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Abstract—Three optimized PWM techniques for the overmod-
ulation region of two-level inverter-fed ac drives are introduced
and investigated from harmonic loss minimization point of view.
The optimization is elaborated for the lowest loss-factor, which
is proportional to the square of rms value of current harmonics.
The loss-factors are computed for different switching numbers as
the function of the motor fundamental voltage. It is shown that,
respect to the motor heating and torque ripples, the acceptable
drive condition can be guaranteed by relatively low value of
inverter switching frequency up to 96-97% of maximal possible
motor voltage. Furthermore, it is shown that, the so-called Three
vector methods have considerably better performance in the
lower part of the overmodulation region than the so-called
Two vector method for the same number of switching. The
performance of the techniques is compared with other existing
PWM techniques. The paper discusses the implementation details
of the proposed optimal PWM techniques. The theoretical results
are verified by experimental and simulation tests.

Index Terms—Pulse width modulated inverters, Optimization
methods, Induction machines, Losses, Overmodulation

I. INTRODUCTION

Pulse Width Modulated (PWM) three phase two-level volt-
age source inverter (VSI) is one of the most common power
converter topologies in ac motor drive applications. In the
last decades investigation of PWM techniques has been a
hotspot in controlling of VSI as they are directly related to
the efficiency of the overall system.

The peak of the maximum output phase voltage of a three
phase two-level VSI in the so-called six-step or square-wave
mode of operation is limited to U1max = 4UDC/π, where
2UDC is the DC-link voltage of the inverter. By operating
the widely applied standard PWM techniques, like Space
Vector Modulation (SVM) or Discontinuous PWM (DPWM)
methods, in the so-called linear region, only 90.7% of U1max

can be reached. Therefore, to improve the DC-link utilization
and to expand the output voltage to U1max the VSI should be
operated in the overmodulation region.

Assuming that, the VSI is supplied by a diode bridge
rectifier operating in continuous conduction mode the DC-
link voltage in ideal case can be expressed as 2UDC =
3ÛLL/π, where ÛLL is the amplitude of the input line-
to-line voltage. Hence, the maximum voltage output phase
voltage at the border of linear modulation is U1 = 0.907 ·
6
√

3/π2(ÛLL/
√

3) = 0.955(ÛLL/
√

3). So mass-produced
standard induction machines rated at the input line voltage
and frequency would not reach rated operating point in the
linear region. It means that, by taking into consideration the
voltage drop in the rectifier as well, more than 5% of the

power is inaccessible from a motor fed by a VSI operated only
in the linear region [1]. Consecutively, the rated operational
point and the flux weakening area of a mass-produced standard
induction machines rated at the input line voltage are in the
overmodulation region. Thus, the quality of the drive in this
region is of great importance.

Recently increasing attention has been paid to high speed
induction and synchronous machine drives to reduce system
size and improve power conversion efficiency [2]. It poses
challenges not only in the field of electric motor design but
also in the field of industrial electronics. The basic features
of three-phase PWM controlled VSI fed high speed drive are
the necessarily high fundamental (synchronous) frequency f1

(from a few hundred up to thousands) and the limited carrier
(switching) frequency fc (≤ 15 − 25 kHz). So a high speed
drive system does not only operate at the rated operational
point and the flux weakening area in the overmodulation region
but the mf = fc/f1 frequency ratio is also a low number
(usually mf < 21).

It should be noted that, the problems encountered previously
with the high speed drives also appear in high-pole count
motors, used widely for hybrid and electric vehicles. As in
this case the number of poles is high, the required synchronous
frequency f1 can be higher than 1 kHz, while the output speed
is a few thousand rpm. Furthermore, in very high power drive
systems, the thermal constraints of semiconductor devices
also restrict the switching frequency to a few hundred Hz
resulting also a very low frequency ratio even at standard f1

fundamental frequencies.
The aim of this paper is to propose and demonstrate

harmonic loss optimized PWM control techniques in overmod-
ulation region for low frequency ratios, which makes them
applicable to operate high speed, high pole-count drives or
high power drive systems in the overmodulation region of good
quality.

II. STATE OF THE ART

A. Overmodulation
In the linear region of feed-forward (carrier based) space

vector based PWM techniques, like SVM, the reference volt-
age vector has a uniform magnitude and rotates at a constant
angular frequency. In the overmodulation region the angle
and the magnitude of the reference voltage vector should be
modified by passing it through a preprocessor or premodulator
[3], [4], [5], [6]. It results in a non-uniform magnitude or non-
uniform angular frequency (or both) of the reference voltage
vector.
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In the literature two approaches are followed for overmod-
ulation of space vector based PWM techniques. In the first
approach, called 2-zone algorithms, the overmodulation region
is divided into two zones [3], [6], [7]. The algorithms, called
1-zone algorithms, following the second approach treat the
overmodulation range as a single undivided region from the
computational point of view [8], [9].

In the case of standard 2-zone algorithm, introduced in
[3], in the first part of the overmodulation region (0.907 ≤
m ≤ 0.9514) only the magnitude of reference voltage is
modified. In the second part of the overmodulation region
(0.9514 ≤ m ≤ 1) both the magnitude and the angle of the
reference voltage vector are modified by the premodulator. A
modified 2-zone algorithm is presented in [6], [10]. The modi-
fied technique has a considerably better harmonic performance
than the standard one in the upper part of the overmodulation
region as demonstrated in [6]. As different control variables
and calculation procedures are used in the two regions, 2-zone
algorithms require significant computational effort [9].

In the case of the 1-zone algorithm, introduced in [8], the
reference voltage vector has a constant magnitude, but its
angle is varied based on simple equations. The advantage
of this technique is its simple implementation, however, the
low-order harmonic distortion in line currents is much higher
than in case of the standard 2-zone algorithm. An improved
1-zone algorithm is introduced in [9], where the magnitude
of the voltage vector is also varied by simple equations. It
significantly reduces the computational effort comparing to
the standard 2-zone algorithm or the standard 1-zone method
introduced in [8]. Furthermore, the algorithm reduces the total
harmonic distortion in the line current significantly compared
to standard 1-zone method. However, the harmonic distortion
is still marginally higher than that in case of the standard 2-
zone algorithm.

Paper [11] introduces a predictive overmodulation technique
in medium-voltage inverters operating at low switching fre-
quencies. A general SVM procedure for overmodulation is
described for n-phase drives, where n is an odd number, in
[12]. Overmodulation region of inverters is thoroughly studied
in closed loop applications [13], [14]. A novel harmonic
estimator, which eliminates the unavoidable low order harmon-
ics causing problems in vector controlled drives is described
in [13]. Paper [14] presents an overmodulation scheme for
sinusoidal PWM used in Field Oriented Controlled (FOC)
traction drives, when the switching frequency is only a few
hundred Hertz. Overmodulation region of PWM techniques
has key importance not only in motor drives but also in
grid connected inverters. An overmodulation strategy has been
proposed, tested and verified for a 250 kW grid-connected
photovoltaic inverter in [15].

In the current paper, similar to [3], the overmodulation
region is divided into two regions. They are called as ”Low
voltage region” and ”high voltage region” (to be discussed
later). From the implementatio point of view, the presented
PWM techniques are 1-zone algorithms, as the same calcu-
lation procedure can be used for the whole overmodulation
region.

B. Optimal PWM

Instead of applying carrier based techniques, programmed
modulation strategies can be used as well to control VSIs. In
this case the overall approach to define the switching times
is based on the minimization of a suitable objective function
which typically represents system losses [1]. Applying optimal
PWM techniques for ac drive systems has been investigated
since the seventies of the last century [16], [17], [18], [19],
[20], [21], [22], [23], [24]. An overview of optimal modulation
techniques is given in [20]. A space vector based analysis for
determining optimal switching angles with reduced compu-
tational effort for drives with very low switching frequency
for the whole modulation range is introduced in [22]. In [22]
the weighted Total Harmonic Distortion (THD) of voltage
is considered for minimization. Paper [23] introduces two
algorithms, a frequency domain and a synchronous reference
frame based one, to minimize the low-order harmonic torques
in induction motor drives, operated at a low frequency ratio.
Paper [25] presents a synchronous optimal PWM method
with practical implementation issues for modular multilevel
converters. A comparison between time and frequency domain
based optimization of PWM techniques is given in [24].

In the current paper the optimization is elaborated for the
lowest loss-factor, which is proportional to the square of rms
value of current harmonics. In the literature the optimization
is mostly done for very small pulse ratios, like 5, 7 and 9. In
the current paper the optimization is done for higher, but still
low pulse ratios (like 13, 15, 21, 31, 43) as well, to obtain a
better harmonic performance and drive condition with good
quality.

Nowadays, thanks to the high perfomance digital devices,
the implementation of optimal methods is considerably sim-
pler allowing their wider spread in practice. The paper [26]
demonstrates the use of a digital card flashmemory to follow a
preprogrammed optimal PWM pattern. The current paper also
discusses the implementation details of the proposed optimal
PWM techniques.

C. Loss-factor

The harmonic losses of the machine in the overmodulation
region are generally characterized by the loss-factor [27],
which can be calculated as follows

K ′Ψ = (σLs)
2
∞∑
ν>1

i2s,ν = Ψ2
s − 1 =

∞∑
ν>1

U2
s,ν

U2
s,1ν

2
(1)

where is,ν and Us,ν are the stator current and voltage
harmonics of the order ν, respectively. σLs is the stator
transient inductance, where σ = 1 − L2

m

LsLr
, where Ls, Lr

and Lm are the stator, rotor and the mutual inductance,
respectively. Ψs is the rms value of the stator flux. In (1)
all the values are in pu system and it was assumed that the
machine operates at its rated stator flux. In opposite case (1)
should be multipled by Ψ2

s/Ψ
2
rated. The base values of the

pu system are the rated phase current and voltage, for the
flux the ratio Us,rated/ω1rated (where ω1rated is the rated
electric synchronous angular velocity) and for the impedance
Urated/Irated. Later on, we will use the relative loss-factor
KΨ = K ′Ψ/0.00215, where K ′Ψ = 0.00215 is the loss-factor
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(a) mode 1 (b) mode 2, ω1t2 = π/12

Fig. 1. Voltage vector path and phase voltage and flux versus time

of the inverter operating in six-step mode [17]. In practice it
is desirable to obtain a KΨ loss-factor value lower than 0.1
as usually in this case no underrating or additional cooling of
the motor is necessary.

D. Optimum solution
The optimum solution means the determination of loss-

factor in case of infinitively high switching frequency of the
VSI. In overmodulation region, for the fundamental voltage
m = U1/Umax > 0.907 the optimized increase of the voltage
can be performed according to [17], [18]. According to the
modulation index m = U1/U1max, two operational modes
are possible. In the first mode (Fig.1(a)) the motor voltage
vector U moves along the circle BD1 with fundamental
angular velocity ω1 until it reaches at the t1 time the point
D1 of AC line. Then the voltage vector moves along the
line D1D with the same angular velocity ω1 and at the
moment π/(6ω1) the vector will be in D point. The maximum
modulation index of the first operational mode, which takes
place when D1 point coincidences with A point, can be
expressed as m = −

√
3 ln(tan(π/6)) = 0.9514 [17], [18].

It should be noted that the first operational mode is the same
as ”Overmodulation Mode I” in [3].

In the second operational mode of the investigated π/6
duration the U = πU1max/3 constant voltage vector stays in
the point A for the time t2 (Fig.1(b)). At t2 the voltage vector
turns by angle ω1t2 in D1 point and moves along D1D line
with the constant angular velocity ω1. From Fig.1(b) it can be
seen that the difference between the phase voltage or flux and
their fundamental components becomes sensible. Therefore,
the voltage harmonics and current harmonic losses of this
operational mode reach significant values. The angles ω1t1 and
ω1t2 as the function of the modulation index m = U1/U1max

can be seen on Fig.2(a).
The second operational mode is similar to ”Overmodulation

Mode II” in [3].
The loss-factor is drawn in Fig.2(b). This loss-factor curve is

computed as Ψ2−1 by numerical integration of Ψ flux vector
[17]. In the first operational mode the loss-factor is very low.
Therefore, it is impossible to distinguish the phase flux from
its fundamental component as it can be seen on Fig.1(a) (the
flux is given in voltage scale). The maximal KΨ = 0.024
value of this mode belongs to m = U1/U1max = 0.9514.

The first eight harmonic voltage components (with correct
sign of vector presentation) are presented in Fig.3. Only
harmonics of order ν = 1±6K are possible (K = 0, 1, 2, 3...).
From Fig.3 it can be seen that, in the first operational mode the
voltage harmonics for the same K have the same amplitude.
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Fig. 2. ω1t1 and ω1t2 angles and KΨ loss-factor as the function of m =
U1/U1max

The motor harmonic losses as well as the torque pulsation are
mainly determined by harmonic currents of order −5 and 7.
These losses decrease sharply with the decrease of the motor
voltage. However, the motor torque pulsation really decreases
only in the first operational mode. This is clear from Fig.3
since the torque of order 6 is determined by the sum of
the torques from currents of order −5 and 7. These torque
components have different sign for different sign of voltage
harmonics in the second part of the second operational mode
(m > 0.97). It results in practically constant 6th order torque
component in this region, while the ampltiude of the voltage
harmonics changes.

It should be noted that, the conclusions presented previously,
assuming infinitively high switching frequency, are valid for
multi-level inverters too. Thus, it is impossible to obtain better
results than presented above (Fig.2(b)).
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Fig. 3. Harmonic voltages for infinitively high switching frequency (γ =∞)

E. Waveform Quality

In the current paper the optimization is elaborated for the
lowest loss-factor, which is proportional to the square of rms
value of current harmonics (see (1)).

In most cases the optimization is done to minimize the THD
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in line current [1], where ITHD is defined as

ITHD =

√∑∞
ν>1 i

2
s,ν

i2s,1
, (2)

where is,1 is the fundamental current component. It should
be noted, ITHD depends on machine parameters. Therefore,
in the literature another quantity, the weighted THD of the
voltage VWTHD is also applied as a performance index of
PWM strategies as it is independent of the motor parameters
[1], [6], [5], [22], [28]
VWTHD is defined as

VWTHD =

√∑∞
ν>1 U

2
s,ν/ν

2

U2
s,1

=
√
K ′Ψ (3)

As it can be seen the VWTHD is the square root of the
loss-factor. For the proper comparison with other techniques,
not only the loss-factor, but the ITHD and VWTHD will also
be presented for all investigated optimized PWM techniques.

III. OPTIMIZATION OF PWM FOR OVERMODULATION
REGION

The computation problem was investigated also in [1], [16],
[17], [18], [22], [28]. For a given number of inverter switching
and a desired V fundamental voltage the Lagrange function

F =
Ψ2

Ψ2
1

− 1 + λ(U2
1 − V 2) (4)

must be minimized, where F depends on θi switching (com-
mutation) angles and on λ. The computation uses Newton-
Raphson method. The computation starts from a given value
of V and a selected voltage vector sequence as well as initial
switching angles. It continues until all the first derivatives of
F become close to zero. Due to the symmetry of vector paths
computations were performed only for 0 ≤ ω1t ≤ π/6 sector
(Fig.1), where only UI = 4

3UDC and UII = UIe
jπ/3 and

zero voltage vectors 0 and 7 can be used.
The number of switching on 1/6th of the fundamental

period is denoted by γ. For a given γ the number of applying
voltage vectors is (γ+ 1)/2, the number of varying switching
angles is (γ−1)/2. The total number of angle parameters with
θ1 = 0, θ(γ+3)/2 = π/6 and λ is (γ + 3)/2 + 1.

It should be noted the number of switching over one
fundamental period is 6 × γ. For the widely applied SVM
the number of switching over one fundamental period is 6mf .
It means that γ has similar meaning as mf , so it gives the
ratio between the switching frequency and the fundamental
frequency.

The computations were performed for different number
of switching on 1/6th of the fundamental period: γ =
5, 7, 9, 11, 13, 15, 21, 31, 43.

For demonstration the situation for γ = 7 is presented
in Fig.4 where the voltage vector sequence in Fig.4(a) is
U = [UI ,UII ,UI ,UII ] while in Fig.4(b) it is U =
[UI , 0,UI ,UII ]. The stator phase flux, its fundamental com-
ponent and the applied voltage vector sequence are presented
for U1 = 0.95U1max (Fig.4(a)) and for U1 = 0.92U1max

(Fig.4(b)). Later on, the first case, when zero voltage vector
is not applied, is called the Two vector method, and the case,

when zero voltage vector is also applied is called the Three
vector method.
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Fig. 4. Stator phase flux (blue line), its fundamental component (dashed
line) and the applied voltage vector sequence, γ = 7

A. Two vector method - ”High voltage region”
This region correspondences to the operation mode 2 in

1(b). The voltage vector path never moves along a fundamental
voltage vector path. Therefore, only the two active voltage
vectors can be used to obtain a loss-optimal PWM control.
Thus, the zero voltage vectors are not used in this case. This
method is introduced in [18]. The same vector sequence is also
studied for optimized PWM in [22] for γ = 5, 7, 9 and 11,
where the optimization is done in order to minimize VWTHD.
Later on, the two vector method is abbreviated as 2V.

The calculated optimal switching angles for γ = 13 are
presented in Fig.5(a).
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Fig. 5. Optimized switching angles, γ = 13

The loss-factors for γ = 5, 7, 9, 11, 13, 15, 21, 31 and γ =
43 are given in Fig.6. In practice it is desirable to obtain a KΨ

loss-factor value lower than 0.1, because the underrating of the
motor is usually not necessary in this case. According to Fig.6
the loss-factor is lower than 0.1 only in a narrow region of
the motor voltage using two vector method. The performance
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can be improved by increasing γ, however even for γ = 43
it is not possible to obtain loss-factor under 0.1 for the whole
overmodulation range.

In Fig.7(a) the voltage harmonics of order ν = −5, 7,−11
and 13 are drawn for γ = 13. In this case, when m ≤ 0.934 the
first switching angle θ2 = 0, but γ stays 13 since at ω1t = 0
there are two switchings (one-one in phases b and c). Figure
7(d) presents the voltage harmonics for γ = 31.

Based on Fig.7(a), Fig.7(d) and Fig.3 it can be concluded
that, in the m ≥ 0.95 region the voltage harmonics have practi-
cally the same values for γ = 13 (Fig.7(a)), γ = 31 (Fig.7(d))
and for infinitively high switching frequency (γ =∞, Fig.3).
Thus, it is worth to optimizing the PWM only in the low
voltage region. Furthermore, as the increase of the switching
frequency does not change the amplitude of the low order
torque harmonics in the m =≥ 0.95 region, it is impossible
to decrease the torque pulsation in sensible rate in this region.

B. Three vector method - ”Low voltage region”

This region correspondences to the operation mode 1 in
1(a). The voltage vector path from t = 0 is moving along U1

vector path, therefore the zero voltage vectors should be used
as well. As it will be shown later, by using the zero voltage
vectors, the loss-factor values, at least in important part of the
voltage region, can be sensibly decreased.

The zero voltage vectors should be applied in the ini-
tial part of the voltage vector sequence. In the paper
two possible voltage vector sequences are studied: U =
[UI , 0,UI ,UII ,UI ,UII , ...] and U = [0,UI ,UII ,UI , ...].
Later on the first one is referred to as type 1 (abbreviated as
3V-T1) and the second one as type 2 (abbreviated as 3V-T2).

As it was mentioned before, due to the symmetry of vector
paths, computations were performed only for 0 ≤ ω1t ≤ π/6
sector. It should be noted in the second half of sector 1 (π/6 ≤
ω1t ≤ π/3) the last elements of the voltage vector sequence
for 3V-T1 and 3V-T2 are U = [...,UI ,UII , 7,UII ] and U =
[...,UI ,UII , 7], respectively.

Both 3V-T1 and 3V-T2 voltage vector sequences are studied
for optimized PWM in [22] for γ = 5, 7, 9 and 11.

The calculated optimal switching angles for γ = 13 using
3V-T1 are presented in Fig.5(b).

Our results of computations for γ =
5, 7, 9, 11, 13, 15, 21, 31 and 43 are presented in Fig.6
and 7, respectively.

It can be seen on Fig.6 that, in the lower part of the
overmodulation region the loss-factor for the three vector
methods is much smaller than for the two vector method
for the same γ. Furthermore, the magnitude of low voltage
harmonics (see Fig.7(b)),7(c), 7(e)) became very close to the
case of γ =∞ (Fig.3). By comparing the three vector methods
3V-T1 and 3V-T2, it can be concluded that 3V-T2 has a better
performance than 3V-T1 in the whole overmodulation range
when γ is a small value (see Fig.6(a) when γ = 7). By
increasing γ the performance of 3V-T1 becomes better at
the beginning of the overmodulation region. By increasing γ
this region expands. For example 3V-T2 is better than 3V-T1
when m > 0.907 if γ = 11. When γ is increased to 21 the
performance of 3V-T2 is better only for m > 0.945. For larger
γ values the difference between 3V-T1 and 3V-T2 in the middle

of the overmodulation region becomes negligible. Therefore,
3V-T1 has better performance than 3V-T2 in the lower part of
overmodulation region (m ≤ 0.9514) when γ > 21.

In the upper part of overmodulation region (around m >
0.95) the duration of the zero voltage vector becomes zero
consequently the switching number decreases by 4 for 3V-
T1 and by 2 for 3V-T2. The three vector methods effectively
reduce to a two vector method with γ∗ = γ − 4 (3V-T1) or
γ∗ = γ− 2 (3V-T2). As it can be seen on 6(a), the loss-factor
curve of 3V-T2 for γ = 15 and γ = 11 for the upper part of
the overmodulation region is the same as in the case of 2V
when γ = 13 and γ = 9, respectively.

Probably for higher value of γ more zero voltage vectors
should be used, but according to our calculations for γ ≤ 43
even the use of two zero voltage vectors could not furhter
decrease the loss-factor in the overmodulation region.

The voltage vector sequence U = [0,UI ,UII ,UI ,UII , ...]
is applied for VSI in [23], [29] and in [30] as well, but
only for the linear range of modulation. In papers [23], [29]
the technique is called as advanced bus-clamping pulsewidth
modulation (ABCPWM) method. In paper [23] the ABCPWM
technique is applied and demonstrated for closed loop control
of induction machine. Paper [29] proposes a hybrid PWM
technique termed as RTRHPWM which employs ABCPWM in
conjunction with a conventional switching sequence to reduce
pulsating torque and harmonic distortion of line current in
induction motor drives. In paper [30] it is demonstrated that
this voltage vector sequence can reduce the maximum value of
the flux linkage and the core losses in the circulating current
filter of parallel connected VSIs.

IV. TORQUE PULSATIONS

The motor torque pulsation is computed by neglecting the
motor stator and rotor resistances. In this case the harmonic
currents are restricted only by the stator transient reactance,
therefore the motor torque pulsation is determined with a good
approximation as follows:

∆m = (Ψs,1 − is1,σLs)×∆is, (5)

where Ψs,1 and is,1 is the stator fundamental flux and stator
current, respectively. ∆is is the harmonic current vector. In
synchronous rotated coordinate system under no-load condi-
tion the first term in (5) aligns along imaginary axis. Therefore,

∆m = (Ψs,1 − is,1σLs) ·∆Re[is] (6)

The torque time function is drawn in Fig.8 for γ = 13, 31
and γ =∞. It can be seen that, the increase of the switching
number can not decrease the 6th torque component effectively.
At the same time, the use of 3V-T1 leads to an effective
decrease of higher order torque components comparing to the
2V method in the lower voltage region (m < 0.95). The
frequencies of these two dominant components are 3(γ±1)f1,
where f1 is the fundamental frequency.

Comparing 3V-T1 and 3V-T2 it can be concluded, the 6th

torque component is considerably lower in the first case.
As it was mentioned previously, three vector methods effec-

tively reduce to a two vector method with γ∗ = γ−4 (3V-T1)
or γ∗ = γ−2 (3V-T2) in the upper part of the overmodulation
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Fig. 7. Harmonic voltages as the function of m = U1/U1max

region. Therefore, γ = 9 on Fig.8(b), γ = 11 on Fig.8(c) and
γ = 27 on Fig.8(e), when m = 0.96 and 0.98.

V. DIGITAL IMPLEMENTATION

The practical aspects of implementing PWM techniques
have great importance. The PWM peripheral modules of up-
to-date, cheap and powerful microcontrollers (µC) and Digital
Signal Processors (DSP) support a wide variety of operation
modes and have many features, which makes them proper for
motor control applications. Generally these PWM modules
consist of an up-down counter, a Period Register (PRD)
and three Compare Registers, one for each phase (CMPi,
i = a, b, c).

There are many different approaches to realize commonly
used carrier based techniques like SVM. The implementation
of the most commonly used SVM in the linear modulation
range is straightforward. Generally an Interrupt Service Routin
(ISR) is called at the negative or the positive or both peaks
of the triangular signal, which calculates the reference signals
for each phase. They are latched into the CMPi (i = a, b, c)
of the PWM peripheral to generate the switching signals.

The operation in overmodulation region adds additional
complexity, which makes the implementation more difficult.
Some application notes written by the vendors of digital
devices suggest some methods for the realization of SVM in
the overmodulation region.

In the following, the implementation of the optimized



0093-9994 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIA.2018.2819946, IEEE
Transactions on Industry Applications

7

T
o

rq
u

e 
[p

u
]

0.15

Electric angle [rad]

0.1

0.05

0

-0.05

-0.1

-0.15
0 0.5-0.5

T
o

rq
u

e 
[p

u
]

0.15

Electric angle [rad]

0.1

0.05

0

-0.05

-0.1

-0.15
0 0.5-0.5

T
o

rq
u

e 
[p

u
]

0.15

Electric angle [rad]

0.1

0.05

0

-0.05

-0.1

-0.15
0 0.5-0.5

T
o

rq
u

e 
[p

u
]

0.15

Electric angle [rad]

0.1

0.05

0

-0.05

-0.1

-0.15
0 0.5-0.5

U1= 0.92 U1max U1= 0.94 U1max U1= 0.96 U1max U1= 0.98 U1max

(a) 2V, γ = 13

T
o
rq

u
e 

[p
u
]

0.15

Electric angle [rad]

0.1

0.05

0

-0.05

-0.1

-0.15
0 0.5-0.5

T
o
rq

u
e 

[p
u
]

0.15

Electric angle [rad]

0.1

0.05

0

-0.05

-0.1

-0.15
0 0.5-0.5

T
o
rq

u
e 

[p
u
]

0.15

Electric angle [rad]

0.1

0.05

0

-0.05

-0.1

-0.15
0 0.5-0.5

T
o
rq

u
e 

[p
u
]

0.15

Electric angle [rad]

0.1

0.05

0

-0.05

-0.1

-0.15
0 0.5-0.5

U1= 0.92 U1max U1= 0.94 U1max U1= 0.96 U1max U1= 0.98 U1max

(b) 3V-T1, γ = 13
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(c) 3V-T2, γ = 13
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(d) 2V, γ = 31
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Fig. 8. Torque pulsation at no-load

PWM techniques introduced in the paper will be explained.
They are succesfully implemented by the authors on a
16-bit µC (dsPIC33EP512MU810) and on a 32-bit DSP
(TMS320F28379D). A few parameters and features of the two
devices are listed in Table I.

The angle values calculated offline should be stored in
the flash memory of the digital device as a form of a two
dimensional array. Each row of the array contains the angles
for a given modulation index m = U1/Umax. The number of
rows depends on how many evenly spaced points are defined
for m between the two endpoints of the overmodulation region
(0.907 ≤ m ≤ 1). We selected the step to be ∆m = 0.001
resulting in 1−0.907

∆m + 1 = 94 row. By increasing ∆m, the
number of rows can be reduced and interpolation can be used
to calculate the angles for a certain m value.

Instead of storing the value of the switching angles θ, it is

better to store the duration of the vectors in per unit, which
can be calculated as the difference between two consecutive
angle values as follows

τk =
θi+1 − θi

2π
, where j = 1...

γ + 3

2
, k = 1...

γ + 1

2
(7)

and θ1 = 0 and θ γ+3
2

= π/6. For a certain f1 fundamental
frequency the duration of the vector in sec can be calculated
by multiplying τk by the time period T1 or dividing it by
the frequency f1. This way the same array can be used for
different f1 fundamental frequencies.

For the precise operation, the τk lengths of the voltage
vectors can be stored as a 16/32 bit signed integer number
and fixed point arithmetic can be used during calculation. If
the processor has Floating Point Unit (FPU) the value of τk
can be stored as 32 bit float number. The required memory can
be estimated as M = 32bit ·NrOfRows ·NrOfColumns =
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32bit
(

0.093
∆m + 1

)(
γ+1

2

)
. For example for γ = 13 and ∆m =

0.001 the required memory is approximately 2.6kbyte, which
is generally much smaller than the available flash memory of
the up-to-date digital devices.

In the overmodulation region, instead of using the up-
down counter of the PWM peripheral module, a simple timer
(counter) is initialized. Generally the input clock to the timer
is derived from the internal clock of the processor, divided
by a programmable prescaler. When the timer is enabled, it
increments by one on every rising edge of the input clock
Ttim and generates an interrupt on a period match, when the
counter value equals to the value stored in PRD register. After
period match the timer resets. For the better understanding Fig.
9 illustrates the operation of the timer.

Ttim=1/ftim

ISRISRISR

t

PRDk-1

PRDk

PRDk+1

Δtk=PRDkTtim

Fig. 9. Operation of the timer applied in the overmodulation region

At every period match an ISR function is called (see Fig.
9). As a first step, the duration of the following voltage vector,
which is calculated in the previous step, is loaded to the PRD
register. Secondly, the switching signals belonging to the
voltage vector are generated by manually overriding/forcing
the six output pins of the PWM peripheral. Generally the dead
time generator is active during the overriding (some vendor
called forcing) option as well.

Finally, the next value of the period register is calculated as

PRDk+1 = τk+1
T1

Ttim
= τk+1

ftim
f1

(8)

where ftim = 1/Ttim is the frequency of the timer and τk+1

is read from the previously mentioned two dimensional array.

TABLE I
PARAMETERS OF THE APPLIED DIGITAL DEVICES

dsPIC33EP512MU810 TMS320F28379D
CPU frequency 60 MHz 200 MHz
Flash memory 512 kbyte 1 Mbyte
Core size 16 bit 32 bit
FPU no yes
Used Arithmetic fixed point floating point
Price (2017) 9 USD 35 USD

VI. EXPERIMENTAL AND SIMULATION RESULTS

A. Experimental test using two vector and three vector method
To verify the calculation results just described, labora-

tory measurements were carried out. Both the two vec-
tor and the three vector method were implemented on a
16-bit µC (dsPIC33EP512MU810) and on a 32-bit DSP
(TMS320F28379D). The experimental results using the µC
are presented in [31]. In the current paper the results using
the DSP are introduced.

During the measurement, a commercially available intel-
ligent three-phase IGBT module from company Fairchild
(FSBB30CH60C) was used for the tests. The VSI is supplied
from a single phase diode bridge rectifier, therefore the DC
link voltage was 2UDC = 320 V. The dead time was selected
to be 2µs. The torque was measured by an electric torque
meter (SILEX TMI-02).

The measurements were carried on an induction machine
with rated speed 18 krpm. The rated data and main parameters
of the machine are: power: PN = 3 kW, rms line-to-line volt-
age ULL,RMS = 380V, phase rms current IN,RMS = 7.7A,
rated frequency f1N = 300 Hz, stator and rotor resistance
RS = 1.125Ω, RR = 0.85Ω, stator and rotor leakage
reactance XLS = 4.71Ω and XLR = 2.63Ω, magnetizing
reactance Xm = 84.82Ω (all reactances are at rated frequency)
and the number of pole pairs is p = 1.

The experimental results at no-load are shown in Fig.10.
For simplicity, the measurements were carried out at lower
fundamental frequencies than the rated one. The motor was
started using Space Vector Modulation (SVM) algorithm by
keeping the ratio U1/f1 constant. The overmodulation region
was reached at f1 = 180 Hz, where U1 = 0.907U1max. Over
f1 = 180 Hz the proposed optimal PWM strategies were
applied.

Figure 10(a), 10(b) and 10(c) present the time function and
the harmonic spectra of the motor phase voltage, the time
function of the motor phase current and the torque pulsation
at f1 = 180 Hz and γ = 13 (U1 = 0.907U1max) for the 2V,
3V-T1 and 3V-T2, respectively. The measured WTHD value
of the voltage and the THD value of the phase current are
also denoted. For a better comparison, the same results were
depicted also for SVM on Fig.10(d). The switching frequency
for SVM was 13 · 180 = 2.34 kHz to obtain the same number
of switching over one fundamental period. As it can be seen,
3V-T1 and 3V-T2 have better performance over 2V method and
SVM algorithm. The influence of the higher voltage harmonics
is considerably lower. The peak-to-peak value of the torque
pulsation is practically half for 3V-T1 by comparing it with
2V or with 3V-T2. The results are in line with the calculated
one, presented in the previous section (see Fig.8).

By increasing the fundamental frequency and U1, the per-
formance of 2V becomes better than 3V-T1 or 3V-T2 (see
Fig.6(c) and 12(c) later). For example, for γ = 13 it is valid
for m ≥ 0.945

By further increasing the fundamental frequency and U1, the
duration of the zero voltage vector became zero (for γ = 13
when m ≥ 0.952) consequently 3V-T1 effectively reduces to
a two vector method with γ∗ = γ−4 (Fig.10(f)). Figure 10(e)
and 10(f) show experimental results for m = 0.96 (f1 = 190
Hz). It can be seen that, the harmonic performance of the 2V
is better than 3V-T1 at γ = 13, as the latter one is effectively
a two vector method with γ∗ = 13− 4 = 9.

Fig.11 presents the measured trajectories of the stator cur-
rent space vector is for 3V-T1 and 3V-T2 for γ = 9, 13, 21 and
31 at m = 0.92 (f1 = 183 Hz). The THD value of the current
signals is also depicted. As it can be seen, the performance
of 3V-T1 or 3V-T2 in the lower part of the overmodulation
region is acceptable even for low γ values. At m = 0.92 the
ITHD value is lower using 3V-T2 than using 3V-T1 for γ = 9
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Fig. 10. Experimental test results at no-load, time function of phase voltage (left), time function of phase current (middle), time function of torque signal
and harmonic spectra of phase voltage (right)
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and γ = 13. This result is in line with the loss-factor curves
presented in Fig.6(b) and 6(c).

B. Comparison with existing overmodulation techniques
To compare the proposed two optimized PWM techniques

with other techniques available in the literature, the VWTHD

values are calculated for a few γ values (5, 7, 9, 13, 21, 31).
The calculation is done by simulating the motor drive system
presented previously using Matlab/Simulink and using the
FFT() function to determine the harmonics. To validate the
simulation results, the values are checked in some working
point (m = 0.9, 0.92, 0.94, 0.96) by experiments as well. The
curves can be seen on Fig.12.

In papers [5] and [6] the overmodulation region of four
PWM techniques, like conventional space vector strategy
(CSVS), basic bus clamping strategy (BBCS), boundary sam-
pling strategy (BSS) and asymmetric zero-changing strategy
(AZCS) are studied for different pulse ratios (P = γ) and
different clamping angles. By comparing the VWTHD curves
presented in this paper with the curves shown on Fig.15 in [5]
and Fig.14 in [6] at the same pulse ratio, it can be concluded
that the presented optimized PWM techniques have better
harmonic performance. For example, the lowest VWTHD value
(VWTHD = 0.0125) in [5] occurs applying BSS with 30o

clamping angle at γ = 21 around m = 0.9 (Fig.15c in [5]).
Using the 3V-T1 and γ = 21 the VWTHD = 0.0125 value is
reached only in the upper part of the overmodulation range
(m = 0.965, see Fig12(c)) and the lowest VWTHD value is
0.00465.

By applying 2-zone AZCS with with 60o or 30o clamping
angle at γ = 13, the VWTHD is practically constant and equals
to 0.02 in the lower part of overmodulation region (m ≤ 0.96)
as it was presented in Fig.14c and 14f in [6]. As it can be
seen on Fig.12(b)) by using 3V-T1 or 3V-T2 the VWTHD is
considerably lower (around 0.012).

An optimized PWM technique for the whole modulation
range is studied in [22] for γ = 5, 7, 9 and 11, where the
optimization is done to minimize VWTHD, which is the square
root of the loss-factor (see (3)). By comparing the VWTHD

curves presented in this paper with the curves shown on Fig.13
in [22] at the same pulse ratio, it can be concluded the results
are very similar using 3V-T1 or 3V-T2 in the lower part and
2V method in the upper part of overmodulation region for
γ = 5, 7 and 9. The lowest VWTHD value for γ = 5 and
γ = 7 occur around m = 0.96 is 0.02 and 0.015 in [22],
respectively. Very similar values can be read from 12(a). For
γ = 9 the lowest VWTHD value is around 0.01 in [22]. In our
case the minimum VWTHD is slightly higher: for γ = 9 the
lowest VWTHD value is 0.012.

VII. CONCLUSIONS

Three harmonic loss-optimized PWM control methods in
overmodulation region of three phase inverter-fed ac drives
are investigated. It is shown that, the two vector method (2V),
which does not utilize the zero voltage vectors is able to
produce an optimized control with an acceptable quality only
in the upper part of overmodulation region. By using zero
voltage vector (Three vector method type 1 (3V-T1) or type 2
(3V-T2)) in the lower part (m = U1/U1max ≤ 0.9514) of the

overmodulation region, a considerably better performance can
be obtained.

It is presented 3V-T1, where the voltage vector sequence
starts with U = [UI , 0,UI ,UII ...], has considerably bet-
ter performance at the beginning of overmodulation region
than 3V-T2, where the voltage vector sequence is U =
[0,UI ,UII , ...] when γ > 11. In the middle of the overmod-
ulation region the performance of 3V-T2 becomes better.

The optimized control for the three methods is computed
for number of inverter switching γ = 5, 7, 9, 11, 13, 15, 21, 31
and 43 on 1/6th of fundamental period. Investigation of the
drive with these switching numbers has shown:

a) Motor harmonic losses in the range of 0.98 ≤ m ≤ 1
are virtually independent on the number of inverter switching.
When 0.9 ≤ m ≤ 0.96 and the number of switching is γ ≥ 13
the motor harmonic losses will be so small that the influence
of these losses on the motor heating can be neglected. It is
also true for 0.9 ≤ m ≤ 0.975 if γ is increased to 31.

b) Motor torque pulsation and especially the torque of 6th

order in case of 0.95 ≤ m ≤ 1 can not be sensibly decreased
by increasing the switching number γ. Furthermore, for 0.9 ≤
m ≤ 0.93 the torque of 6th order becomes almost zero and the
torque pulsation of high frequency becomes dominant when
γ ≥ 9. As it was shown, the torque pulsation of 3V-T1 is lower
than the torque pulsation of 3V-T2 at the same γ.

The results of computations were verified by simulation and
experimental tests on a high speed induction machine. The
simulated and measured VWTHD curves are compared with
the results obtained by other existing overmodulation strate-
gies like conventional space vector strategy (CSVS), basic
bus clamping strategy (BBCS), boundary sampling strategy
(BSS) and asymmetric zero-changing strategy (AZCS). It can
be concluded that, the optimized technique has considerably
better harmonic performance at the same pulse ratio.

In summary, it can be concluded that, an acceptable drive
condition can be obtained, even for low γ, by applying one of
the three vector methods (3V-T1 or 3V-T2) in the lower part
and the two vector method in the upper part of modulation
region. It makes the techniques applicable to operate high
speed, high pole-count drives or high power drive systems
in the overmodulation region.
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