temperature is higher than that reported in
other studies (e.g. Dulamsuren et al. 2005; Erdős et
al. 2013; Wilson and Kleb 1996). In this sense,
these forest patches are not necessarily moist
micro-habitats surrounded by a dry matrix but
may be drier enclaves during rain-free periods in
mid-summer. In spring, a reverse situation could
potentially allow the growth of annuals (or early
spring geophytes); however, we did not detect dry
remains of such species (with the exception of
some dry Tulipa schrenkii stems) and the published
species lists of the areas include mostly hemicryp-
tophytic perennial species (Bragina et al. 2007).

Sandy birch groves were different from the pat-
terns outlined above. Their total herb layer cover
was higher than that of sandy steppes and species
richness was not different between sandy birch
groves and sandy steppes. We explain this anomaly
compared with the other grove-steppe pairs by the
low-lying topographic position of sandy birch
groves. Lying in dune-slacks, sandy birch groves
can have more humid and more nutrient-rich con-
ditions as a result of surface runoff and the close
vicinity of the water table, a pattern well-described
in other inland sand dune ecosystems (e.g. Molnár
et al. 2003; Tölgyesi et al. 2016). Our environmen-
tal measurements confirmed these, as the highest
soil moisture within the sandy forest-steppe was
detected in the sandy birch groves and the micro-
climatic parameters were also mostly more favour-
able in these groves than in the other sandy habitat
types. The benefits of growing in the dune-slacks
appear to override the negative effect of the low
light availability (which was lower than in the
sandy pine groves). Thus, if excess water supports
the undergrowth of groves compared with the sur-
rounding steppe habitats, the herb layer can out-
perform the steppe, not as a result of the protective
effect of the trees but probably despite their nega-
tive effects.

Another interesting finding regarding sandy
birch groves is that their herb layer cover was
greater than that of loamy birch groves while hav-
ing similar species richness. These findings are
unexpected as all microsite properties (and that of
the annual precipitation) seem to be more favour-
able in the loamy birch groves than in the sandy
ones. Light availability is higher in the loamy birch
groves, and the chestnut soil (good water-holding

capacity and high humus content) is also better for
plant growth than the sandy soil (poor water-hold-
ing capacity and low humus content) of the sandy
birch groves. Although we have no information on
the depth of the water table in the loamy forest-
steppe, it is evident that a high proportion of the
precipitation is retained in the topsoil. Thus, the
roots of trees and herbaceous species are forced to
directly compete for water in the upper layer,
which has been shown to mutually hinder the
growth of trees and herb layer species (Dawson
1993; Scholes and Archer 1997). Conversely, pre-
cipitation seeps down to deeper layers in sandy
birch groves, precluding direct competitive inter-
action between the roots of trees and herb layer
species. This mechanism, known as spatial resource
partitioning, has been shown to support the coex-
istence of trees and herb layer species in various
ecosystems (Weltzin and McPherson 1997).

Community assembly

According to the compositional analysis, each
habitat type had its distinct assemblage. Since the
herb layer of the groves that received no extra
water supply compared with the steppes had
lower cover, fewer species and generally more
demanding environmental conditions than steppes,
a plausible assembly rule would be a simple filter-
ing of the ‘toughest’ from the species pool of the
surrounding steppes. This would, however, lead to
a high nestedness, which we could not confirm. On
the contrary, the high turnover indicated that
groves had their own species pool. This was not
caused exclusively by the appearance of forest spe-
cies, which could be expected in forested patches.
The herb layer of groves was dominated by grass-
land species, while forest specialists were scarce.
The lack of propagules may have a role in this
pattern; however, these groves are remains of pre-
historic continuous forests that have broken up
owing to climatic shifts during the Holocene
(Hoffmann and Usoltsev 2001) and there have
always been some groves in the region ever since.
Thus, the lack of propagules cannot be the primary
cause for the low abundance of forest species.

Low species richness and the scarcity of forest spe-
cies are also typical features of forested patches in
European forest-steppes, such as the ones in the
Carpathian Basin. However, these are explained by
the secondary character of those groves as trees were
almost completely cleared from most places in the
Middle Ages and regenerated in the twentieth century
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(Biró et al. 2008; Erdős et al. 2015a). As a result, lower
conservation values are assigned to groves with poor
undergrowth and a lack of forest species (Molnár et al.
2000; Erdős et al. 2017). However, our findings indi-
cate that natural groves of forest-steppes are inherently
suboptimal for forest specialist species. Therefore, cau-
tion should be applied when using herb layer compo-
sition to prioritise forest-steppe fragments.

Regarding grassland species found in the groves,
it seems that groups preferring more stable condi-
tions than what is offered by the steppes occur in
higher abundance. Loamy birch groves host several
moist grassland species besides the steppe ones and
sandy birch groves are inhabited by steppe species
and moist grassland species. Thus, for grassland
species (and also for those few forest specialists we
detected), probably the reduced heat stress under the
canopy is compensated for by the reduced moisture
availability. Although sandy pine groves are domi-
nated by psammophytic grassland species, the low
nestedness with sandy steppes indicates that pine
groves have their own psammophytic grassland spe-
cies in the area (e.g. Agropyron fragile), probably
those that tolerate drier and shadier conditions bet-
ter than the heat stress of open sandy sites.

Similarly, high occurrences of grassland species
have been reported from the groves of other forest-
steppe regions such as the Carpathian Basin (Erdős
et al. 2015b) or Siberia (Chytry et al. 2007, 2012) and
have mostly been explained by the high light avail-
ability in the herb layer due to the low canopy cover
of trees. However, we think that the reason lies in a
more complex ecosystem engineering effect of the
trees and in the resulting community assembly rules.

Conclusions

As forested patches appear at the northern edge of
Middle-Asian steppes, they create new micro-habi-
tats in the landscape. Interestingly, these islands of
trees appear to offer little protection for the herb layer
against the harsh environmental conditions of the
region and seem to have a net negative effect, prob-
ably by making the environmental conditions even
harsher. Herb layer communities of these groves are
not simply nested subsets of the surrounding steppes
but have their own species pool, greatly increasing
the overall plant diversity and conservation value of
the landscapes. Most species found in the groves are
not forest specialists; the conditions are presumably
inappropriate for most of them, so forested enclaves
cannot function as refuges for sensitive forest specia-
lists during the northward migration of the forest-

steppe zone either. Taking these into consideration,
climate change may have profound effects on the
herb layer of more northern forested habitats (e.g.
the presently species-rich hemiboreal forests; see, e.g.,
Chytry et al. 2012) and it might be the trees that
directly drive this effect. The negative effect of trees
may lead to the decrease of forest specialists and the
spreading of various grassland species in the herb
layer of these forest groves, along with a general
impoverishment of the communities, maybe even
before the overall physiognomy of the landscapes
would turn to more open.
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