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The dynamic behaviour of the bridges located in earthquake-prone cold regions, such as North-West United

States. North-East Russia, Northern China, Japan have not been investigated extensively. Limited studies

revealed that their modal parameters vary significantly between summer and winter seasons, mainly due to

stiffening of a soil when it freezes (Plotnikova et al, 2019). Changes in stiffness of the soil-structure system also

leads to potential redistribution of the internal forces, especially along the piles, which maybe critical during strong

seismic events (Wotherspoon et al. 2010).

Current seismic design codes used in various countries such as USA, Japan and Europe do not differentiate the

calculations of seismic loads in summer and winter (AASHTO, 2009; EN, 1998-1; Japan Road Association, 2002).

The latest Alaska Bridges and Structural Manual (2017) now requires inclusion of frozen soil effects in foundation

analysis under seismic loads. Therefore, understanding of the effect of seasonal freezing on the seismic behavior

of the bridges of various types and systems is an important first step for better design practice and overall bridge

performance.

The objective of this study was to investigate the effect of seasonal freezing on the modal response of a range of

geometric modifications of a reinforced concrete bridge in Alaska, Campbell Creek Bridge. Corresponding potential

changes in seismic design loads are also discussed.

The following variation in modal characteristics of the bridge

models was observed:

- The transverse period rises with an increase in the number of

spans or increase in height of the bridge at any season, (Fig. 3);

- Short column bridges have substantially lower periods in winter;

- The variation of frozen depth up to 0.4 m and up to 1 m has the

largest impact on the modal parameters of the short and high

column bridges, respectively (Fig. 4)

- The summer and winter mode shapes of short column bridges

are poorly correlated

- The summer and winter mode shapes of the tall column bridges

become well correlated when the number of spans increases

- The summer modal amplitudes are highly correlated and

smooth for the bridges of any height, while the winter mode

shapes are sensitive to the changes in the bridge height (Fig. 5).

Figure 2: The baseline model of a prototype bridge

Campbell Creek bridge is a 109 m long reinforced-

concrete skewed in plane structure with continuous

beams supported by integral pile-column piers (Fig.

1). The upper soil layer surrounding piles, peat,

seasonally freezes by up to 1.8 m depth. The bridge

is instrumented to measure the dynamic response

during earthquakes and to measure frost penetration

since November 2008. Experimental results shown

that the fundamental transverse period of the bridge

can reduce by up to 2.5 times in winter due to

temperature effects and that mode shapes change

considerably alongside this.

Previously developed and validated elastic model of the prototype

bridge is used as a baseline (Fig. 2). The soil-foundation

interaction was modelled as a set of Winkler springs attached to

the pile along its depth. The model has a summer variant and

winter variant to take into account the changes in material

properties of the soil and structure due to temperature variation.

The modified bridge models included the variation of the number

of spans, of the height of the piers and depth of soil freezing. The

material properties and the cross sections of their elements were

equal to the baseline values.

The effect of seasonal temperature changes on seismic design loads is

demonstrated for 10 m high bridges using the acceleration response

spectra for a 1000-year return period in Anchorage, Alaska (Fig. 6). The

seismic design loads, shown here using spectral acceleration, may

increase significantly from summer to winter due to period shortening.

✓ The fundamental transverse period drops significantly in winter for all bridge models 

✓ The fundamental period is sensitive to the freezing of the soil, especially at a small depth, for

all bridge models

✓ The fundamental transverse mode shapes have significantly different amplitudes and forms

in summer and winter pointing at the rearrangement of the stiffness at a support level

✓ Seismic design loads in winter can exceed summer values due to shortening of fundamental

period

✓ Potential redistribution of the internal forces due to stiffening of the bridge in winter may lead

to higher demand in regions that may not be critical in summer conditions and requires the

following investigation

✓ Results suggest the need for a separate assessment of the dynamic response of reinforced-

concrete bridges located in cold regions in summer and winter
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Figure 4: Fundamental transverse 

period variations for 2.75 m height 

of the bridge (a) and 10 m height 

bridge (b)
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Figure 3: Fundamental transverse period in summer and winter for the various bridge schemes: (a) 2.75 

m height bridges; (b) three-span bridges with the height varying from 2 to 10 m, (c) 10 m height bridges

b

Figure 5: Comparison of (a) summer and (b) winter normalized modal amplitudes for various 

bridge heights

Figure 6: Design acceleration response spectrum for very dense soil, Alaska, 1,000-yr Return Period 

(7% PE in 75 Years) and subsequent spectral acceleration for bridges with a varying number of spans 

Figure 1: Campbell Creek bridge main view
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