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Plant species performance in rangelands highly depends on the effect of grazing
and also on the occurrence of unpalatable benefactor species that can act as
biotic refuges protecting neighboring plants from herbivores. The balance between
facilitation and competition may changes with the benefactor density. Despite the
high number of studies on the role of biotic refuges, the density dependent effects
of unpalatable herbaceous plants on the performance of other species, and on the
habitat heterogeneity of rangelands are still unclear. Therefore, we performed a study
to test the following hypotheses: (i) Performances of understory species follow a
humped-back relationship along the density gradient of the unpalatable benefactor
species. (ii) Small-scale heterogeneity of the vegetation decreases with increasing
benefactor density. We studied meadow steppes with medium intensity cattle grazing
in Hungary. We surveyed understory species’ performance (number of flowering shoots
and cover scores) along the density gradient of a common, native unpalatable species
(Althaea officinalis). Our findings supported both hypotheses. We found unimodal
relationship between the benefactor cover and both the flowering success and richness
of understory species. Moreover, small-scale heterogeneity declined with increasing
benefactor cover. In this study we detected a humped-back pattern of facilitation along
the density gradient of an herbaceous benefactor in pastures. Indeed, this pattern
was predictable based on such conceptual models like “consumer pressure-abiotic
stress model,” “humped-back model,” “intermediate disturbance hypothesis,” and
“disturbance heterogeneity model”; but until now the validity of these relationships has
not been demonstrated for herbaceous species. By the demonstration of this effect
between herbaceous species we can better forecast the responses of grasslands to
changes in management.

Keywords: biotic refuge, cattle grazing, competition, density-gradient, disturbance, facilitation, habitat
heterogeneity

INTRODUCTION

There are both positive and negative plant-plant interactions in community assembly and their
net effect may depend on the disturbance regime, including grazing (Smit et al., 2009). “Consumer
pressure-abiotic stress model” hypothesized that facilitation between neighboring plants is likely
present not only in abiotically stressed habitats (as predicted by “stress gradient hypothesis”),
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but also in communities influenced by consumer pressure
(Bertness and Callaway, 1994; Hambäck and Beckerman, 2003).
The general explanation of this model is that unpalatable
plants (benefactors) act as biotic refuges by protecting
neighboring plants from being eaten. The overwhelming
majority of publications suggested that this facilitative effect
of unpalatable plants has a maximum at moderate grazing
pressure (Bossuyt et al., 2005; Smit et al., 2009). The balance
between facilitation and competition in pasture vegetation
may also change with the density of the benefactor (Bossuyt
et al., 2005; Soliveres and Eldridge, 2014; Saixiyala et al.,
2017). Increasing density of large-sized plants can cause
humped-shape pattern of facilitation (Kesting et al., 2015).
According to the “stress gradient hypothesis,” the ascending
part of the curve could be explained by an ameliorated
microenvironment (i.e., higher soil moisture and a more
temperate microclimate; Maestre and Cortina, 2004; Kelemen
et al., 2015b; Allegrezza et al., 2016). Moreover, as predicted by
the “consumer pressure-abiotic stress model,” the shelter effect
can also support the intensification of positive interactions in
pastures (Soliveres and Eldridge, 2014). At the same time, the
“shifting limitations hypothesis” (see Gibson, 2009) predicts
that a decline of positive interactions is expected at high
densities of large-sized plants due to their increased resource
uptake and shading. The majority of these models stem from
Grime’s “humped-back model” (Grime, 1973) which described
a unimodal relationship between species richness (y-axis) and
habitat productivity (x-axis). In this model x-axis includes
two gradients from left to right: (i) increasing competition
and (ii) decreasing intensity of stress and/or disturbance (e.g.,
grazing). Based on these considerations, we predict that the
maximum level of facilitation in pastures occurs at medium
benefactor density. Papers that studied grazing-mediated
density dependence of plant interactions between herbaceous
species have reported increasing (McNaughton, 1978; Bossuyt
et al., 2005) or decreasing (Koyama et al., 2015) facilitation
with the increasing benefactor density. Despite the theoretical
predictions, humped-back pattern of facilitation in pastures
along the density gradient of an unpalatable herbaceous species
has not been reported.

Besides influencing species performances, unpalatable plants
can also affect ecological processes by altering small-scale
heterogeneity of pasture vegetation (Tilman, 1982). The
disturbance by grazers can be the key factor in the governance
of competition-colonization trade-offs, which is responsible for
the support of the habitat heterogeneity (Valladares et al., 2015;
Pásztor et al., 2016). In line with the “disturbance heterogeneity
model,” most studies have reported that the highest level of
habitat heterogeneity is typical at medium grazing pressure
(Kolasa and Rollo, 1991; Török et al., 2016). The density of
unpalatable plants can influence grazing pressure, because
areas with a higher density of the benefactors are visited
less frequently by the grazers. Therefore, grazing intensity
decreases with an increasing benefactor density, so in pastures
with medium grazing intensity (such as our study sites) we
expect that habitat heterogeneity decreases with the increasing
abundance of benefactors.

We aimed to fit in a new puzzle piece in the complex
picture of the grazing-mediated plant interactions. Therefore, we
studied the changes of plant–plant interactions and small-scale
habitat heterogeneity along the density gradient of a common,
native unpalatable species (Althaea officinalis) in mesic grasslands
managed by medium intensity grazing. In this vein, we tested
the following hypotheses: (i) Flowering success and species
richness of understory species follow humped-back curve along
the gradient of benefactor density. (ii) Small-scale heterogeneity
decreases with increasing benefactor density.

MATERIALS AND METHODS

Study Area and Sampling
The study area is located in Central Hungary (coordinates
for the center: 46◦46′N, 19◦22′E). The climate in the region
is continental, the mean annual temperature is 10◦C and
the mean annual precipitation is 520 mm (Vadász et al.,
2016). The landscape covered by thousands of hectares pristine
grasslands, most of which are perennial-dominated meadow
steppes (for the detailed information of their species pool and
dominance structure see Supplementary Appendix S1). The
studied meadow steppes are characterized by meadow soils with
high humus content (Kelemen et al., 2017). Three stands of
mesic meadow steppes with medium intensity cattle grazing
(one animal unit/ha from April to the end of July) were
surveyed. Based on the dung density and on the observed forage
consumption rate we can assume that the grazing intensity
was similar in the three studied stands (see Oñatibia et al.,
2018). We surveyed 32 plots of 0.5 m × 0.5 m size in each
pasture (site); altogether there were 96 plots. We used this
plot size, which was adjudged to be appropriate to accurate
count of the flowering shoot numbers. Plots were designated in
patches without A. officinalis (eight plots/pasture), and also in
the vegetation with various Althaea cover (9–90% on site 1; 10–
97% on site 2; 6–90% on site 3). The fact that the Althaea cover
was highly variable within the sites offered an opportunity to
study plots with various Althaea cover under the same abiotic
conditions. We recorded the number of flowering shoots and
cover scores of each vascular plant species in the plots in the
end of July 2016.

Data Analysis
During the statistical analyses we used linear and quadratic
regression models, which included Althaea cover as continuous
predictor. The number of flowering shoots and species number
of understory species and compositional dissimilarity (measured
by Bray-Curtis dissimilarity) were dependent variables. Study
site was included in the models as random factor. We used two
separate models for each dependent variable. Firstly, a linear
mixed-effects model was fitted using a restricted maximum
likelihood (REML) method (Verbeke and Molenberghs, 2009),
and then we fitted another mixed-effects model with quadratic
fixed-effect term (see Steiner and Leibold, 2004). We used
ANOVA to compare the linear and quadratic model terms. When
the ANOVA indicated non-significant difference between the
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two models, we kept the linear model. When ANOVA revealed
significant difference between the linear and quadratic models,
we kept the model characterized by the lower residual sum of
squares (RSS). In case of quadratic effect terms we applied the
Mitchell-Olds and Shaw test (MOS-test) to assess whether the
relationship was unimodal and to obtain the location of the peak
(Mitchell-Olds and Shaw, 1987).

Before model fitting we applied log-transformation on two
dependent variables (number of flowering shoots and species
number) using the log(y+1) formula (Šmilauer and Lepš,
2014). Compositional dissimilarity as a measure of small-scale
heterogeneity was calculated using Bray-Curtis dissimilarity
based on the species cover data. We arranged our samples
within each site according to the increasing Althaea cover,
then calculated Bray-Curtis dissimilarity for every adjacent
sample pair and averaged the Althaea cover of these pairs. In
case of samples from open pastures we calculated Bray-Curtis
dissimilarity for random sample pairs. The dataset obtained
from this method was appropriate for calculation of regression
models. Statistical analyses were performed in R environment
(R Core Team, 2017). We used the “lme” and “anova.lme”
function of the “nlme” package for preparing and comparing the
mixed-effects models; and “MOS-test” function for running the
Mitchell-Olds and Shaw test.

RESULTS

We detected significant quadratic relationship between the
Althaea cover and both the number of flowering shoots
(R2 = 0.188; F = 10.78; p < 0.001) and species number
(R2 = 0.378; F = 28.28; p < 0.001) (Figure 1). The results of
model comparisons were the following: number of flowering
shoots (RSSlinear model = 34.811; RSSquadratic model = 28.445;
ANOVA: F = 20.82; p < 0.001); species number (RSSlinear
model = 0.875; RSSquadratic model = 0.707; ANOVA: F = 22.23;
p < 0.001). The results of MOS-tests showed that both
relationships were not only curvilinear, but also unimodal
(number of flowering shoots: MOS-test; p < 0.001; species
number: MOS-test; p < 0.01). The peak was located at 39.7%
Althaea cover for the number of flowering shoots and at
27.4% Althaea cover for the species number. Compositional
dissimilarity significantly decreased with increasing Althaea
cover and the relationship considered to be linear (R2 = 0.554;
F = 116.9; p < 0.001) (Figure 2), because there was no
significant difference between the linear and quadratic models
(ANOVA: F = 1.52; p = 0.133). We detected non-significant site
effect in all cases.

DISCUSSION

The relationships between the Althaea cover and both the
number of flowering shoots and species richness were unimodal,
indicating a humped-back pattern of facilitation along the
density gradient of the benefactor. Most studies about the
density-dependent effects of biotic refuges focused on the

FIGURE 1 | Effect of the unpalatable Althaea officinalis on understory species
performance measures (represented in log format): (A) number of flowering
shoots and (B) species number in the 0.5 m × 0.5 m plots.

effects of shrub encroachment, and detected a wide variety of
interactions between shrubs and herbaceous plants, including
facilitation and humped-back relationship (Callaway, 2007;
Kesting et al., 2015; Rolhauser and Pucheta, 2016; Saixiyala
et al., 2017). Only few papers have reported facilitation between
herbaceous species, because the probability of facilitation is
lower among plants of similar life forms (Graff and Aguiar,
2017). Bossuyt et al. (2005) detected that the performance
of palatable herbaceous species increased with increasing
cover of an herbaceous benefactor in pastures. McNaughton
(1978) demonstrated that the consumption of a palatable
grass by bovines decreased with increasing abundance of
unpalatable grasses.

In contrast with these studies, we detected humped-
back pattern of understory species’ performance along the
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FIGURE 2 | Effect of the unpalatable Althaea officinalis on compositional
heterogeneity (Bray-Curtis dissimilarity).

benefactor density gradient. Although grazers often avoid
consuming flowering individuals (particularly graminoids), in
open pastures without biotic refuges cattle repeatedly graze
the palatable plants before they reach the flowering state;
thus, they decrease the efficiency of generative propagation
(Milchunas and Noy-Meir, 2002; Mladek et al., 2013). According
to the “sequential proximity search” model, consumers try
to minimize movement costs and maximize benefits of good
forage quality (Acker et al., 2017; Dykes et al., 2018).
Therefore, cattle generally avoid areas occupied by unpalatable
species. Accordingly, the probability of palatable species being
eaten decreases with the increasing density of unpalatable
plants (McNaughton, 1978). In spite of this effect, the
flowering success increases only in the initial part of the
density gradient of benefactor, because of the increasing size-
asymmetric competition by the tall, large-leaved unpalatable
species at the terminal part of the gradient (Kiær et al.,
2013; Kelemen et al., 2015a). The shielding decreases the
available amount of light for understory species, which in
turn limits plant growth and decreases photosynthetic activity
(Valladares and Niinemets, 2008). Thus, flowering success
declines because it highly depends on the plant size and the
efficiency of photosynthesis (Bazzaz et al., 1987; Eckstein, 2005;
Le Roux et al., 2013).

In perennial-dominated pastures, changes in species richness
indicate the long-term effects of benefactor density and grazing.
According to the “humped-back model” for the relationship
between productivity and species richness, the peak of species
richness is situated at intermediate productivity (Grime, 1973),
and the “intermediate disturbance hypothesis” predicts the
highest species richness at intermediate disturbance (Connell,
1978). A. officinalis is among the largest plants in the studied
pastures, and grazing pressure presumably decreases with
increasing benefactor density. Therefore, both the intermediate
productivity and the intermediate disturbance were situated at

medium benefactor density. The studied pastures are grazed
by moderate intensity; therefore, the intermediate disturbance
is typical not only in the patches with sparse benefactor
cover but also in the open pastures. Consequently, species
richness increased slightly with a gentle slope and reached its
maximum at lower benefactor density (27%) than experienced
in the case of flowering success (40%). The slight increment
of species richness is probably also due to the long-term
survival of some grazing-sensitive species sheltered by the
perennial benefactor (Gibson and Brown, 1991). According
to the “shifting limitations hypothesis” (see Gibson, 2009)
the decline of positive interactions is expected in habitats
with high density of large-sized benefactor, because of the
intensifying competition (Kelemen et al., 2013; Macek et al.,
2016; Goldberg et al., 2017). Intense belowground competition
for nutrients and water is not expected in benign environment
characterized by moist and fertile soil (Wilson and Tilman,
1991; Kiær et al., 2013); therefore, similarly to the decline
of flowering success, competition for light can be responsible
for the loss of species richness in the terminal part of
the gradient (Lepš, 1999; Borer et al., 2014; Wang et al.,
2017). Moreover, the accumulated litter and the allelopathic
effect can also contribute to this phenomenon (Barkosky and
Einhellig, 2003; Deák et al., 2011; Miglécz et al., 2013). The
explanatory power of the models presented in this study
are low, which is relatively common in researches which
study animal-mediated ecological patterns, and partly due
to fact that the behavior of cattle is rather unpredictable.
Regardless of the low R2 values, the significant coefficients
still provide reliable information about the general trends,
though further studies are required to make these proposed
models more precise.

The “disturbance heterogeneity model” (Kolasa and
Rollo, 1991) suggests that disturbance such as moderate
grazing promotes habitat heterogeneity. As an opposite
effect, the encroachment of a competitive species can
cause the homogenization of vegetation (Olden and Poff,
2003; Deák et al., 2015). Based on these considerations we
can expect the highest small-scale heterogeneity in open
pastures or at intermediate benefactor density. We detected,
that compositional dissimilarity decreased with increasing
benefactor density. Because of the selective grazing, in open
pastures the variation in defoliation is higher than under
the benefactor canopy, where the consumption reduced
(see Oldén and Halme, 2016). In other words, the shelter
effect smoothens or eliminates the differences between the
herbivory-caused biomass loss of species in the understory
vegetation. Moreover, the intensity of trampling, which plays
a key role in creating spatial heterogeneity, decreases even
at low unpalatable plant density (Oldén and Halme, 2016;
Godó et al., 2017).

CONCLUSION

In this study we detected the humped-back pattern of facilitation
along the density gradient of an herbaceous unpalatable
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plant species in pastures. This pattern is likely based on existing
conceptual models, but until now its validity has not been
demonstrated for herbaceous species. It was reported only from
areas affected by shrub encroachment. By the demonstration of
this effect between herbaceous species we can better estimate
the responses of grasslands to the encroachment of unpalatable
competitors. The net effect of plant–plant interactions also
depends on traits of interacting species and the studied vegetation
type. Therefore, it is necessary to perform further studies
in several grassland types with a wide variety of interacting
species for the broad generalization of the detected patterns.
Nevertheless, while planning nature conservation management
it is recommended to consider retaining the sparse stands of
unpalatable plants as they can positively influence the ecological
functions of rangelands.
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