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Elation KM-arcs

Maarten De Boeck ∗ Geertrui Van de Voorde †

Abstract

In this paper, we study KM-arcs in PG(2, q), the Desarguesian projective plane of order q. A KM-arc A
of type t is a natural generalisation of a hyperoval: it is a set of q+ t points in PG(2, q) such that every line
of PG(2, q) meets A in 0, 2 or t points.

We study a particular class of KM-arcs, namely, elation KM-arcs. These KM-arcs are highly symmetrical
and moreover, many of the known examples are elation KM-arcs. We provide an algebraic framework and
show that all elation KM-arcs of type q/4 in PG(2, q) are translation KM-arcs. Using a result of [2], this
concludes the classification problem for elation KM-arcs of type q/4.

Furthermore, we construct for all q = 2h, h > 3, an infinite family of elation KM-arcs of type q/8, and
for q = 2h, where 4, 6, 7 | h an infinite family of KM-arcs of type q/16. Both families contain new examples
of KM-arcs.

Keywords: KM-arc, (0, 2, t)-arc, set of even type, elation arc, translation arc

MSC 2010 codes: 51E20, 51E21

1 Introduction and definitions

Point sets in PG(2, q), the Desarguesian projective plane of over the finite field Fq of order q, that have few
different intersections sizes with lines have been a research subject throughout the last decades. A point set
S of type (i1, . . . , im) in PG(2, q) is a point set such that for every line in PG(2, q) the intersection size ℓ ∩ S
equals ij for some j and such that each value ij occurs as intersection size for some line. In [9] point sets of
type (0, 2, q/2) of size 3q

2 were studied. This led to the following generalisation by Korchmáros and Mazzocca
in [6].

Definition 1.1. A KM-arc of type t in PG(2, q) is a point set of type (0, 2, t) with size q+ t. A line containing
i of its points is called an i-secant.

Originally these KM-arcs were denoted as (q + t)-arcs of type (0, 2, t) [6] or (q + t, t)-arcs of type (0, 2, t) [3]
but in honour of Korchmáros and Mazzocca, the notation ‘KM-arcs’ was introduced in [14]. KM-arcs of type
t = 2 are hyperovals, which have their own theory; the classification of hyperovals seems far out of reach at this
moment. KM-arcs of type t = q in PG(2, q) on the other hand, are easily seen to be the symmetric difference
of two lines. For KM-arcs of type 2 < t < q, further combinatorial information and conditions on t and q can
be deduced. The following results were obtained in [3, Theorem 2.5] and [6, Proposition 2.1].

Theorem 1.2. If A is a KM-arc of type t in PG(2, q), 2 < t < q, then

• q is even;

• t is a divisor of q;

• there are q/t+ 1 different t-secants to A, and they are concurrent.

If A is a KM-arc of type t > 2, then the point contained in all t-secants to A is called the t-nucleus of A.
The main questions in the study of the KM-arcs are for which values of q and t, a KM-arc of type t in

PG(2, q) exists, and which nonequivalent KM-arcs of type t in PG(2, q) exist for given admissible q and t.

∗This author is supported by the BOF (Special Research Fund) of Ghent University
†This author is a postdoctoral fellow of the Research Foundation – Flanders (FWO).
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Recall that every element of PΓL(3, q) defines a collineation of the projective plane PG(2, q) and vice versa,
where a collineation is an incidence preserving mapping. KM-arcs are studied up to PΓL-equivalence. Elations
of a projective plane are particular collineations that will play an important role in this paper. An elation with
axis the line ℓ and centre the point R on ℓ is a collineation which fixes the points of ℓ and stabilises the lines
through the centre R. We see that the set of all elations with a fixed centre and a fixed axis form a subgroup
of PΓL.

A KM-arc is a translation KM-arc with translation line ℓ∞ if the group of all elations with axis ℓ∞ that
stabilise A, acts transitively on the points of A \ ℓ∞ (see [6]).

Definition 1.3. Let A be a KM-arc of type t > 2 in PG(2, q) with t-nucleus N . Then A is an elation KM-arc
with elation line ℓ∞ if and only if for every t-secant ℓ 6= ℓ∞ to A, the group of elations with axis ℓ∞ that
stabilise A acts transitively on the points of ℓ.

A hyperoval (KM-arc of type 2) H in PG(2, q) is called an elation hyperoval with elation line ℓ∞ if a
non-trivial elation with axis ℓ∞ which stabilises H exists.

It is immediate that all collineations which stabilise a KM-arc of type t > 2, fix its t-nucleus. Hence, the
t-nucleus of a KM-arc of type t lies on the elation line since all fixed points of an elation lie on the axis. Moreover
the t-nucleus will be the centre of all elations stabilising the t-secants. So, for an elation KM-arc A of type t > 2
the group of elations with axis the elation line and centre the t-nucleus, stabilising A, acts sharply transitively
on the points of A ∩ ℓ with ℓ an arbitrary t-secant.

For hyperovals there is no concurrency point of all 2-secants. Hence, for elation hyperovals, we have presented
a slightly modified version of the definition of an elation KM-arc. We will see in Lemmas 2.1 and 2.2 that we
can work with both definitions in the same way. Considering that hyperovals are KM-arcs we will call elation
hyperovals also elation KM-arcs

It follows from the definitions that every translation KM-arc is an elation KM-arc. The following theorem was
shown for translation KM-arcs in [6, Prop. 6.2]. The proof presented there however cannot not be generalised
to the case of elation KM-arcs.

Theorem 1.4. Let A be an elation KM-arc of type t in PG(2, q), 2 ≤ t < q, with elation line m, then m is a
t-secant to A.

Proof. Recall that any collineation that stabilises A has to fix the t-nucleus N of A if t > 2 and hence, that
the elation line m is a line through N . If t = 2, we define N as the centre of the given non-trivial elation that
stabilises A.

Suppose that the elation line m is not a t-secant and let G be the group of elations with centre N and axis
m stabilising A. Then G acts transitively on the points of A ∩ ℓ for every t-secant ℓ. Note that G has size t.

Let ℓ1 and ℓ2 be two t-secants of A trough N (recall that all t-secants contain N if t > 2), and let P ∈ ℓ1
and Q ∈ ℓ2 be two points of A. Denote the intersection 〈P,Q〉 ∩m by R. The orbit of the line 〈P,Q〉 under
G is a set of t lines through R. Moreover, every line through R which meets A in 2 points, is contained in an
orbit of G of length t. Hence, the number of 2-secants through R is a multiple of t. Given the fact that A has
q+ t points and every line through R meets A in 0 or 2 points, we know that there are q+t

2 distinct 2-secants to

A through R. We have that q+t
2 = t

(
q
2t +

1
2

)
, and since q = 2h and t = 2j for some j < h, we have that 2t | q.

Hence, the number of 2-secants through R, (q + t)/2, is not a multiple of t, a contradiction.

We first introduce the ‘classical’ examples constructed by Korchmáros-Mazzocca and Gács-Weiner and then
give a survey of the known results in Table 1.

Construction 1. [6] Let q = 2h and q′ = 2h−i, with h − i | h, and let L be the relative trace function from
Fq to Fq′ . Let g be an o-polynomial in Fq′ , i.e. (1, g(x), x) is the affine part of a hyperoval (KM-arc of type
2) in PG(2, q′) containing (0, 1, 0) and (0, 0, 1). Then, the point set {(1, g(L(x)), x) | x ∈ Fq} can uniquely be
extended to a KM-arc Akm of type 2i in PG(2, q). It has 2i-nucleus (0, 0, 1).

We will show in Lemma 2.3 that all the KM-arcs arising from Construction 1 are elation KM-arcs. It was
already shown in [6, Proposition 6.4] that a KM-arc in PG(2, q) constructed in this way is a translation KM-arc
if and only if g is the o-polynomial x 7→ x2

n

, for an integer n admitting gcd(h′, n) = 1. Note that g is the
o-polynomial corresponding to a translation hyperoval in PG(2, q′).

We now recall the three different constructions from Gács and Weiner [3].
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Construction 2. [3, Construction 3.4] Let I be a direct complement of Fq in the additive group of Fqh , h > 1.
Let H be a hyperoval or a KM-arc of type t with affine part {(1, xk, yk) : xk, yk ∈ Fq} ⊆ PG(2, q). Construct
the following point set in AG(2, qh):

J = {(1, xk, yk + i) | (1, xk, yk) ∈ H, i ∈ I} .

(A) If H is a hyperoval and (0, 0, 1) ∈ H , then J can be uniquely extended to a KM-arc of type qh−1 in
PG(2, qh). This KM-arc has qh−1-nucleus (0, 0, 1).

(B) if H is a hyperoval and (0, 0, 1) /∈ H , then J can be uniquely extended to a KM-arc of type 2qh−1 in
PG(2, qh). This KM-arc has 2qh−1-nucleus (0, 0, 1).

(C) If H is a KM-arc of type t and (0, 0, 1) is the t-nucleus of H , then J can be uniquely extended to a KM-arc
of type tqh−1 in PG(2, qh). This KM-arc has tqh−1-nucleus (0, 0, 1).

Note that in construction (A) the hyperoval H contains one more point on X = 0 in PG(2, q), next to (0, 0, 1).
Hence, to extend J to a KM-arc of type qh−1 we need qh−1 points on X = 0 in PG(2, qh). In constructions (B)
and (C) the KM-arc H of type t, which can be a hyperoval, can either be completely contained in the affine
part of PG(2, q) or else have t points on X = 0. In the latter case, to extend J to a KM-arc of type tqh−1 we
need tqh−1 points on X = 0 in PG(2, qh). In the former case no points need to be added.

Remark 1.5. It was already noted by Gács and Weiner [3, p.138] that Construction 2 (A) is equivalent to
Construction 1, where the o-polynomial g used in Construction 1 is the o-polynomial of the hyperoval H used
in Construction 2 (A).

Remark 1.6. If I and I ′ are different direct complements of Fq in Fqh , then the affine point set J = {(1, xk, yk+
i) : (1, xk, yk) ∈ H, i ∈ I} and the affine point set J ′ = {(1, xk, yk + i) : (1, xk, yk) ∈ H, i ∈ I ′} in PG(2, q) are
PGL-equivalent. To see this, we will see below that there is an Fq-linear map τ acting on Fqh which fixes Fq

but maps I onto I ′. The map φτ : (1, x, y) 7→ (1, x, τ(y)) then induces a collineation of PG(2, qh) mapping the
point set J onto J ′, since φτ (1, xk, yk + I) = (1, xk, τ(yk + I)) = (1, xk, yk + τ(I)) = (1, xk, yk + I ′).

To see that there exists an Fq-linear map τ acting on Fqh which fixes Fq but maps I onto I ′, consider Fqh as
F
h
q , and further consider Fh

q as a projective space PG(h − 1, q). Then we need to find a collineation fixing the
point V corresponding to Fq and mapping π1 onto π2 with π1 and π2 two different hyperplanes not through V .
Clearly, there is an elation with axis 〈V, π1 ∩ π2〉 which fulfils the requirements.

This paper is organised as follows. In Lemma 2.3, we will see that the KM-arcs constructed from Construction
2 (A) are always elation KM-arcs. We will prove in Lemma 2.4 and Theorem 2.5 that a KM-arc obtained in
Construction 2 (B) and (C) is an elation KM-arc if and only if the KM-arc (or hyperoval) started with is an
elation KM-arc with t-nucleus (0, 0, 1) (or is an elation hyperoval stabilised by an elation with centre (0, 0, 1)).

q t Condition Comments Reference

2h 2i h− i | h elation, see Lemma 2.3 [6] (see Constr. 1 and 2 (A))

2h 2i+1 h− i | h some elation, see Lemma 2.4 [3] (see Constr. 2 (B))

2h 2i+m h− i | h, a KM-arc some elation, see Lemma 2.4 [3] (see Constr. 2 (C))
of type 2m in

PG(2, 2h−i) exists

2h 2h−1 translation [2, 14]
(all PGL-equivalent)

2h 2h−2 h ≥ 3 translation [2] [14]
non-translation [2]

elation iff translation See Section 3

2h 2h−3 h ≥ 4 elation, new family See Section 4
32 4 one elation, see Remark 4.13 [5], [16]
2h 2h−4 4 | h, 6 | h, or 7 | h elation, See Section 5

new family for 7 | h

Table 1: An overview of the known KM-arcs of type t in PG(2, q)

We have seen that every translation KM-arc is an elation KM-arc, but the converse does not necessarily
hold. For KM-arcs of type q/4 in PG(2, q) however, we will show in Section 3 that every elation KM-arc is
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necessarily a translation KM-arc, which brings us to the full classification of elation KM-arcs of type q/4 in
Theorem 3.12.

The other sections of this paper are devoted to the construction of new examples of KM-arcs; we present a
family of elation KM-arcs of type q/8 for all values of q = 2h in Section 4 and a family of elation KM-arcs of
type q/16 for q = 2h, with h a multiple of 4, 6 or 7, in Section 5.

2 Elation KM-arcs: an algebraic approach

In the following lemma, we show that the affine point set of an elation KM-arc (i.e. the set of points not lying
on the elation line) has a convenient algebraic description.

Lemma 2.1. If A is an elation KM-arc of type t > 2 in PG(2, q), q = 2h, with elation line ℓ∞ : X = 0
and t-nucleus N(0, 0, 1), then there is an additive subgroup S of size t in Fq, such that for any α ∈ Fq the set
{z | (1, α, z) ∈ A} is either empty or a coset of S. Vice versa, if for a KM-arc A there is an additive subgroup
S of size t in Fq, such that for any α ∈ Fq the set {z | (1, α, z) ∈ A} is either empty or a coset of S, then A is
an elation KM-arc with elation line X = 0 and t-nucleus (0, 0, 1).

Proof. Let A be an elation KM-arc of type t in PG(2, q), q = 2h, with elation line ℓ∞ : X = 0 and t-nucleus
N(0, 0, 1). The t-secants, different from ℓ∞, are of the form Y = αX for some α ∈ Fq. The group E of elations

with centre N and axis ℓ∞ consists of the elations induced by all matrices of the form
(

1 0 0
0 1 0
µ 0 1

)
, where µ ∈ Fq.

Here, the points are represented as column vectors, and matrices are acting from the left. It is straightforward
to check that a set T is an additive subgroup of Fq if and only if the set ψ(T ) of elations corresponding to the

matrices in
{(

1 0 0
0 1 0
ν 0 1

)
| ν ∈ T

}
is a subgroup of E. The orbit of a point (1, x, y) under the action of ψ(T ) is the

point set {(1, x, ν + y) | ν ∈ T }.
If A is an elation KM-arc, the orbit of the point (1, α1, β1) ∈ A under the subgroup EA of E stabilising A

is exactly the set of t points of A on the t-secant ℓ : Y = α1X . Let S be the additive subgroup of Fq such that
ψ(S) = EA. This implies that the set of points on ℓ ∩A equals {(1, α1, τ + β1) | τ ∈ S}.

Vice versa, we assume that S is an additive subgroup of size t in Fq, such that for any α ∈ Fq the set
{z | (1, α, z) ∈ A} is either empty or a coset of S. Let G be the group of elations induced by the matrices of the

form
(

1 0 0
0 1 0
µ 0 1

)
, where µ ∈ S. Then G has size t and acts transitively on the set of points A∩ ℓ with ℓ : Y = αX

a t-secant of A, for any α ∈ Fq. This means exactly that A is an elation KM-arc with elation line X = 0 and
t-nucleus (0, 0, 1).

For the hyperoval case we have a similar result.

Lemma 2.2. If H is a hyperoval in PG(2, q), q = 2h, that is stabilised by a non-trivial elation with elation line
ℓ∞ : X = 0 and centre N(0, 0, 1), then there is an additive subgroup S of size 2 in Fq, such that for any α ∈ Fq

the set {z | (1, α, z) ∈ H} is either empty or a coset of S. Vice versa, if for a hyperoval H there is an additive
subgroup S of size 2 in Fq, such that for any α ∈ Fq the set {z | (1, α, z) ∈ H} is either empty or a coset of S,
then H is stabilised by a nontrivial elation with elation line X = 0 and centre (0, 0, 1).

Proof. This proof is similar to the proof of Lemma 2.1, with the 2-secants through the centre taking the place
of the t-secants, and E the group consisting of the one non-trivial elation that stabilises H together with the
trivial collineation.

Now we check whether the known constructions give rise to elation KM-arcs. First we deal with the family
of KM-arcs constructed by Korchmáros and Mazzocca

Lemma 2.3. All KM-arcs in the family of Korchmáros and Mazzocca (Construction 1, [6]) are elation KM-arcs.

Proof. Recall that the set of affine points of the KM-arc Akm in PG(2, q) is {(1, g(L(x)), x) | x ∈ Fq}, where
g is an o-polynomial in Fq′ and L is the relative trace function from Fq to Fq′ , with q′ = 2h−i, q = 2h and
h − i | h. Define S = {x ∈ Fq | L(x) = 0}, then S is an additive subgroup of Fq of size 2i. We claim that
for every α ∈ Fq, the set Tα = {x ∈ Fq | g(L(x)) = α} is either empty or a coset of S. First note that
{g(L(x)) | x ∈ Fq} = Fq′ , so Tα is empty if α /∈ Fq′ . If α ∈ Fq′ , we can find a β ∈ Fq such that g(L(β)) = α.
Then g(L(β + s)) = g(L(β) + L(s)) = g(L(β)) = α for all s ∈ S. Since there are exactly |S| solutions x
to the equation g(L(x)) = α, we know Tα = β + S. This proves the claim, and hence, by Lemma 2.1, the
statement.
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Now we check the constructions by Gács and Weiner. For additive subgroups G1 and G2 of Fq, the additive
subgroup generated by subgroups G1 and G2 is denoted by 〈G1, G2〉. If G2 = 〈x〉, then, by abuse of notation,
we also write 〈G1, x〉 instead of 〈G1, 〈x〉〉. Using this convention, we denote the additive subgroup generated
by the elements α1, α2, . . . , αk ∈ Fq (or equivalently, the F2-vector subspace spanned by these elements when
considering Fq as a vector space over F2) by 〈α1, α2, . . . , αk〉.

Lemma 2.4. Let B be an elation KM-arc in PG(2, q) with elation line X = 0 and t-nucleus (0, 0, 1). Let A be
a KM-arc in PG(2, qh) that arises from B as in Construction 2 (C), then A is an elation KM-arc with elation
line X = 0 and tqh−1-nucleus (0, 0, 1). Let H be a hyperoval in PG(2, q) that is stabilised by a non-trivial
elation with elation line X = 0 and centre (0, 1, 0) and let A′ be a KM-arc in PG(2, qh) that arises from H as
in Construction 2 (B), then A′ is an elation KM-arc with elation line X = 0 and 2qh−1-nucleus (0, 0, 1).

Proof. Since B is an elation KM-arc, by Lemma 2.1 we know that there exists an additive subgroup S of size t
in Fq such that for any α ∈ Fq the set Uα = {z | (1, α, z) ∈ B} is either empty or a coset of S. Now, from the
description of A in Construction 2 (C) it follows that U ′

α = {z | (1, α, z) ∈ A} equals {u+ i | u ∈ Uα, i ∈ I} if
α ∈ Fq, with I a direct complement of Fq in Fqh . It is immediate that U ′

α is empty if Uα is empty or if α /∈ Fq.
If U ′

α is non-empty, then it is a coset of the additive subgroup 〈S, I〉 of Fqh . It now follows from Lemma 2.1
that A is an elation KM-arc with elation line X = 0 and tqh−1-nucleus (0, 0, 1).

The proof of the second part is very similar. We now apply Lemma 2.2 on H and then argue as in the first
part of the proof.

We recall that it is not required in Constructions 2 (B) and (C) to have non-affine points in the KM-arc to
start with. From this point of view it is worthwhile to note that in both cases of the previous lemma non-affine
points are required.

We will now prove the converse of Lemma 2.4.

Theorem 2.5. Let A be a KM-arc of type tqh−1, t > 2, in PG(2, qh) with tqh−1-nucleus (0, 0, 1) that arises
from some KM-arc B of type t in PG(2, q) as in Construction 2 (C). If A is an elation KM-arc with elation
line X = 0, then B is an elation KM-arc with elation line X = 0 and t-nucleus (0, 0, 1).

If A is an elation KM-arc of type 2qh−1 in PG(2, qh) with 2qh−1-nucleus (0, 0, 1) and with elation line
X = 0 that arises from a hyperoval H as in Construction 2 (B), then H is an elation hyperoval stabilised by a
non-trivial elation with axis X = 0 and centre (0, 0, 1).

Proof. We consider the KM-arc A arising from B and assume that A is an elation KM-arc. By Lemma 2.1 we
know that there is an additive subgroup S′ of size tqh−1 in Fqh , such that for any α ∈ Fqh the set U ′

α = {z |
(1, α, z) ∈ A} is either empty or a coset of S′. For B we define Uα = {z | (1, α, z) ∈ B} for any α ∈ Fq. Through
Construction 2 (C) we know that U ′

α equals
⋃

u∈Uα
u + I for any α ∈ Fq, and that it is empty if α /∈ Fq. We

want to prove that there exists an additive subgroup of Fq such that any non-empty Uα is a coset of it.
It is easy to see that I ⊆ S′. Since I is a direct complement of Fq in Fqh we can find an additive subgroup

S of Fq such that S′ = 〈S, I〉; necessarily |S| = t. Now fix a value α ∈ Fq such that Uα (or equivalently
U ′
α) is non-empty. Let u be an element of Uα. We know that u is also an element of U ′

α, hence we can write
U ′
α = u+ S′. For an arbitrary v ∈ Uα there exists an s′ ∈ S′ such that v = u+ s′ since v is also an element of

U ′
α. Since S

′ = 〈S, I〉, there are unique s ∈ S and i ∈ I such that s′ = s+ i. So, v = u+ s+ i and as v, u, s ∈ Fq

and I is a direct complement of Fq we know that i = 0 and that v = u + s. Since v was arbitrarily chosen, we
see that Uα ⊆ u+ S. As |Uα| = t = |S| we conclude that Uα = u+ S. So, for any α we find that Uα is a coset
of S. The theorem now follows from Lemma 2.1.

The proof of the second part follows by a very similar reasoning.

Later in this paper, we will need the notion of Fq-linear sets in a projective space. Let V be an r-dimensional
vector space over Fqn , let Ω be the projective space PG(V ) = PG(r − 1, qn), q = ph, p prime, and let T be a
set of points of Ω. The set T is said to be an Fq-linear set of Ω of rank t if it is defined by the non-zero vectors
of an Fq-vector subspace U of V of dimension t, i.e. T = B(U) = {〈u〉Fqn

: u ∈ U \ {0}}. For more information
on Fq-linear sets, we refer to [7] and [10].

If S is an Fq-linear point set contained in a line of PG(2, qn), then the (usual) dual of this point set defines a
subset of the set of the lines through a fixed point. We will call such a set an Fq-linear pencil as the terminology
‘dual of a linear set’ is already in use, see e.g. [10].

Remark 2.6. Consider an elation KM-arc as in Lemma 2.1. The set of points on the t-secant Y = αX is
of the form {(1, α, β + s) | s ∈ S} for an additive subgroup S of Fq. Now it is clear that this set of points,
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together with the t-nucleus (0, 0, 1), forms an F2-linear set on the line Y = αX . It has been conjectured by
Vandendriessche in [14] that all KM-arcs have this property, i.e., that the points of a KM-arc of type t that lie
on a given t-secant ℓ, together with the t-nucleus, form an F2-linear set on ℓ. Note that it has been shown in [3]
that the set of points on a t-secant ℓ to a KM-arc of type t define a Vandermonde set. A set {y1, . . . , yt} ⊆ Fq,
with 1 < t < q, is a Vandermonde set if

∑
i y

k
i = 0 for all 1 ≤ k ≤ t− 2.

Every F2-linear set is a Vandermonde set, but not all Vandermonde sets are F2-linear sets. In F2h , h ≤
5, Vandermonde and F2-linear are equivalent properties, however, in F26 , where z

6 = z4 + z3 + z + 1 (the
default polynomial used in the computer algebra package GAP), the set {0, z12, z15, z17, z19, z43, z56, z59} is
Vandermonde, but not F2-linear. Considering that all elation KM-arcs have the conjectured property, that the
non-elation KM-arcs constructed in [2, Section 4] (see Section 3) have the conjectured property and that in [16]
the conjecture was checked for all KM-arcs in PG(2, 2h), h ≤ 5, it would be interesting to know whether the
Vandermonde property really can be strengthened to the F2-linear property.

3 Elation KM-arcs of type q/4

Recall the construction from [2] where we have permuted the first and third coordinate:

Theorem 3.1. Let Tr be the absolute trace function from Fq to F2, q = 2h ≥ 8. Choose α, β ∈ Fq \ {0, 1} such
that αβ 6= 1 and define

γ =
β + 1

αβ + 1
, ξ = αβγ .

Now choose a, b ∈ F2 ⊂ Fq, and define the following sets

S0 =
{
(0, 1, z) | z ∈ Fq,Tr(z) = 0,Tr

( z
α

)
= a

}
,

S1 =

{
(1, 0, z) | z ∈ Fq,Tr(z) = 0,Tr

(
z

αγ

)
= 0

}
,

S2 =

{
(1, 1, z) | z ∈ Fq,Tr(z) = 1,Tr

(
z

αβ

)
= b

}
,

S3 =

{
(1, γ, z) | z ∈ Fq,Tr

(
z

αγ

)
= a+ 1,Tr

(
z

ξ

)
= b+ 1

}
,

S4 =

{
(1, β + 1, z) | z ∈ Fq,Tr

(
z

αβ

)
= a+ b+ 1,Tr

(
z

ξ

)
= b

}
.

Then, Aα,β,a,b = ∪4
i=0Si is a KM-arc of type q/4 in PG(2, q).

It is easy to prove (see also [2, Theorem 4.8]), that Aα,β,a,b is PGL-equivalent to Aα,β,0,0.

Theorem 3.2. [2, Theorem 4.9] Let α, β ∈ Fq \ {0, 1}, with αβ 6= 1. The KM-arc Aα,β,0,0 is a translation

KM-arc if and only if α ∈
{

1
β2 , 1 +

1
β , β,

1√
β
, 1
β+1

}
.

Consider an F2-linear set S of size 5 in PG(1, 2h). By definition, we know that there is an F2-subspace U of
F
2
2h such that S = B(U). Note that U is not uniquely determined by S. It is not too hard to check that either

dim(〈U〉2) = 2 or dim(〈U〉2) = 3, where 〈U〉2 denotes the projective space defined by the vector space U over
F2. If 〈U〉2 is a solid, then every point of B(U) is defined by the projective points of one line of 〈U〉2. If 〈U〉2 is
a plane, then there is exactly one point H of B(U) such that H is determined by the points of a projective line
of 〈U〉2, and each of the other four points of B(U) is determined by exactly one of the four remaining points
of 〈U〉2. In the latter case, S is called a club or more specifically, a 2-club of rank 3 and the point H is called
the head of the club. In the former case, S = B(U) with dim(〈U〉2) = 3, we see that for every plane 〈V 〉2 of
〈U〉2, also S = B(V ), and S is a club, with the head determined by choice of the plane 〈V 〉2. We see from this
argument that the head is not uniquely determined in this case, and that any point of S can play the role of the
head. It will follow from the proof of the following theorem that in the latter case, the club forms an F4-subline.

Lemma 3.3. The set C = {(1, 0), (0, 1), (1, 1), (γ, 1), (β + 1, 1)} ⊆ PG(1, 2h) is an F2-linear set if and only if
β ∈ {γ, 1

γ+1 ,
√
γ + 1, 1 + 1

γ , 1 + γ2}. If two of the values in this set coincide, they all coincide and C forms an
F4-subline.

6



Proof. First suppose that (1, 0) is the head of the F2-linear set. Then (0, 1), (1, 1), (γ, 1), (β + 1, 1) are lin-
early dependent over F2 if and only if β = γ. If the head is (0, 1), then {(1, 0), (1, 1), (γ, 1), (β + 1, 1)} ={
(1, 0), (1, 1), (1, 1γ ), (1,

1
β+1)

}
is an F2-linear set if an only if 1+ 1

γ +
1

β+1 = 0, equivalently β = 1
γ+1 . If the head

is (1, 1), we use the collineation induced by the matrix ( 1 0
1 1 ) to map the head (1, 1) onto (1, 0), and the other

points to the points with coordinates (0, 1), (1, 1), (γ, γ + 1) and (β + 1, β). It follows that C is an F2-linear set
with head (1, 0) if and only if 1+ γ

γ+1 +
β+1
β = 0, equivalently β = 1+ 1

γ . If the head is (γ, 1), then similarly, we

use the matrix
(
1 γ
0 1

)
to map the head to (0, 1) and the other points to (1, 0), (γ, 1), (1+ γ, 1) and (β+ γ+1, 1),

which forms an F2-linear set if and only if γ2 = β + 1. Finally, if the head is (β + 1, 1), we get that β2 = γ + 1
in order for C to define an F2-linear set.

If two values of {γ, 1
γ+1 ,

√
γ + 1, 1+ 1

γ , 1+ γ2} coincide, then we know from the previous reasoning that the
linear set C has more than one head, and hence, that all points can play the role of the head, which implies that
all values have to coincide (this can be deduced by direct calculations as well). We find that γ3 = 1 and β = γ.
This implies that C = {(1, x) | x ∈ F4} ∪ (0, 1), and hence, C defines an F4-subline.

Lemma 3.4. The q/4-secants to the KM-arc Aα,β,a,b in PG(2, q), q = 2h, define an F2-linear pencil if and
only if the KM-arc is a translation arc.

Proof. The q/4-secants to a KM-arc of the form Aα,β,a,b define the set of points C = {(1, 0), (0, 1), (1, 1),
(γ, 1), (β + 1, 1)} in PG(1, q). From Lemma 3.3, we get that C is an F2-linear set if and only if β ∈{
γ, 1

γ+1 ,
√
γ + 1, 1 + 1

γ , 1 + γ2
}
. Plugging in γ = β+1

αβ+1 , yields that this condition is equivalent to

β ∈
{
β + 1

αβ + 1
,
αβ + 1

αβ + β
,

√
β + αβ

αβ + 1
,
αβ + β

β + 1
,
β2 + α2β2

α2β2 + 1

}
.

This in turn is equivalent to α ∈ { 1
β2 , 1 + 1

β ,
1

β+1 , β,
1√
β
}, and hence, we conclude by Theorem 3.2, that the

q/4-secants to the KM-arc Aα,β,a,b define an F2-linear pencil if and only if the KM-arc is a translation arc.

Lemma 3.5. Every elation KM-arc of type q/4 is PGL-equivalent to a KM-arc whose elation line is given by
X = 0 and whose affine points are given by {(1, 0, s) | s ∈ S} ∪ {(1, 1, 1 + s) | s ∈ S} ∪ {(1, α, α′ + s) | s ∈
S} ∪ {(1, β, β′ + s) | s ∈ S} with S an additive subgroup of size q/4 of Fq, and with α, α′, β, β′ ∈ Fq.

Proof. As PGL(3, q) acts transitively on the frames (4 points in standard position), we may take the q/4-nucleus
to be (0, 0, 1), the elation line to be X = 0, and the points (1, 0, 0) and (1, 1, 1) to be contained in the KM-arc.
The statement now follows from Lemma 2.1.

Recall that for additive subgroups G1 and G2 of Fq the additive subgroup generated by subgroups G1 and
G2 is denoted by 〈G1, G2〉. Note that an additive subgroup of Fq corresponds to a vector subspace of the
h-dimensional vector space F

h
2 . It is well-known (see e.g [8, 2.24]) that the hyperplanes of this h-dimensional

vector space are in one-to-one correspondence with the sets {x ∈ Fq | Tr(αx) = 0} where α ∈ F
∗
q . Vector

subspaces of codimension two can be written as the intersection of two different hyperplanes, which gives us
the following lemma.

Lemma 3.6. If S is an additive subgroup of order q/4 of Fq, q = 2h, then S = {x ∈ Fq | Tr(µ1x) = Tr(µ2x) = 0}
for some µ1 6= µ2 ∈ F

∗
q.

Lemma 3.7. Let S be an additive subgroup of order q/4 of Fq, q = 2h. If S = αS, for some α ∈ F
∗
q \ {1}, then

α ∈ F4 and hence h is even and S = {x ∈ Fq | Tr(µx) = Tr(αµx) = 0} for some µ ∈ Fq. Moreover, in this case
for every β ∈ Fq \ F4, we have 〈S, βS〉 = Fq and for every β ∈ F

∗
4, we have S = βS.

Proof. By Lemma 3.6, we have that S = {x ∈ Fq | Tr(µ1x) = Tr(µ2x) = 0} for some µ1, µ2 ∈ F
∗
q , µ1 6= µ2.

Clearly αS = {x ∈ Fq | Tr((µ1/α)x) = Tr((µ2/α)x) = 0}. Suppose that S = αS, for some α 6= 1, then both µ1

and µ2 have to be contained in the set {µ1/α, µ2/α, (µ1 + µ2)/α}. If µ1 = µ1/α, then α = 1, a contradiction.
Note that µ2 and µ1 + µ2 can be interchanged, hence without loss of generality we may assume µ1 = µ2/α.

Then, either µ2 = µ1/α or µ2 = (µ1 + µ2)/α since µ2 = µ2/α implies that α = 1. In the former case, we have
that α2 = 1 and hence, α = 1, a contradiction. In the latter case, we have that α2 = α+ 1 and hence, α ∈ F4

and h is even. Also S is given by {x ∈ Fq | Tr(µ2x) = Tr(αµ2x) = 0}.
Consider β ∈ F

∗
q . The subgroup βS equals {x ∈ Fq | Tr((µ1/β)x) = Tr((µ2/β)x) = 0}. Now suppose that

〈S, βS〉 is a subgroup of order q/2 (or equivalently, defines a hyperplane of Fq), then we have that the elements
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in the set V = {µ1/β, µ2/β, µ1, µ2} are linearly dependent over F2. Since µ1 = µ2/α, it follows that the elements
in V = {µ1/β, αµ1/β, µ1, αµ1} are linearly dependent, and hence, since µ1 6= 0 and α−1 = α2 = α + 1, we
know that 1/β is an F2-linear combination of α and 1. It follows that β ∈ F

∗
4. If β ∈ Fq \ F4, we conclude that

〈S, βS〉 cannot be a subgroup of order q/2, but by the first part of the proof it cannot have order q/4 either.
Hence, 〈S, βS〉 equals Fq. If β = α + 1, then S = αS implies that also S = (α + 1)S = βS. Hence, for every
β ∈ F

∗
4 = {1, α, α+ 1}, we have S = βS.

Lemma 3.8. Let S be an additive subgroup of order q/4 in Fq, q = 2h, and let α, β ∈ Fq. If 〈S, αS〉, 〈S, βS〉,
〈αS, βS〉 and 〈(α+ 1)S, (β + 1)S〉 are subgroups of order q/2, then either β = α+1 and S = {x ∈ Fq | Tr(γx) =
Tr(αγx) = 0} for some γ ∈ Fq, or 3 | h, α, β ∈ F8 ⊆ Fq and there is an additive subgroup S′ of order q/8 in Fq

such that S′ = S ∩ αS ∩ βS ∩ (α + 1)S ∩ (β + 1)S. Moreover, if in this case 〈S, αS〉 = {x ∈ Fq | Tr(γx) = 0}
for some γ ∈ Fq, then S

′ = {x ∈ Fq | ∀y ∈ F8 : Tr(xyγ) = 0}.
Proof. First note that the conditions of the lemma imply that α 6= β and that α, β /∈ {0, 1}. For convenience,
we consider the subgroups as subspaces of the projective space PG(Fh

2 ) = PG(h − 1, 2), and dualise. The
dualisation is induced by the bijection that maps the hyperplane {x | Tr(kx) = 0} onto the vector line k and
vice versa. By TD we denote the dual of a subspace T . The subspaces SD, (αS)D and (βS)D are vector planes
of Fh

2 hence, we consider them as lines of PG(h− 1, 2).
The condition that the subgroup generated by any two elements of {S, αS, βS} has order q/2 translates into

the condition that the lines SD, (αS)D and (βS)D mutually intersect in a point. Note that 〈S, αS〉 always
contains (α + 1)S, which implies that the line ((α + 1)S)D goes through SD ∩ (αS)D, and similarly, the line
((β + 1)S)D goes through SD ∩ (βS)D. We denote the hyperplane 〈S, αS〉 by {x ∈ Fq | Tr(γx) = 0}. Then,
S = {x ∈ Fq | Tr(γx) = Tr(αγx) = 0} and αS = {x ∈ Fq | Tr(γx) = Tr((γ/α)x) = 0}. Note that S 6= αS also
implies that α2 6= α+ 1 (see Lemma 3.7).

Recall that the lines SD, (αS)D and (βS)D mutually intersect in a point. The first possibility is that the

lines SD = 〈γ, αγ〉, (αS)D =
〈
γ, γα

〉
and (βS)D =

〈
γ
β ,

αγ
β

〉
go through a common point. Then, we have that

1/β = 1, α/β = 1 or (α+1)/β = 1. The first and the second lead immediately to a contradiction, so β = α+1.
The second possibility is that the lines SD, (αS)D and (βS)D are contained in a common plane but are not

concurrent. The plane spanned by SD and (αS)D is the plane
〈
γ, αγ, γα

〉
. Since (βS)D lies in this plane, γ

β and
αγ
β are both a linear combination of γ, αγ and γ

α . Hence,
1
β and α

β are both a linear combination of α, 1 and 1
α .

So, α
β is both a linear combination of α, 1 and 1

α and of α2, α and 1. Then, either α
β = α+1 or else there exist

λ1, λ2 ∈ F2 such that α2 +λ2α+λ1 +
1
α = 0, equivalently such that α3 +λ2α

2 +λ1α+1 = 0. In the latter case
we must have that α3 + α+ 1 = 0 or α3 + α2 + 1 = 0, since (α+ 1)3 6= 0. Hence α ∈ F8 and consequently also
β ∈ F8 and 3 | h.

In the former case we have that β = α
α+1 . Then, ((β + 1)S)D = 〈(α+ 1)γ, α(α+ 1)γ〉. We also have that

(α+1)S =
〈
γ, γ

α+1

〉
. Since ((α+1)S)D and ((β+1)S)D have a point in common the sets {α+1, α2+α, α2+1}

and
{
1, 1

α+1 ,
α

α+1

}
have an element in common. If follows that either α2 = α+ 1, in which case β = α + 1, or

else α3 + αj + 1 = 0 with j ∈ {1, 2}, in which case α ∈ F8 and hence also β ∈ F8 and 3 | h.
Note that in the cases with α, β ∈ F8 we have that the lines SD, (αS)D, (βS)D, ((α + 1)S)D, ((β + 1)S)D

are contained in the plane
〈
γ, αγ, γα

〉
=
〈
γ, αγ, α2γ

〉
. Hence, the subgroup

〈
γ, αγ, α2γ

〉D
= S′ = {x ∈ Fq | ∀y ∈

F8 : Tr(xyγ) = 0} equals the intersection S ∩ αS ∩ βS ∩ (α+ 1)S ∩ (β + 1)S.

Lemma 3.9. Let Fq be a field that admits F8 as a subfield. Let α, β ∈ F8 \ {0, 1} with β /∈ {α, α+1} and let S
be an additive subgroup of order q/4 of Fq. Assume that 〈S, αS〉 = {x ∈ Fq | Tr(k1x) = 0}, 〈S, βS〉 = {x ∈ Fq |
Tr(k2x) = 0}, 〈αS, βS〉 = {x ∈ Fq | Tr(k3x) = 0} and 〈(α+ 1)S, (β + 1)S〉 = {x ∈ Fq | Tr(k4x) = 0} for certain
pairwise different k1, k2, k3, k4 ∈ F

∗
q. Then the system of equations






Tr(k1(X + α)) = 1 (1)

Tr(k2(Y + β)) = 1 (2)

Tr(k3(αY + βX)) = 1 (3)

Tr(k4((α + β) + (β + 1)X + (α+ 1)Y )) = 1 (4)

has no solutions (X,Y ) ∈ F
2
q.

Proof. Using the same dualisation and notation as in the proof of Lemma 3.8, we consider the lines SD, (αS)D,
(βS)D, ((α + 1)S)D and ((β + 1)S)D. It follows from the conditions of the lemma that these lines are all
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different. From Lemma 3.8 we know that these lines are contained in a plane π, the dual of the subgroup
{x | ∀y ∈ F8 : Tr(k1xy) = 0}. As the line ((α + 1)S)D goes through SD ∩ (αS)D, it is the unique third line
in π through SD ∩ (αS)D, different from SD and (αS)D. Since 〈S, αS〉 = {x ∈ Fq | Tr(k1x) = 0}, the point
SD∩(αS)D is the point k1. Similarly, the line ((β+1)S)D is the unique line which goes through SD∩(βS)D = k2,
and is different from SD and (βS)D. The lines (αS)D and (βS)D meet in the point k3. The plane π is generated
by k1, k1 and k3. It follows that the point k4, which is the intersection of ((α + 1)S)D and ((β + 1)S)D (and
also is contained in ((α+ β)S)D) is equal to k1 + k2 + k3, as it is the unique point of the plane, not on the lines
SD, (αS)D and (βS)D.

Since 〈S, αS〉 = {x ∈ Fq | Tr(k1x) = 0} we know that S = {x ∈ Fq | Tr(k1x) = Tr(αk1x) = 0} and
αS = {x ∈ Fq | Tr(k1x) = Tr((k1/α)x) = 0}. Analogously it follows from 〈S, βS〉 = {x ∈ Fq | Tr(k2x) = 0}
that S = {x ∈ Fq | Tr(k2x) = Tr(βk2x) = 0} and βS = {x ∈ Fq | Tr(k2x) = Tr((k2/β)x) = 0}. Comparing the
expressions for S, This implies that

k2/k1 ∈ {α, α+ 1} (5)

and

k2/k1 ∈ {α/β, 1/β, (α+ 1)/β} . (6)

Similarly, from 〈αS, βS〉 = {x ∈ Fq | Tr(k3x) = 0} it follows that αS = {x ∈ Fq | Tr(k3x) = Tr((β/α)k3x) = 0}
and βS = {x ∈ Fq | Tr(k3x) = Tr((α/β)k3x) = 0}, and we find that

k3/k1 ∈ {1/α, (α+ 1)/α} (7)

and

k3/k1 ∈ {α/β, 1/β, (α+ 1)/β}. (8)

Looking at the system of equations, we see that a solution (X,Y ) to (1) and (2) is of the form
(

t
k1

+ α, t′

k2

+ β
)

for some t, t′ ∈ Fq with Tr(t) = Tr(t′) = 1. Equation (3) gives us that

k3
k2
αt′ +

k3
k1
βt = t′′ (9)

for some t′′ with Tr(t′′) = 1. Finally, equation (4) with k4 = k1 + k2 + k3 yields

(k1 + k2 + k3)

(
β + 1

k1
t+

α+ 1

k2
t′
)

= t′′′ (10)

for some t′′′ ∈ Fq with Tr(t′′′) = 1.
We know that α3 = α + 1 or α3 = α2 + 1 and β ∈ {α2, α2 + 1, α2 + α, α2 + α + 1}. Suppose first that

α3 = α+ 1 and β = α2. It follows from equations (5) and (6) that k2/k1 = α = (α+ 1)/β. From equations (7)
and (8), we get that k3/k1 = 1/α = α/β. Hence, k4 = k1(1+α+1/α). Equation (9) becomes αt+(α2+1)t′ = t′′

while equation (10) becomes (α + 1)t + (α2 + 1)t′ = t′′′. This implies that t + t′′ = t′′′, a contradiction since
Tr(t+ t′′) = 0 and Tr(t′′′) = 1.

A tedious calculation shows the following results.

• If α3 = α+ 1 and β = α2 + 1, then k2/k1 = α, k3/k1 = (α+ 1)/α.

• If α3 = α+ 1 and β = α2 + α, then k2/k1 = α+ 1, k3/k1 = 1/α.

• If α3 = α+ 1 and β = α2 + α+ 1, then k2/k1 = α+ 1, k3/k1 = (α+ 1)/α.

• If α3 = α2 + 1 and β = α2, then k2/k1 = α+ 1, k3/k1 = 1/α.

• If α3 = α2 + 1 and β = α2 + 1, then k2/k1 = α+ 1, k3/k1 = (α+ 1)/α.

• If α3 = α2 + 1 and β = α2 + α, then k2/k1 = α, k3/k1 = 1/α.

• If α3 = α2 + 1 and β = α2 + α+ 1, then k2/k1 = α, k3/k1 = (α+ 1)/α.
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In all of the above cases, the reader can check that plugging these values in equations (9) and (10) gives a
contradiction in the same way as deduced above.

Theorem 3.10. If a KM-arc A of type q/4 in PG(2, q) is an elation KM-arc, then its q/4-secants define an
F2-linear pencil with head corresponding to the elation line. Moreover, if the elation line is given by X = 0 and
the linear pencil of q/4-secants is given by the set of lines with equation Y = kX with k ∈ 〈α, 1〉 up to PGL-
equivalence, then the subgroup determined by the points of A on its q/4-secants is given by S = {x | Tr(µx) =
Tr(αµx) = 0} for some µ ∈ Fq.

Proof. By Lemma 3.5, we know that up to PGL-equivalence we can take the elation line to be X = 0 and the
affine points of A to be {(1, 0, s) | s ∈ S}∪{(1, 1, 1+ s) | s ∈ S}∪{(1, α, α′+ s) | s ∈ S}∪{(1, β, β′+ s) | s ∈ S}
for some α, α′, β, β′ ∈ Fq, where S has order q/4. For any a ∈ Fq we denote the line Y = aX by ℓa. Then we
see that the affine points are contained in the lines ℓ0, ℓ1, ℓα and ℓβ.

Three points of A on the lines ℓ0, ℓ1, ℓα respectively, cannot be collinear. Hence, we find that

∣∣∣∣
1 0 s1
1 1 1+s2
1 α α′+s3

∣∣∣∣ 6= 0

for all s1, s2, s3 ∈ S. This implies that for all s1, s2, s3 ∈ S, α′ + s3 + α + αs2 + αs1 + s1 6= 0, and hence, that
α + α′ /∈ 〈S, αS〉. In particular, 〈S, αS〉 cannot be the entire field Fq. In a similar way, by looking at three
points on ℓ0, ℓ1, ℓβ, we find that β + β′ /∈ 〈S, βS〉, hence, 〈S, βS〉 6= Fq, and by looking at points on ℓ0, ℓα, ℓβ,
that αβ′ + βα′ /∈ 〈αS, βS〉, and hence 〈αS, βS〉 is not Fq. For three points on ℓ1, ℓα, ℓβ, we find that for all
s1, s2, s3 in Fq,

αβ′ + βα′ + α′ + β′ + α+ β + α(s1 + s3) + β(s1 + s2) + s2 + s3 6= 0

⇔ αβ′ + βα′ + α′ + β′ + α+ β + (α+ 1)(s1 + s3) + (β + 1)(s1 + s2) 6= 0 .

Hence, we have that αβ′ +βα′+α′+β′+α+β /∈ 〈(α+1)S, (β+1)S〉 and so 〈(α+1)S, (β+1)S〉 cannot be Fq.
Since S, αS, βS, (α + 1)S and (β + 1)S are additive subgroups of Fq of size q/4, by Lemmas 3.7 and 3.8,

we find that either β = α+ 1, and then ℓ0, ℓ1, ℓα, ℓβ, ℓ∞ define an F2-linear pencil with ℓ∞ as head, or 3|h and
α, β ∈ F8. Suppose we are in the latter case. Since α + α′ /∈ 〈S, αS〉, we have that Tr(k1(α + α′)) = 1 with k1
such that 〈S, αS〉 is the subgroup of all elements {x | Tr(k1x) = 0}. Similarly, Tr(k2(β + β′)) = 1, with k2 such
that 〈S, βS〉 = {x | Tr(k2x) = 0}, and Tr(k3(αβ

′ + βα′)) = 1, with k3 such that 〈αS, βS〉 = {x | Tr(k3x) = 0},
and Tr(k4((α+1)β′ +(β +1)α′ +α+ β)) = 1, with k4 such that 〈(α+1)S, (β +1)S〉 = {x | Tr(k4x) = 0}. But
by Lemma 3.9, there is no solution (α′, β′) for this system of equations.

So, β = α+1 and the q/4-secants determine an F2-linear pencil with ℓ∞ as head. Either S = αS or 〈S, αS〉
has order q/2. In the former case, the second part of the statement follows form Lemma 3.7 and in the latter
case it follows from Lemma 3.8.

Remark 3.11. We believe that the statement of Theorem 3.10 holds for general elation KM-arcs of type t, i.e.
that the t-secants to an elation KM-arc of type t define an F2-linear pencil (with the elation line as head). It is
worth mentioning that this property also seems to hold for elation hyperovals, where the pencil that should be
F2-linear is the set of 2-secants through the centre of the non-trivial elation.

Theorem 3.12. Let A be an elation KM-arc of type q/4, then A is PGL-equivalent to the KM-arc A1/β2,β,0,0,0.
Hence, A is a translation KM-arc.

Proof. By Theorem 3.10, we know that the q/4-secants to an elation KM-arc of type q/4 define an F2-linear
pencil with head the elation line. Hence, by Lemmas 3.5 and 3.10 A is equivalent to a KM-arc with elation
line X = 0 and affine point set {(1, 0, s) | s ∈ S} ∪ {(1, 1, 1 + s) | s ∈ S} ∪ {(1, β, α1 + s) | s ∈ S} ∪ {(1, β +
1, α2 + s) | s ∈ S}, where α1, α2, β are elements of Fq and S is an additive subgroup of order q/4 of Fq given
by S = {x | Tr(µx) = Tr(βµx) = 0} for some µ ∈ Fq. We see that the KM-arc A is PGL-equivalent with the
KM-arc A1/β2,β,0,0.

The statement now follows from Theorem 3.2 or Lemma 3.4.

4 A new family of elation KM-arcs of type q/8

We start by recalling the definition of the Kronecker delta.

Definition 4.1. For two integers i and j, the Kronecker delta δi,j equals 1 if i = j and 0 else.

We can consider the Kronecker delta as a Z × Z → Z function that maps (i, j) onto δi,j . We now define a
similar function for vectors over F2.
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Definition 4.2. The function Mk
n : (Fk

2)
n → F2 is the function taking n vectors of length k as argument and

mapping them to 0 if two of these vectors are equal and to 1 otherwise.

The proof of the following lemma is left to the reader.

Lemma 4.3. Let x, y, z be vectors in F
k
2 .

(i) Mk
2 (x, y) = 1 +

∏k
i=1(xi + yi + 1)

(ii) Mk
3 (x, y, z) =Mk

2 (x, y) +Mk
2 (y, z) +Mk

2 (z, x)

We now construct a new family of KM-arcs.

Theorem 4.4. Let q = 2h, h ≥ 4. Let α1, α2, α3 ∈ F
∗
q be F2-independent and define S = {x ∈ Fq | ∀i :

Tr(αix) = 0}. Let β1, β2, β3 ∈ F
∗
q be such that Tr(αiβj) = δi,j. Let f1, f2, f3 be the three functions F

3
2 → F2,

given by f1 : (x, y, z) 7→ x+ y + z + yz, f2 : (x, y, z) 7→ y + z + xz and f3 : (x, y, z) 7→ z + xy.
For any (λ1, λ2, λ3) ∈ F

3
2 we define

S(λ1,λ2,λ3) =

{(
1,

3∑

i=1

λiαi,

3∑

i=1

fi(λ1, λ2, λ3)βi + s

) ∣∣∣∣∣ s ∈ S

}
.

We also define S0 = {(0, 1, x) | ∀i : Tr(α2
i x) = 0} and A = S0 ∪ ⋃v∈F

3

2

Sv. If q > 16, then A is an elation

KM-arc of type q/8 in PG(2, q) with elation line X = 0 and q/8-nucleus (0, 0, 1). If q = 16, then A is an elation
hyperoval in PG(2, q) with elation line X = 0.

Proof. We know that S is a subgroup of Fq,+ containing q/8 elements. Now note that the element βj , j = 1, 2, 3
is a coset leaders of the coset {x ∈ Fq | ∀i : Tr(αix) = δi,j} which also implies that the existence of elements
β1, β2, β3 is guaranteed.

It is immediate that the points of S(λ1,λ2,λ3), with (λ1, λ2, λ3) ∈ F
3
2, are on the line ℓ(λ1,λ2,λ3) with equation

(
∑3

i=1 λiαi)X + Y = 0 and that the points of S0 are on the line ℓ∞ with equation X = 0. Hence, all lines
through N(0, 0, 1) either contain q/8 or 0 points of A.

Now we check that three points on different q/8-secants are not collinear. First we assume that ℓ∞ is not
among these three q/8-secants. Then the three points can be described as

(
1,

3∑

i=1

λiαi,

3∑

i=1

fi(λ)βi + s

)
,

(
1,

3∑

i=1

λ′iαi,

3∑

i=1

fi(λ
′
)βi + s′

)
and

(
1,

3∑

i=1

λ′′i αi,

3∑

i=1

fi(λ
′′
)βi + s′′

)

with λ = (λ1, λ2, λ3), λ
′
= (λ′1, λ

′
2, λ

′
3) and λ

′′
= (λ′′1 , λ

′′
2 , λ

′′
3) three pairwise different vectors in F

3
2. We find that

∆ =

∣∣∣∣∣∣∣

1
∑3

i=1 λiαi

∑3
i=1 fi(λ)βi + s

1
∑3

i=1 λ
′
iαi

∑3
i=1 fi(λ

′
)βi + s′

1
∑3

i=1 λ
′′
i αi

∑3
i=1 fi(λ

′′
)βi + s′′

∣∣∣∣∣∣∣

=
∑

cyc




3∑

i,j=1

(λifj(λ
′
) + λ′ifj(λ))αiβj + s

3∑

i=1

λ′iαi + s′
3∑

i=1

λiαi




where the cyclic sum is taken over (λ, λ
′
, λ

′′
) and the corresponding (s, s′, s′′). We calculate the trace of both

sides of this equation. Considering that Tr(αit) = 0 for all t ∈ S, i = 1, 2, 3, that Tr(αiβj) = δi,j and that the
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trace function is F2-linear, we find that

Tr(∆) =
∑

cyc




3∑

i,j=1

(λifi(λ
′
) + λ′ifi(λ))




=
∑

cyc

(λ1(λ
′
1 + λ′2 + λ′3 + λ′2λ

′
3) + λ′1(λ1 + λ2 + λ3 + λ2λ3) + λ2(λ

′
2 + λ′3 + λ′1λ

′
3)

+λ′2(λ2 + λ3 + λ1λ3) + λ3(λ
′
3 + λ′1λ

′
2) + λ′3(λ3 + λ1λ2))

=
∑

cyc

(
M3

2 (λ, λ
′
) +

3∑

i=1

(λi + 1) +

3∑

i=1

(λ′i + 1) + 1

)

=M3
2 (λ, λ

′
) +M3

2 (λ
′
, λ

′′
) +M3

2 (λ
′′
, λ)

=M3
3 (λ, λ

′
, λ

′′
) . (11)

In the last step, we used Lemma 4.3(ii). It follows that ∆ 6= 0 because the vectors λ, λ
′
and λ

′′
are pairwise

different, hence the three points that we considered are not collinear.
Now we assume that ℓ∞ is among the three q/8-secants. Then, the three points can be described as

(
1,

3∑

i=1

λiαi,

3∑

i=1

fi(λ)βi + s

)
,

(
1,

3∑

i=1

λ′iαi,

3∑

i=1

fi(λ
′
)βi + s′

)
and (0, 1, t)

with λ = (λ1, λ2, λ3), λ
′
= (λ′1, λ

′
2, λ

′
3) two different vectors in F

3
2 and Tr(α2

i t) = 0 for i = 1, 2, 3. We find that

∆′ =

∣∣∣∣∣∣

0 1 t

1
∑3

i=1 λiαi

∑3
i=1 fi(λ)βi + s

1
∑3

i=1 λ
′
iαi

∑3
i=1 fi(λ

′
)βi + s′

∣∣∣∣∣∣
= t

3∑

i=1

(λi + λ′i)αi +

3∑

i=1

(fi(λ) + fi(λ
′
))βi + s+ s′ .

It follows that

Tr

((
3∑

i=1

(λi + λ′i)αi

)
∆′

)
= Tr


t

3∑

i=1

(λi + λ′i)α
2
i +

3∑

i,j=1

(fj(λ) + fj(λ
′
))(λi + λ′i)αiβj

+(s+ s′)

(
3∑

i=1

(λi + λ′i)αi

))

=

3∑

i=1

(fi(λ) + fi(λ
′
))(λi + λ′i)

= (λ1 + λ′1)(λ1 + λ2 + λ3 + λ2λ3 + λ′1 + λ′2 + λ′3 + λ′2λ
′
3)

+ (λ2 + λ′2)(λ2 + λ3 + λ1λ3 + λ′2 + λ′3 + λ′1λ
′
3)

+ (λ3 + λ′3)(λ3 + λ1λ2 + λ′3 + λ′1λ
′
2)

=M3
2 (λ, λ

′
) . (12)

In the final step we used that all elements of F2 equal their square. Again we find that ∆′ 6= 0, hence the three
points are not collinear.

We conclude that all lines not through N contain at most two points of A. For any point P ∈ A there are q
points of A not on the q/8-secant ℓP = 〈P,N〉 so all q lines through P different from ℓP contain precisely two
points of A. Consequently, all lines of PG(2, q) contain 0, 2 or q/8 points of A. So, A is a KM-arc of type q/8.
From its definition and Lemmas 2.1 and 2.2 it follows immediately that A is an elation KM-arc with elation
line X = 0 if q > 16 and that A is an elation hyperoval with elation line X = 0 if q = 16.

Corollary 4.5. A KM-arc of type q/8 in PG(2, q), q even, exists for all q ≥ 16.

This result follows immediately from the preceding theorem. The existence of KM-arcs of type q/8 was
previously not generally known. We will discuss this in detail in Remark 4.17

12



Remark 4.6. Instead of the three F
3
2 → F2 functions f1 : (x, y, z) 7→ x+ y + z + yz, f2 : (x, y, z) 7→ y + z + xz

and f3 : (x, y, z) 7→ z + xy that we used in Theorem 4.4 we could have used other F
3
2 → F2 functions. E.g.,

f1 : (x, y, z) 7→ y + z + yz, f2 : (x, y, z) 7→ z + xz and f3 : (x, y, z) 7→ xy work as well. We chose the current
representation because it also has a neat description of the points on the elation line.

We mention an interesting property on this class of KM-arcs.

Theorem 4.7. The q/8-secants of the elation KM-arc of type q/8 constructed in Theorem 4.4 define an F2-linear
pencil, q > 16.

It would be interesting to know whether Theorem 3.10 is valid for all KM-arcs of type q/8 (see also Remark
3.11).

In Theorem 4.11 we will give a negative answer to the question whether there are translation KM-arcs
contained in the family of KM-arcs constructed in Theorem 4.4, but in order to prove this, we need some
lemmas.

Lemma 4.8. The KM-arc constructed in Theorem 4.4 is not a translation KM-arc with the elation line as
translation line.

Proof. We use the notation introduced in the statement of Theorem 4.4. The elation line ℓ is given by X = 0.
We can see that P1(1, 0, 0), P2(1, α1, β1) and P (1, α2, β1 + β2) are points of A. The unique translation τ with

translation line ℓ mapping P1 onto P2 is given by
( 1 0 0

α1 1 0
β1 0 1

)
. Then P τ is (1, α1 +α2, β2). From the construction

it follows that all points of A on the line Y +(α1 + α2)X = 0 can be written as (1, α1+α2, t) with Tr(α1t) = 0
and Tr(α2t) = Tr(α3t) = 1. Since Tr(α3β2) = 0, the point P τ is not in A. Hence, A is not a translation
KM-arc.

Instead of this direct proof we could have applied [2, Theorem 2.2], but that would not have made the
calculations easier.

It is clear that for any set {α1, α2, α3} ⊂ Fq that is an F2-independent triple, we can construct a KM-arc in
PG(2, q) through Theorem 4.4. However some of the obtained KM-arcs will be PΓL-equivalent.

We first prove that the construction in Theorem 4.4 only depends on the subgroup 〈α1, α2, α3〉 and not on
the choice of α1, α2, α3.

Lemma 4.9. Let {α1, α2, α3} ⊂ F
∗
q and {α′

1, α
′
2, α

′
3} ⊂ F

∗
q be both F2-independent sets such that 〈α1, α2, α3〉 =

〈α′
1, α

′
2, α

′
3〉. Let A be the KM-arc constructed through Theorem 4.4 using the triple (α1, α2, α3) and let A′ be

the KM-arc constructed through Theorem 4.4 using the triple (α′
1, α

′
2, α

′
3). Then A and A′ are PGL-equivalent.

Proof. We can find a matrix M ∈ GL3(F2) such that (α1, α2, α3)M = (α′
1, α

′
2, α

′
3). The multiplicative group

GL3(F2) can be generated by the matrices M1 =
(

1 0 0
1 1 0
0 0 1

)
and M2 =

(
0 1 0
0 0 1
1 0 0

)
and hence it is sufficient to prove

the statement for M =M1 and for M =M2. Let β1, β2, β3 be as in the construction presented in Theorem 4.4,
so Tr(αiβj) = 1.

We first look at M =M1. In this case (α′
1, α

′
2, α

′
3) = (α1 + α2, α2, α3). Then (β′

1, β
′
2, β

′
3) = (β1, β1 + β2, β3)

fulfils Tr(α′
iβ

′
j) = δi,j . We know that the construction in Theorem 4.4 does not depend on the choice of the

coset leaders. So, when constructing the KM-arc using the triple (α′
1, α

′
2, α

′
3) we may use β′

1, β
′
2, β

′
3 as coset

leaders. The point set of A is given by S0 ∪
⋃

v∈F
3

2

Sv with

S0 = {(0, 1, x) | ∀i : Tr(α2
i x) = 0} and

S(λ1,λ2,λ3) =

{(
1,

3∑

i=1

λiαi,
3∑

i=1

fi(λ1, λ2, λ3)βi + s

) ∣∣∣∣∣ s ∈ S

}
,

and the point set of A′ is given by S ′
0 ∪
⋃

v∈F
3

2

S ′
v with

S ′
0 = {(0, 1, x) | ∀i : Tr(α′2

i x) = 0} and

S ′
(λ1,λ2,λ3)

=

{(
1,

3∑

i=1

λiα
′
i,

3∑

i=1

fi(λ1, λ2, λ3)β
′
i + s

) ∣∣∣∣∣ s ∈ S

}
.

We know that
〈
α2
1, α

2
2, α

2
3

〉
=
〈
α′2
1 , α

′2
2 , α

′2
3

〉
. Keeping this in mind and using the above expressions for the α′

i’s

and β′
i’s, it can readily be checked that the collineation induced by the matrix

( 1 0 0
α2+α3 1 0
β1+β3 0 1

)
maps A onto A′.
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Now we look at the caseM =M2, hence at (α
′
1, α

′
2, α

′
3) = (α3, α1, α2). Then (β′

1, β
′
2, β

′
3) = (β3, β1, β2) fulfils

Tr(α′
iβ

′
j) = δi,j . Again we can construct A′ (note that A is as above). Here we can check that the collineation

induced by the matrix
( 1 0 0

α1+α2 1 0
β2+β3 0 1

)
maps A onto A′.

Lemma 4.10. Let A be a KM-arc of type q/8 in PG(2, q) obtained by the construction in Theorem 4.4 using
the admissible tuple (α1, α2, α3) and let A′ be a KM-arc of type q/8 in PG(2, q) obtained by the construction
in Theorem 4.4 using (kαϕ

1 , kα
ϕ
2 , kα

ϕ
3 ), with k ∈ F

∗
q and ϕ a field automorphism of Fq. Then A and A′ are

PΓL-equivalent.

Proof. Denote the set {s | ∀i : Tr(αis) = 0} by S and the set {s | ∀i : Tr(kαϕ
i s) = 0} by S′. These sets are used

in the construction of A and A′, respectively. Let γ be the collineation induced by the matrix
(

1 0 0
0 k 0
0 0 k−1

)
and

the field automorphism ϕ. Then Aγ = A′ since

{k−1sϕ | s ∈ S} = {k−1sϕ | ∀i : Tr(αis) = 0} = {k−1sϕ | ∀i : Tr(αϕ
i s

ϕ) = 0}
= {k−1t | ∀i : Tr(αϕ

i t) = 0} = {s | ∀i : Tr(αϕ
i ks) = 0} = S′ ,

{(0, k, k−1xϕ) | ∀i : Tr(α2
i x) = 0} = {(0, 1, k−2xϕ) | ∀i : Tr(α2

i x) = 0}
= {(0, 1, k−2xϕ) | ∀i : Tr((αϕ

i )
2xϕ) = 0}

= {(0, 1, x) | ∀i : Tr((kαϕ
i )

2x) = 0}

and Tr((kαϕ
i )(k

−1βϕ
j )) = δi,j . In both calculations we used that Tr(xϕ) = Tr(x) for the arbitrary field auto-

morphism ϕ and for any x ∈ Fq.

Combining the previous lemma with Lemma 4.8 yields that the constructed KM-arcs are not translation
KM-arcs.

Theorem 4.11. If A is a KM-arc in PG(2, q) arising from the construction in Theorem 4.4, then A is not a
translation KM-arc.

Proof. For q = 16 this result will follow from Theorem 4.12. Let A be a KM-arc in PG(2, q), q ≥ 32, constructed
through Theorem 4.4 using the admissible tuple (α1, α2, α3). We assume that A is a translation KM-arc. By
[6, Prop. 6.2] (see also Theorem 1.4) the translation line must be a q/8-secant of A. It follows from Theorem
4.8 that the translation line cannot be the elation line. So we assume that the translation line is a q/8-secant
different from the elation line. Then, the subgroups {x ∈ Fq | ∀i : Tr(αix) = 0} and {x ∈ Fq | ∀i : Tr(α2

i x) = 0}
have to coincide, hence the subgroups 〈α1, α2, α3〉 and 〈α2

1, α
2
2, α

2
3〉 coincide. By Lemma 4.9, for every k ∈ F

∗
q ,

the admissible tuple (kα1, kα2, kα3), gives rise to a KM-arc A′ PΓL-equivalent to A, which is hence also a
translation KM-arcs. As before, we find that the subgroups 〈kα1, kα2, kα3〉 and 〈k2α2

1, k
2α2

2, k
2α2

3〉 coincide.
It follows that for all k ∈ F

∗
q , the subgroups 〈α1, α2, α3〉 and k〈α1, α2, α3〉 coincide, a contradiction, so the

assumption is false.

We now discuss the construction of Theorem 4.4 for q = 16 and 32. For q = 16 the construction of Theorem
4.4 yields a hyperoval in PG(2, 16). It is long known that up to isomorphism there are only two hyperovals in
PG(2, 16): the regular hyperoval and the Lunelli-Sce hyperoval ([4, 11]). The regular hyperoval has a stabiliser
isomorphic to PΓL(2, q) and hence has order 16320, while the Lunelli-Sce has a stabiliser of order 144 (see
[11, 12]).

Theorem 4.12. For all admissible triples, the construction of Theorem 4.4 for q = 16 gives rise to the same
hyperoval in PG(2, 16) up to PΓL-equivalence; this hyperoval is the Lunelli-Sce hyperoval.

Proof. By Lemma 4.9 we know that the projective equivalence class of the KM-arc does not depend on the
choice of the parameters α1, α2, α3 (using the notation of Theorem 4.4) but only on the additive subgroup they
generate. We know that F16 has precisely 15 additive subgroups of order 8. For any subgroup S of order 8 and
any k ∈ F

∗
16 \{1} clearly kS 6= S, so the 15 additive subgroups of order 8 can be written as kT with k ∈ F

∗
16 and

T a fixed subgroup of order 8. By Theorem 4.10 we then know that all admissible triples give rise to the same
hyperoval up to projective equivalence. Using the GAP-package FinInG ([1]) we computed the stabiliser of one
KM-arc in PG(2, 16) constructed through Theorem 4.4. We found it to have size 144, hence the conclusion.
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Remark 4.13. The KM-arcs of type 4 in PG(2, 32) have been classified up to projective equivalence in [14, Re-
sult 2.14]. There are 8 equivalence classes. One of these classes was already described in [5]. It is straightforward
to check that only one of the 8 given KM-arcs is an elation KM-arc, the one whose affine points are given by
{(1, f(z), z) | z ∈ F32} with f(z) = z24+z20+α18z18+α5z16+α2z12+α18z10+α18z8+α23z6+α5z4+α22z2+α26z.
The following result is immediate.

Theorem 4.14. For all admissible triples the construction of Theorem 4.4 for q = 32 gives rise to the same
elation KM-arc of type 4 in PG(2, 32) up to PΓL-equivalence.

Using the above results we can now give a computer free proof of this result.

Proof. By Lemma 4.9 we know that the projective equivalence class of the KM-arc only depends on the additive
subgroup 〈α1, α2, α3〉 with α1, α2, α3 as in the statement of Theorem 4.4. It is immediate that F32 has 155
additive subgroups of order 8. By Lemma 4.10 we also know that for any subgroup T the KM-arcs arising from
T and kTϕ, respectively, are PΓL-equivalent for any k ∈ F

∗
32 and any field automorphism ϕ of F32.

Assume that 〈α1, α2, α3〉ϕ2 = k 〈α1, α2, α3〉, with k ∈ F
∗
32 and ϕ ∈ Aut(F32). Then we can find a matrix

A ∈ GL3(F2) such that (αϕ
1 , α

ϕ
2 , α

ϕ
3 ) = k(α1, α2, α3)A. Applying this repetitively it follows that

(α1, α2, α3) = (αϕ5

1 , αϕ5

2 , αϕ5

3 ) = k1+ϕ+ϕ2+ϕ3+ϕ4

(α1, α2, α3)A
5 = (α1, α2, α3)A

5

since Aut(F32) is a cyclic group of order 5 which implies that k1+ϕ+ϕ2+ϕ3+ϕ4

= k31 = 1. As |GL3(F2)| = 168,
the matrix A cannot have order 5, soA is the identity matrix; here we also use that α1, α2, α3 are F2-independent.
We find that αϕ

i = kαi for i = 1, 2, 3. Consequently, α1

α2

is fixed by ϕ. As F2 is the only subfield of F32 and
α1 6= α2, the field automorphism ϕ must be trivial, and so also k = 1.

So, for a fixed additive subgroup T of order 8 in F32 all subgroups kTϕ, with k ∈ F
∗
32 and ϕ ∈ Aut(F32), are

different. For a fixed T there are thus 31.5=155 subgroups of the form kTϕ. We conclude that all subgroups of
order 8 in F32 give rise to the same KM-arc of type 4 up to projective equivalence.

From [16] we also know that the stabiliser G32 of this unique elation KM-arc A32 of type 4 is a group of
order 16. So, next to the four elations (including the identity) that G32 contains by definition, there are other
collineations stabilising A32; all of them fix only one point, the 4-nucleus. It is clear that A32 is not translation.

Now we cover the larger values for q. First we recall a result from [3]. It learns us that the iterative process
admitted by Construction 2 (C) does not always construct ‘new’ examples.

Theorem 4.15 ([3, Remark 1]). If A is the KM-arc in PG(2, qh) obtained from a hyperoval H in PG(2, q),
q even, through Construction 2 (A) or (B), and A′ is the KM-arc in PG(2, qhr) obtained from A through
Construction 2 (C), then A′ also arises from H through a direct application of Construction 2 (A) or (B).

The proof of this theorem is straightforward; it can immediately be deduced from the descriptions in Con-
struction 2. We now present an analogous theorem for the KM-arcs constructed in this section.

Theorem 4.16. Let A0 be the KM-arc of type q/8 in PG(2, q), q even, with q/8-nucleus N(0, 0, 1) and elation
line X = 0 constructed from Theorem 4.4 by the admissible tuple (α1, α2, α3) and let β be a collineation that

stabilises N . Let A′ be a KM-arc of type qh/8 in PG(2, qh) obtained from Aβ
0 through Construction 2 (B) or

(C). Then A′ is PΓL-equivalent to a KM-arc in PG(2, qh) obtained by the construction in Theorem 4.4 using
the admissible tuple (α1, α2, α3).

Proof. We denote the trace function Fqh → F2 by Trqh , the trace function Fq → F2 by Trq and the trace
function Fqh → Fq by Trqh,q.

We define S = {x ∈ Fq | ∀i : Trq(αix) = 0}. Then A0 is given by S0 ∪
⋃

v∈F
3

2

Sv with

S(λ1,λ2,λ3) =

{(
1,

3∑

i=1

λiαi,

3∑

i=1

fi(λ1, λ2, λ3)βi + s

)∣∣∣∣∣ s ∈ S

}

and S0 = {(0, 1, x) | ∀j : Trq(α2
jx) = 0}. Here, β1, β2, β3 ∈ Fq are such that Trq(αiβj) = δi,j . The collineation

β is defined by a matrix C =
( a00 a01 0

a10 a11 0
a20 a21 1

)
and an automorphism φ of Fq.

Let k ∈ Fqh be such that Trqh,q(k) = 1; such an element can always be found. Now, we define S′ = {x ∈
Fqh | ∀i : Trqh(kαix) = 0}. On the one hand, for any element x ∈ Fq ⊆ Fqh we know that Trqh(kαix) =
Trq(αixTrqh,q(k)) = Trq(αix). Hence, S′ ∩ Fq = S. On the other hand, for any element x ∈ Fqh with
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Trqh,q(kx) = 0 we know that Trqh (kαix) = Trq(αi Trqh,q(kx)) = 0. Moreover, if x ∈ Fq ⊆ Fqh admits
Trqh,q(kx) = 0 then x = 0. So the set I = {x ∈ Fqh | Trqh,q(kx) = 0} is a direct complement of Fq in Fqh such

that S′ = 〈S, I〉. We can also find an automorphism φ′ of Fqh of which φ is the restriction to Fq. Then Iφ
′

is
also a direct complement of Fq in Fqh .

By Remark 1.6 we may use Iφ
′

in the construction of A′ without loss of generality. The KM-arc A′ is then
given by S ′

0 ∪
⋃

v∈F
3

2

S ′
v with S ′

0 = {(0, 1, xφ + iφ
′

)Ct | ∀j : Trq(α2
jx) = 0, i ∈ I} and

S ′
(λ1,λ2,λ3)

=

{(
1,

3∑

i=1

λiα
φ
i ,

3∑

i=1

fi(λ1, λ2, λ3)β
φ
i + sφ + iφ

′

)
Ct

∣∣∣∣∣ s ∈ S, i ∈ I

}

=

{(
1,

3∑

i=1

λiα
φ
i ,

3∑

i=1

fi(λ1, λ2, λ3)β
φ
i + sφ

′

)
Ct

∣∣∣∣∣ s ∈ S′

}
.

We define the KM-arcA′′ in PG(2, qh) using the parameters kα1, kα2, kα3. Its point set is given by S ′′
0 ∪
⋃

v∈F
3

2

S ′′
v

with S ′′
0 = {(0, 1, x) | ∀j : Trqh(k2α2

jx) = 0} and

S ′′
(λ1,λ2,λ3)

=

{(
1, k

3∑

i=1

λiαi,

3∑

i=1

fi(λ1, λ2, λ3)βi + s

) ∣∣∣∣∣ s ∈ S′

}
.

Note that β1, β2, β3 ∈ Fq ⊆ Fqh fulfil Trqh ((kαi)βj) = Trq(αiβj) = δi,j . Let γ be the collineation induced by

the Fqh-automorphism φ′ and the matrix C′ = C

(
1 0 0

0 (kφ′

)−1 0
0 0 1

)
where we interpret C over Fqh . It is immediate

that
(
S ′′
(λ1,λ2,λ3)

)γ
= S ′

(λ1,λ2,λ3)
for all (λ1, λ2, λ3) ∈ F

3
2. Furthermore,

(S ′′
0 )

γ
= {(0, (kφ′

)−1, xφ
′

)Ct | ∀j : Trqh(k2α2
jx) = 0}

= {(0, 1, (kx)φ′

)Ct | ∀j : Trqh(k2α2
jx) = 0}

= {(0, 1, yφ′

)Ct | ∀j : Trqh(kα2
jy) = 0} .

So, (S ′′
0 )

γ
= S ′

0 iff Trqh(kα
2
j (x+ i)) = 0 for all i ∈ I and all x ∈ Fq such that Trq(α

2
jx) = 0. We find

Trqh (kα
2
j(x+ i)) = Trqh(kα

2
jx) + Trqh(kα

2
j i) = Trq(α

2
jxTrqh,q(k)) + Trq(α

2
j Trqh,q(ki)) = 0

by the definition of k and the definition of I. We conclude that A′ = (A′′)γ . This proves the theorem since the
tuples (α1, α2, α3) and (kα1, kα2, kα3) give rise to PΓL-equivalent KM-arcs by Lemma 4.10.

We now discuss in detail the result of Theorem 4.4 and Corollary 4.5.

Remark 4.17. In PG(2, q), q = 2h, with 3 | h, KM-arcs of type q/8 were known to exist through Constructions
1 and 2 (A). However, since all o-polynomials in F8 give rise to a translation hyperoval (see [13]), all these
KM-arcs are translation KM-arcs. By Theorem 4.15 all KM-arcs of type q/8 that are constructed through
applying Construction 2 (C) on the previous ones, are also translation KM-arcs.

In PG(2, q), q = 2h, with 4 | h, KM-arcs of type q/8 were known to exist through Construction 2 (B). By
Theorem 4.15 all KM-arcs that arise through Constructions 2 (B) and (C) arise from a hyperoval in PG(2, 16).
They are all elation KM-arcs.

In PG(2, q), q = 2h, with 5 | h, KM-arcs of type q/8 were known to exist through Remark 4.13 and
Construction 2 (C). By Lemmas 2.4 and 2.5 this family contains both elation and non-elation KM-arcs.

By Theorem 4.11 we know that the KM-arcs constructed through Theorem 4.4 are not translation KM-
arcs. We now elaborate on Corollary 4.5. For the discussion of the existence results of KM-arcs of type q/8 in
PG(2, q), q = 2h, the residue class of h modulo 60 is what matters. If h 6= 0 (mod m) for m = 3, 4, 5 (there are
24 out of 60 residue classes in this case), then the existence of KM-arcs of type q/8 in PG(2, q) was previously
not known. If h is divisible by 3, but not by 4 or 5 (there are 12 residue classes in this case), then the existence
of KM-arcs of type q/8 in PG(2, q) was previously known, but all known examples are translation KM-arcs and
hence different from the examples we introduced in Theorem 4.4 as they are not translation KM-arcs. If h is
divisible by 4 or by 5 (there are 24 residue classes in this case), then the set of KM-arcs constructed in Theorem
4.4 does not necessarily contain previously unknown examples. E.g. for h = 4, 5 this construction provides no
new KM-arcs.
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5 A new family of elation KM-arcs of type q/16

In this section we first present the construction of a family of KM-arcs of type q/16 in PG(2, q), based on the
idea underlying the construction of KM-arcs of type q/8 in Theorem 4.4. Afterwards we will discuss this family
of KM-arcs. We start with a small technical lemma.

Lemma 5.1. Let α1, α2, α3, α4 ∈ F
∗
q be F2-independent. If

α2

i

α4

∈ 〈α1, α2, α3, α4〉 for i = 1, 2, 3, then we can find
an α ∈ 〈α1, α2, α3, α4〉 such that {α1(α1 + α4), α2(α2 + α4), α3(α3 + α4), α4α} is an F2-independent set.

Proof. If the triple (µ1, µ2, µ3) ∈ F
3∗
2 admits

∑3
i=1 µiαi(αi+α4) = 0, then

(∑3
i=1 µiαi

)(
α4 +

∑3
i=1 µiαi

)
= 0,

contradicting that {α1, α2, α3, α4} is an F2-independent set, so {α1(α1 + α4), α2(α2 + α4), α3(α3 + α4)} is an
F2-independent set.

Since
α2

i

α4
∈ 〈α1, α2, α3, α4〉 for i = 1, 2, 3, there exist ai,j ∈ F2 such that α2

i = α4

(∑4
j=1 ai,jαj

)
. Let

(b1, b2, b3, b4) be a vector in F
4
2 which is not contained in the hyperplane

〈(a1,1 + 1, a1,2, a1,3, a1,4), (a2,1, a2,2 + 1, a2,3, a2,4), (a3,1, a3,2, a3,3 + 1, a3,4)〉 .

We then know that for α =
∑4

i=1 biαi, the set {α1(α1+α4), α2(α2+α4), α3(α3+α4), α4α} is F2-independent.

Now we present the construction. By the previous lemma we know that the existence of an α satisfying the
condition in the theorem is guaranteed.

Theorem 5.2. Let q = 2h, h > 5, let α1, α2, α3, α4 ∈ F
∗
q be F2-independent and define S = {x ∈ Fq |

∀i : Tr(αix) = 0}. Assume that
α2

i

α4

∈ 〈α1, α2, α3, α4〉 for i = 1, 2, 3, and let α ∈ 〈α1, α2, α3, α4〉 be such
that {α1(α1 + α4), α2(α2 + α4), α3(α3 + α4), α4α} is an F2-independent set. Let β1, β2, β3 ∈ F

∗
q be such that

Tr(αiβj) = δi,j for i = 1, . . . , 4 and j = 1, 2, 3, and let f1, f2, f3 be as in Theorem 4.4.
For any λ = (λ1, . . . , λ4) ∈ F

4
2 we define

Sλ =

{(
1,

4∑

i=1

λiαi,

3∑

i=1

fi(λ1, λ2, λ3)βi + s

) ∣∣∣∣∣ s ∈ S

}
.

We also define S0 = {(0, 1, x) | Tr(αi(αi + α4)x) = 0, i = 1, 2, 3 ∧ Tr(α4αx) = 1}. The point set A =
S0 ∪

⋃
v∈F

4

2

Sv is an elation KM-arc of type q/16 in PG(2, q) with elation line X = 0 and q/16-nucleus (0, 0, 1).

Proof. We follow the approach from the proof of Theorem 4.4. We know that S is a subgroup of Fq,+ containing
q/16 elements. The existence of elements β1, β2, β3 is guaranteed as they are coset leaders of cosets of S (note
that not all cosets of S are involved).

It is immediate that the points of Sλ, with λ = (λ1, λ2, λ3, λ4) ∈ F
4
2, are on the line ℓλ with equation

(
∑4

i=1 λiαi)X + Y = 0 and that the points of S0 are on the line ℓ∞ with equation X = 0. Hence, all lines
through N(0, 0, 1) either contain q/16 or 0 points of A.

Now we check that three points on different q/16-secants are not collinear. First we assume that ℓ∞ is not
among these three q/16-secants. Then the three points can be described as

(
1,

4∑

i=1

λiαi,
3∑

i=1

fi(λ̃)βi + s

)
,

(
1,

4∑

i=1

λ′iαi,
3∑

i=1

fi(λ̃
′)βi + s′

)
and

(
1,

4∑

i=1

λ′′i αi,
3∑

i=1

fi(λ̃
′′)βi + s′′

)

with λ = (λ1, λ2, λ3, λ4), λ
′
= (λ′1, λ

′
2, λ

′
3, λ

′
4) and λ

′′
= (λ′′1 , λ

′′
2 , λ

′′
3 , λ

′′
4 ) three pairwise different vectors in F

4
2,

and λ̃ = (λ1, λ2, λ3), λ̃
′ = (λ′1, λ

′
2, λ

′
3) and λ̃

′′ = (λ′′1 , λ
′′
2 , λ

′′
3). We find that

∆ =

∣∣∣∣∣∣∣

1
∑4

i=1 λiαi

∑3
i=1 fi(λ̃)βi + s

1
∑4

i=1 λ
′
iαi

∑3
i=1 fi(λ̃

′)βi + s′

1
∑4

i=1 λ
′′
i αi

∑3
i=1 fi(λ̃

′′)βi + s′′

∣∣∣∣∣∣∣

=
∑

cyc




4∑

i=1

3∑

j=1

(λifj(λ̃
′) + λ′ifj(λ̃))αiβj + s

4∑

i=1

λ′iαi + s′
4∑

i=1

λiαi
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where the cyclic sum is taken over (λ, λ
′
, λ

′′
) and the corresponding (λ̃, λ̃′, λ̃′′) and (s, s′, s′′). We calculate

the trace of both sides of this equation. Considering that Tr(αit) = 0 for all t ∈ S and i = 1, . . . , 4, that
Tr(αiβj) = δi,j and that the trace function is F2-linear, we find (completely analogous to (11)) that

Tr(∆) =M3
3 (λ̃, λ̃

′, λ̃′′) .

It follows that ∆ 6= 0 if λ̃, λ̃′ and λ̃′′ are three pairwise disjoint vectors. Hence, in this case the three points are
not collinear. Now we look at the case in which λ̃, λ̃′ and λ̃′′ are not three pairwise disjoint vectors. Without

loss of generality we can assume that λ̃′ = λ̃′′. Since λ
′ 6= λ

′′
, we know that also λ′4 = λ′′4 + 1. In this case

∆ = α4

3∑

j=1

(fj(λ̃) + fj(λ̃
′))βj + (s+ s′)α4 + (s′ + s′′)

4∑

i=1

(λi + λ′i)αi

Since λ 6= λ
′
by assumption, we know that

∑4
i=1(λi + λ′i)αi 6= 0. So now we compute the trace of the following

nonzero multiple of ∆:

Tr

(∑4
i=1(λi + λ′i)αi

α4
∆

)
=

4∑

i=1

3∑

j=1

(λi + λ′i)(fj(λ̃) + fj(λ̃
′))Tr(αiβj)

+

4∑

i=1

(λi + λ′i)Tr((s+ s′)αi) + Tr

(
(s′ + s′′)

∑4
i=1(λi + λ′i)α

2
i

α4

)

=

3∑

i=1

(λi + λ′i)(fi(λ̃) + fi(λ̃
′))

= (λ1 + λ′1)(λ1 + λ2 + λ3 + λ2λ3 + λ′1 + λ′2 + λ′3 + λ′2λ
′
3)

+ (λ2 + λ′2)(λ2 + λ3 + λ1λ3 + λ′2 + λ′3 + λ′1λ
′
3)

+ (λ3 + λ′3)(λ3 + λ1λ2 + λ′3 + λ′1λ
′
2)

=M3
2 (λ̃, λ̃

′) .

In the second step we used that
α2

i

α4
∈ 〈α1, α2, α3, α4〉, hence that Tr

(
s
α2

i

α4

)
= 0 for all s ∈ S. In the final step

we used that all elements of F2 equal their square. As λ differs from both λ
′
and λ

′′
, which only differ on the

final entry, the vector λ̃ has to be different from λ̃′. It follows that ∆ 6= 0, hence, also in this case the three
points are not collinear.

Now we assume that ℓ∞ is among the three q/16-secants. Then, the three points can be described as

(
1,

4∑

i=1

λiαi,

3∑

i=1

fi(λ̃)βi + s

)
,

(
1,

4∑

i=1

λ′iαi,

3∑

i=1

fi(λ̃
′)βi + s′

)
and (0, 1, t)

with λ = (λ1, λ2, λ3, λ4) and λ
′
= (λ′1, λ

′
2, λ

′
3, λ

′
4) two different vectors in F

3
2, λ̃ = (λ1, λ2, λ3) and λ̃′ =

(λ′1, λ
′
2, λ

′
3), and t such that Tr(αi(αi + α4)t) = 0 for i = 1, 2, 3 and Tr(α4αt) = 1. We find that

∆′ =

∣∣∣∣∣∣

0 1 t

1
∑4

i=1 λiαi

∑3
i=1 fi(λ̃)βi + s

1
∑4

i=1 λ
′
iαi

∑3
i=1 fi(λ̃

′)βi + s′

∣∣∣∣∣∣
= t

4∑

i=1

(λi + λ′i)αi +

3∑

i=1

(fi(λ̃) + fi(λ̃
′))βi + s+ s′ .

We know that λ+ λ
′ 6= 0 and hence

∑4
i=1(λi + λ′i)αi 6= 0. We distinguish between two cases. First we assume
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that λ̃ 6= λ̃′. We compute the trace of a nonzero multiple of ∆′:

Tr

((
α4 +

4∑

i=1

(λi + λ′i)αi

)
∆′

)
=

4∑

i=1

(λi + λ′i)Tr (tαi(αi + α4)) +

3∑

j=1

(fj(λ̃) + fj(λ̃
′))Tr(α4βj)

+

4∑

i=1

3∑

j=1

(λi + λ′i)(fj(λ̃) + fj(λ̃
′))Tr(αiβj)

+

4∑

i=1

(λi + λ′i)Tr ((s+ s′)αi) + Tr (α4(s+ s′))

=

3∑

i=1

(λi + λ′i)(fi(λ̃) + fi(λ̃
′))

=M3
2 (λ̃, λ̃

′) .

In the penultimate step we used that Tr(αi(αi + α4)t) = 0 for i = 1, 2, 3 (and trivially also for i = 4) and that
Tr(αiβi) = δi,j . In the final step we used the calculations in (12). We find that ∆ 6= 0, hence the three points
are not collinear.

If λ̃ = λ̃′, then λ+ λ
′
= α4. In this case ∆′ = tα4 + s+ s′. We know that

Tr(α∆′) = Tr(α(tα4 + s+ s′)) = 1

because Tr(α4αt) = 1 and α ∈ 〈α1, α2, α3, α4〉. Again we find that ∆ 6= 0, hence the three points are not
collinear

We conclude that all lines not through N contain at most two points of A. For any point P ∈ A there are
q points of A not on the q/16-secant ℓP = 〈P,N〉 so all q lines through P different from ℓP contain precisely
two points of A. Consequently, all lines of PG(2, q) contain 0, 2 or q/16 points of A. So, A is a KM-arc of type
q/16. From its definition and Lemma 2.1 it follows immediately that A is an elation KM-arc with elation line
X = 0.

Remark 5.3. It is clear from the proof of Lemma 5.1 that there are 8 possible choices for the α used
in the construction of Theorem 5.2. We can show that the construction is independent of the chosen α.
Assume that α′ and α′′ are such that both {α1(α1 + α4), α2(α2 + α4), α3(α3 + α4), α4α

′} and {α1(α1 +
α4), α2(α2 + α4), α3(α3 + α4), α4α

′′} are F2-independent sets. We know that α4(α
′ + α′′) is contained in

〈α1(α1 + α4), α2(α2 + α4), α3(α3 + α4)〉. Consequently,

{(0, 1, x) | Tr(αi(αi + α4)x) = 0, i = 1, 2, 3 ∧ Tr(α4α
′x) = 1}

= {(0, 1, x) | Tr(αi(αi + α4)x) = 0, i = 1, 2, 3 ∧ Tr(α4α
′′x) = 1} ,

which proves our claim.

The following result follows immediate from the definition of the KM-arcs of type q/16 constructed in
Theorem 5.2.

Theorem 5.4. The q/16-secants of the elation KM-arc of type q/16 constructed in Theorem 5.2 define an
F2-linear pencil.

This result is similar to Theorem 4.7 where we have showed that the same holds for KM-arcs constructed in
Theorem 4.4. It would be interesting to know whether Theorem 3.10 is valid for all KM-arcs of type q/16 (see
also Remark 3.11).

Lemma 5.5. The KM-arc constructed in Theorem 5.2 is not a translation KM-arc with the elation line as
translation line.

Proof. Analogous to the proof of Lemma 4.8.

We look at the elations stabilising a KM-arc constructed through Theorem 5.2. We know by Lemma 2.1
that all elation KM-arcs of type q/16 in PG(2, q) admit a group of elations of size q/16. We will now prove that
the KM-arcs constructed through Theorem 5.2 are stabilised by a larger group of elations.
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Theorem 5.6. A KM-arc A of type q/16 in PG(2, q) constructed though Theorem 5.2 admits a group of elations
of size q/8.

Proof. We assume A is the point set given in the statement of Theorem 5.2 with α1, . . . , α4 and S as described

there. It can readily be checked that all elations in E =
{(

1 0 0
kα4 1 0
s 0 1

)
| s ∈ S, k ∈ F2

}
fix A. It is also immediate

that E is a group of elations with axis X = 0 and that E has size q/8.

In Lemmas 4.9 and 4.10 we proved that the KM-arcs of type q/8 constructed in Theorem 4.4 are PΓL-
equivalent under certain conditions. We will now prove similar results for the KM-arcs of type q/16 introduced
above.

Lemma 5.7. Let {α1, α2, α3, α4} ⊂ F
∗
q and {α′

1, α
′
2, α

′
3, α4} ⊂ F

∗
q be both F2-independent sets such that

〈α1, α2, α3, α4〉 = 〈α′
1, α

′
2, α

′
3, α4〉 and such that

α2

i

α4

∈ 〈α1, α2, α3, α4〉 for i = 1, 2, 3. Let A be the KM-arc
constructed through Theorem 5.2 using the tuple (α1, α2, α3, α4) and let A′ be the KM-arc constructed through
Theorem 5.2 using the tuple (α′

1, α
′
2, α

′
3, α4). Then A and A′ are PΓL-equivalent.

Proof. We note that it follows from
α2

i

α4

∈ 〈α1, α2, α3, α4〉 for i = 1, 2, 3 and 〈α1, α2, α3, α4〉 = 〈α′
1, α

′
2, α

′
3, α4〉

that also
α′2

i

α4

∈ 〈α′
1, α

′
2, α

′
3, α4〉 for i = 1, 2, 3. We proceed as in the proof of Lemma 4.9. We can find a matrix

M ∈ GL4(F2) such that (α1, α2, α3, α4)M = (α′
1, α

′
2, α

′
3, α4). This matrix M is contained in the subgroup

H = {C ∈ GL4(F2) | Ci,4 = 0, i = 1, 2, 3}. This multiplicative group H is generated by the matrices

M1 =

(
1 1 0 0
0 1 0 0
0 0 1 0
1 0 0 1

)
and M2 =

(
0 1 0 0
0 0 1 0
1 0 0 0
0 0 0 1

)
and hence it is sufficient to prove the statement for M = M1 and

for M = M2. Let α, β1, β2, β3 be as in the construction presented in Theorem 5.2, so Tr(αiβj) = 1, and
α ∈ 〈α1, α2, α3, α4〉 such that {α1(α1 + α4), α2(α2 + α4), α3(α3 + α4), α4α} is an F2-independent set.

We first look at M = M1. In this case (α′
1, α

′
2, α

′
3) = (α1 + α4, α1 + α2, α3). Then (β′

1, β
′
2, β

′
3) = (β1 +

β2, β2, β3) fulfils Tr(α
′
iβ

′
j) = δi,j . We know that the construction in Theorem 5.2 does not depend on the choice

of the coset leaders, so when constructing the KM-arc using the tuple (α′
1, α

′
2, α

′
3, α4) we may use β′

1, β
′
2, β

′
3 as

coset leaders. A straightforward calculation shows that

〈α1(α1 + α4), α2(α2 + α4), α3(α3 + α4)〉 = 〈α′
1(α

′
1 + α4), α

′
2(α

′
2 + α4), α

′
3(α

′
3 + α4)〉 ,

hence {α′
1(α

′
1 + α4), α

′
2(α

′
2 + α4), α

′
3(α

′
3 + α4), α4α} is also an F2-independent set. The point set of A is given

by S0 ∪
⋃

v∈F
4

2

Sv with

S0 = {(0, 1, x) | Tr(αi(αi + α4)x) = 0, i = 1, 2, 3 ∧ Tr(α4αx) = 1} and

S(λ1,λ2,λ3,λ4) =

{(
1,

4∑

i=1

λiαi,
3∑

i=1

fi(λ1, λ2, λ3)βi + s

) ∣∣∣∣∣ s ∈ S

}
,

and the point set of A′ is given by S ′
0 ∪
⋃

v∈F
3

2

S ′
v with

S ′
0 = {(0, 1, x) | Tr(α′

i(α
′
i + α4)x) = 0, i = 1, 2, 3 ∧ Tr(α4αx) = 1} and

S ′
(λ1,λ2,λ3,λ4)

=

{(
1,

3∑

i=1

λiα
′
i + λ4α4,

3∑

i=1

fi(λ1, λ2, λ3)β
′
i + s

)∣∣∣∣∣ s ∈ S

}
.

Note that S = {x | Tr(αix) = 0} = {x | Tr(α′
ix) = 0}.

Since 〈α1(α1 + α4), α2(α2 + α4), α3(α3 + α4)〉 = 〈α′
1(α

′
1 + α4), α

′
2(α

′
2 + α4), α

′
3(α

′
3 + α4)〉, we know that

S ′
0 = S0. Keeping this in mind and using the above expressions for the α′

i’s and β′
i’s, it can readily be

checked that the collineation induced by the matrix
( 1 0 0

α1+α3 1 0
β3 0 1

)
maps A onto A′.

Now we look at the caseM =M2, hence at (α
′
1, α

′
2, α

′
3) = (α3, α1, α2). Then (β′

1, β
′
2, β

′
3) = (β3, β1, β2) fulfils

Tr(α′
iβ

′
j) = δi,j . Again we can construct A′ (note that A is as above). Here we can check that the collineation

induced by the matrix
( 1 0 0

α1+α2 1 0
β2+β3 0 1

)
maps A onto A′.

Lemma 5.8. Let A be a KM-arc of type q/16 in PG(2, q) obtained by the construction in Theorem 5.2 using the
admissible tuple (α1, α2, α3, α4) and let A′ be a KM-arc of type q/16 in PG(2, q) obtained by the construction
in Theorem 5.2 using (kαϕ

1 , kα
ϕ
2 , kα

ϕ
3 , kα

ϕ
4 ), with k ∈ F

∗
q and ϕ a field automorphism of Fq. Then A and A′ are

PΓL-equivalent.
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Proof. We note that the condition ∀i : α2

i

α4
∈ 〈α1, α2, α3, α4〉 and the condition ∀i : (kαϕ

i
)2

kαϕ
4

∈ 〈kα1, kα2, kα3, kα4〉
are equivalent. We also note that if α ∈ 〈α1, α2, α3, α4〉 is such that {α1(α1 + α4), α2(α2 + α4), α3(α3 +
α4), α4α} is an F2-independent set, then kα

ϕ ∈ 〈kαϕ
1 , kα

ϕ
2 , kα

ϕ
3 , kα

ϕ
4 〉 is such that {kαϕ

1 (kα
ϕ
1 +kα

ϕ
4 ), kα

ϕ
2 (kα

ϕ
2 +

kαϕ
4 ), kα

ϕ
3 (kα

ϕ
3 + kαϕ

4 ), (kα
ϕ
4 )(kα

ϕ)} is an F2-independent set. The rest of the proof is analogous to the proof
of Lemma 4.10.

We proved before that the KM-arcs of type q/8 constructed in Theorem 5.2 are not translation KM-arcs.
This also true for the KM-arcs of type q/16.

Theorem 5.9. Any KM-arc in PG(2, q) constructed through Theorem 4.4 is not a translation KM-arc.

Proof. The proof is similar to the proof of Theorem 4.11, now using Remark 5.13 and Lemmas 5.5 and 5.8.

The following result is the analogue of Theorems 4.15 and 4.16. Its proof is similar to the proof of Theorem
4.16.

Theorem 5.10. Let A0 be the KM-arc of type q/16 with q/16-nucleus N(0, 0, 1) and elation line X = 0
constructed from Theorem 4.4 by the admissible tuple (α1, α2, α3, α4) and let β be a collineation that stabilises

N . Let A′ be a KM-arc of type qh/16 in PG(2, qh) obtained from Aβ
0 through Construction 2 (B) or (C).

Then A′ is PΓL-equivalent to a KM-arc obtained by the construction in Theorem 4.4 using the admissible tuple
(α1, α2, α3, α4).

We now discuss the existence of the family of KM-arcs presented in Theorem 5.2.

Theorem 5.11. A KM-arc A of type q/16 in PG(2, q), q = 2h, constructed through Theorem 5.2 exists if and
only if

• 4 | h and A is PΓL-equivalent to the KM-arc constructed through Theorem 5.2 using an admissible tuple
(α1, α2, α3, 1) with 〈α1, α2, α3, 1〉 = F16 ⊂ Fq,

• 6 | h and A is PΓL-equivalent to the KM-arc constructed through Theorem 5.2 using an admissible tuple
(α1, α2, α3, 1) with 〈α1, α2, α3, 1〉 = 〈F4,F8〉 ⊆ Fq or

• 7 | h and A is PΓL-equivalent to the KM-arc constructed through Theorem 5.2 using the admissible tuple
(z, z2, z4, 1) with z ∈ Fq admitting z7 = z + 1 or to the KM-arc constructed through Theorem 5.2 using
the admissible tuple (z11, z22, z44, 1) with z ∈ Fq admitting z7 = z + 1.

Here we consider the subfields as additive subgroups of Fq,+.

Proof. There exists a KM-arc constructed through Theorem 5.2 in PG(2, q) if we can find a tuple (α1, α2, α3, α4) ∈
F
4
q such that 〈α1, α2, α3, α4〉 has order 16 and such that

α2

i

α4
∈ 〈α1, α2, α3, α4〉 for i = 1, 2, 3. So we look for all ad-

missible tuples (α1, α2, α3, α4) ∈ F
4
q. By Lemma 5.8 we can assume that α4 = 1. We denote T = 〈α1, α2, α3, 1〉

We distinguish between different cases and subcases. In this discussion we denote the trace function Fq′ → F2

by Trq′ .

1. We assume that F4 ⊂ T . In this case 2 | h. By Lemma 5.7 we may assume that 〈α1, 1〉 = F4. It follows

that
α2

1

α4

= α2
1 ∈ 〈α1, 1〉 ⊂ T . It is immediate that for any x ∈ Fq \ F4 also x2 ∈ Fq \ F4. Further, if

x2 + x ∈ F4 for an element x ∈ Fq \ F4, then x
2 + x ∈ F4 \ F2.

(a) There is an element x ∈ T \ F4 such that x2 ∈ 〈F4, x〉. By Lemma 5.7 we can put α2 = x. By the
arguments above we know that α2

2 /∈ F4 and that α2
2 + α2 ∈ F4 \ F2, hence (α2

2 + α2)
2 + α2

2 + α2 =
α4
2 + α2 = 1. So, F16 ⊂ Fq equivalently 4 | h, and 〈α1, α2, 1〉 =

〈
α2, α

2
2, 1
〉
equals {x ∈ F16 ⊂ Fq |

Tr16(x) = 0}.
The element α3 ∈ T \ 〈α1, α2, 1〉 must fulfil α2

3 ∈ T , hence α2
3 ∈ 〈α1, α2, 1〉 or α2

3 + α3 ∈ 〈α1, α2, 1〉.
Both conditions imply that α3 ∈ F16. Consequently, T = F16 ⊂ Fq.

(b) For any element x ∈ T \F4 we have x2 /∈ 〈F4, x〉. We know that α2
2 ∈ T and since it is not contained

in 〈α1, α2, 1〉, we can write T =
〈
α1, α2, α

2
2, 1
〉
. Now we must have α4

2 ∈ T . So we can find a, b ∈ F2

and t ∈ F4 such that α4
2 + aα2

2 + bα2 + t = 0. If b = 0, then α2
2 + aα2 + t2 = 0, contradicting the

assumption. If (a, b) = (0, 1), then 0 = (α4
2 + α2 + t)4 + α4

2 + α2 + t = α16
2 + α2 and hence T = F16,

contradicting the assumption.
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So, we may assume that α4
2 + α2

2 + α2 + t = 0 for some t ∈ F4. It follows that (α2 + t2)4 + (α2 +
t2)2 + (α2 + t2) = 0, hence that

0 =
[
(α2 + t2)4 + (α2 + t2)2 + (α2 + t2)

]2
+ (α2 + t2)4 + (α2 + t2)2 + (α2 + t2)

= (α2 + t2)8 + (α2 + t2) .

The element α2 + t2 ∈ T \ F2 is thus a generator of F8. Consequently, on the one hand 3 | h and on
the other hand F8 =

〈
α2 + t2, (α2 + t2)2, 1

〉
⊂ T . So, since also 2 | h, we have 6 | h and since also

F4 ⊂ T , we have that T = 〈F4,F8〉.

2. We assume that F4 6⊂ T . In this case x2 /∈ 〈x, 1〉 for any x ∈ T \ {0, 1}, but by the assumption on T we
have x2 ∈ T . Since also x4 /∈

〈
x2, 1

〉
, we have two possibilities.

(a) There is an element x ∈ T \ {0, 1} such that x4 + x ∈
〈
x2, 1

〉
. By Lemma 4.10 we may assume

without loss of generality that α4
1 + α1 ∈

〈
α2
1, 1
〉
and that α2 = α2

1.

If α4
1 + α1 = 0 or α4

1 + α1 = 1, then we have 〈α1, 1〉 = F4 or
〈
α2
1 + α1, 1

〉
= F4, respectively, a

contradiction. So, α4
1 + α1 = α2

1 or α4
1 + α1 = α2

1 + 1. In both cases we find that
〈
α1, α

2
1, 1
〉
= F8

and hence that 3 | h. The element α3 ∈ T \ F8 either fulfils α2
3 ∈ F8 or α2

3 + α3 ∈ F8. The former
would imply that α3 ∈ F8, a contradiction, so α2

3 + α3 + t = 0 for some t ∈ F8, where Tr8(t) = 1
since otherwise α2

3 + α3 + t = 0 would have a solution α3 in F8. Furthermore, Trq(t) = 0. Since for
t ∈ F8, Trq(t) =

h
3 Tr8(t), we know that 6 | h.

Moreover, from α2
3 + α3 = t it follows that (α3 + α1)

2 + (α3 + α1) = t+ α2
1 + α1, that (α3 + α2

1)
2 +

(α3 + α2
1) = t + α4

1 + α2
1 and that (α3 + α2

1 + α1)
2 + (α3 + α2

1 + α1) = t + α4
1 + α1. The elements

t, t+α2
1+α1, t+α

4
1+α

2
1, t+α

4
1+α1 are the elements of the set {x ∈ F8 | Tr8(x) = 1}, among which is

1. By Lemma 5.7 we can replace α3 by α3+α1, α3+α
2
1 or α3+α

2
1+α1, so without loss of generality

we may assume t = 1. However, now it immediately follows that 〈α3, 1〉 = F4, a contradiction.

(b) For any element x ∈ T \ {0, 1} we have x4 /∈
〈
x, x2, 1

〉
. In particular we have that α4

1 /∈
〈
α1, α

2
1, 1
〉
.

In this case clearly T =
〈
α1, α

2
1, α

4
1, 1
〉
and also α8

1 ∈ T . Hence, there exist a, b, c, d ∈ F2 such that
α8
1 = aα4

1 + bα2
1 + cα1 + d. If c = 0, then α4

1 = aα2
1 + bα1 + d contradicting the assumption. We now

look at all cases with c = 1.

If α8
1 = α1, then α1 generates the subfield F8, and hence α4

1 ∈
〈
α1, α

2
1, 1
〉
, a contradiction. If

α8
1 = α1 + 1, then {x ∈ Fq | x8 + x + 1 = 0} =

〈
α1, α

2
1, α

4
1

〉
⊂ T . Clearly, this set is a coset of F8

(considered as an additive subgroup of Fq). So, T =
〈
α1, α

2
1, α

4
1, 1
〉
contains F8 and we can find an

element in T contradicting the assumption.

If α8
1 = α2

1 + α1, then α
7
1 = α1 + 1. The element α1 thus generates a subfield F128, and so 7 | h. We

find the first example from the third bullet point in the statement of the theorem. If α8
1 = α2

1+α1+1,
then (α1 + 1)8 = (α1 + 1)2 + (α1 + 1) = 0, hence the element α1 + 1 ∈ T generates a subfield F128.
By Lemma 5.7 we find the same conclusion as in the previous case.

If α8
1 = α4

1 + α1, then α7
1 = α3

1 + 1. The element α1 thus generates a subfield F128, and so 7 | h.
If z ∈ F128 is an element admitting z7 = z + 1, then one can check that α1 = z11·2

k

for some
k = 0, . . . , 6. Using Lemmas 5.7 and 5.8 we find the second example from the third bullet point in
the statement of the theorem. If α8

1 = α4
1 + α1 + 1, then (α1 + 1)8 = (α1 + 1)4 + (α1 + 1), hence the

element α1 + 1 ∈ T generates a subfield F128. By Lemma 5.7 we find the same conclusion as in the
previous case.

If α8
1 = α4

1 + α2
1 + α1, then (α2

1 + α1)
4 = α2

1 + α1, hence F4 =
〈
1, α2

1 + α1

〉
⊂ T , a contradiction. If

α8
1 = α4

1+α
2
1+α1+1, then (α4

1+α1)
2 = (α4

1+α1)+1, hence F4 =
〈
1, α4

1 + α1

〉
⊂ T , a contradiction.

We conclude that in all cases we find an admissible tuple corresponding to one of the KM-arcs of type q/16
given in the statement of the theorem. It also follows from the proof that these tuples are indeed admissible.

Remark 5.12. In the case where 7 | h, we have found in the previous theorem that A is PΓL-equivalent to the
KM-arc constructed through Theorem 5.2 using the admissible tuple (z, z2, z4, 1) or to the KM-arc constructed
through Theorem 5.2 using the admissible tuple (z11, z22, z44, 1) with z ∈ F128 admitting z7 = z + 1. We
now check that these two possible KM-arcs, say A1 constructed using (z, z2, z4, 1) and A2 constructed using
(z11, z22, z44, 1), are not PΓL-equivalent.
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Let S1 be the subgroup used in the construction of A1, i.e. the set {x ∈ Fq | Tr(zix) = 0, i = 0, 1, 2, 4},
and let S2 be the subgroup used in the construction of A2, i.e. the set {x ∈ Fq | Tr(zix) = 0, i = 0, 11, 22, 44}.
In order for A1 and A2 to be PΓL-equivalent, there has to exist a collineation mapping the points of A1 on a
q/16-secant of A1 onto the points of A2 on a q/16-secant of A2. This in turn implies that there has to be an

automorphism φ ∈ Aut(Fq) and an element k ∈ Fq such that kSφ
1 = S2. Hence, for such couple (φ, k) we have

〈
z11, z22, z44, 1

〉
= {x ∈ Fq | ∀s ∈ S2 : Tr(sx) = 0} = {x ∈ Fq | ∀s ∈ kSφ

1 : Tr(sx) = 0}
= {x ∈ Fq | ∀s ∈ S1 : Tr(ksφx) = 0} = {k−1yφ ∈ Fq | ∀s ∈ S1 : Tr(sφyφ) = 0}
= {k−1yφ ∈ Fq | ∀s ∈ S1 : Tr(sy) = 0} = {k−1yφ ∈ Fq | y ∈

〈
z, z2, z4, 1

〉
}

= k−1
〈
z, z2, z4, 1

〉φ

Both
〈
z11, z22, z44, 1

〉
and

〈
z11, z22, z44, 1

〉
are contained in F128 ⊆ Fq. Any automorphism of Fq fixes the

subfield F128, hence k ∈ F128 and for the restriction φ′ ∈ Aut(F128) of φ to F128, we have
〈
z11, z22, z44, 1

〉
=

k−1
〈
z, z2, z4, 1

〉φ′

. One can check by computer that there is no couple (φ′, k) ∈ Aut(F128) × F128, hence no
couple (φ, k).

The above theorem makes clear that the construction from Theorem 5.2 can only be applied for specific
values of q. We now look at some small values of q.

Remark 5.13. The construction in Theorem 5.2 requires q > 32, but it can be seen that applying this
construction for q = 32 would yield an elation hyperoval. However, it follows immediately from Theorem 5.11
that there exists no admissible tuple in F

4
32, hence we cannot apply the construction in Theorem 5.2.

By Theorem 5.11 we can, up to PΓL-equivalence, construct a unique KM-arc of type 4 in PG(2, 64) through
the construction in Theorem 5.2. In [16] already a KM-arc of type 4 in PG(2, 64) was described. It can be
checked that this KM-arc is an elation KM-arc. Moreover, the KM-arc described in [16] is PΓL-equivalent to the
KM-arc that can be constructed through Theorem 5.2 using the subgroup 〈F4,F8〉. The automorphism group
G64 of this KM-arc of type 4 in PG(2, 64) has size 192. Its subgroup H64 = G64 ∩ PGL(3, 64) of collineations
with the identity mapping as field automorphism (subgroup of projectivities) has size 32 and its subgroup E64

of elations has size 8. These 8 elations are the ones described by Theorem 5.6. Both the group G64 and the
group H64 have three orbits on the points of the KM-arcs: one orbit containing the four points on the line at
infinity, one orbit containing the 32 points of the KM-arc on the 4-secants with equation Y = aX with a ∈ F8

and one orbit containing the 32 points of the KM-arc on the 4-secants with equation Y = aX with a /∈ F8.
By Theorem 5.11 and Remark 5.12, we know that, up to PΓL-equivalence, we can construct two different

KM-arcs of type 8 in PG(2, 128) through the construction in Theorem 5.2, say A128,1 and A128,2. Denote the
automorphism group of A128,i by G128,i and denote H128,i = G128,i ∩PGL(3, 128), i = 1, 2. The automorphism
groups G128,1 and G128,2 have order 896, and their subgroups H128,1 and H128,2 have order 128. Both the group
G128,i and its subgroup H128,i act transitively on the set of affine points of A128,i, i = 1, 2. It should be noted
that these KM-arcs are not translation KM-arcs, since the respective groups of elations stabilising the KM-arcs
only have size 16 (they equal the subgroup described in Theorem 5.6).

Theorem 5.14. If A is a KM-arc of type q/16 in PG(2, q), q = 2h and h | 4, obtained by the construction in
Theorem 5.2 using an admissible tuple (α1, α2, α3, 1) with 〈α1, α2, α3, 1〉 = F16, then A also arises by applying
Construction 2 (A) in PG(2, 16) on the Lunelli-Sce hyperoval.

Proof. We denote the trace function Fq → F2 by Trq, the trace function F16 → F2 by Tr16 and the trace function
Fq → F16 by Trq,16. Let ζ be a generator of F16 admitting ζ4 = ζ + 1. By Lemma 5.7 we may assume that
αi = ζi, i = 1, 2, 3. Then, (β1, β2, β3) = (ζ2, ζ, 1) admits Tr16(ζ

iβj) = δi,j , i, j ∈ {1, 2, 3} and Tr16(1 · βj) = 0.
Let S be the set {x ∈ Fq | ∀t ∈ F16 : Trq(tx) = 0}.

Let α ∈ F16 be such that {ζ(ζ + 1), ζ2(ζ2 + 1), ζ3(ζ3 + 1), α} is an F2-independent set. Considering F16 as
a subfield of Fq, we may assume that A is given by A = S0 ∪

⋃
v∈F

4

2

Sv with

S0 = {(0, 1, x) | Trq(ζi(ζi + 1)x) = 0, i = 1, 2, 3 ∧ Trq(αx) = 1}
= {(0, 1, x) | Trq(ζix) = 0, i = 0, 1, 2 ∧ Trq(ζ

3x) = 1}
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and

Sλ =

{(
1,

3∑

i=1

λiαi + λ4,

3∑

i=1

fi(λ1, λ2, λ3)βi + s

) ∣∣∣∣∣ s ∈ S

}

=

{(
1,

3∑

i=1

λiζ
i + λ4,

3∑

i=1

fi(λ1, λ2, λ3)ζ
3−i + s

)∣∣∣∣∣ s ∈ S

}

for any λ = (λ1, . . . , λ4) ∈ F
4
2. A is a KM-arc of type q/16 in PG(2, q) with q/16-nucleus (0, 0, 1).

We define the point set H in PG(2, 16) by H = H′ ∪ {(0, 1, 1), (0, 0, 1)} and

H′ =

{(
1,

3∑

i=1

λiζ
i + λ4,

3∑

i=1

fi(λ1, λ2, λ3)ζ
3−i

) ∣∣∣∣∣ (λ1, λ2, λ3, λ4) ∈ F
4
2

}
.

It can readily be checked that H is the Lunelli-Sce hyperoval, having an automorphism group of size 144.
Let k ∈ Fq be such that Trq,16(k) = 1; such an element can always be found. Let I be the additive subgroup

of Fq given by {x | Trq,16(kx) = 0}; it has size q/16. If x ∈ F16 ⊆ Fq admits Trq,16(kx) = 0 then x = 0. So,
I is a direct complement of F16 in Fq. Moreover, for any element x ∈ Fq with Trq,16(kx) = 0 we know that
Trq(ktx) = Tr16(Trq,16(kx)t) = 0, for all t ∈ F16 ⊆ Fq. Hence I equals the set {x | ∀t ∈ F16 : Trq(kxt) = 0}.

We now apply Construction 2 (A) using H and I to construct the KM-arc A′ of type q/16 in PG(2, q). The
point set of A′ is given by S ′

0 ∪
⋃

v∈F
4

2

S ′
v with S ′

0 = {(0, 1, 1 + i) | i ∈ I} and

S ′
(λ1,λ2,λ3,λ4)

=

{(
1,

3∑

i=1

λiζ
i + λ4,

3∑

i=1

fi(λ1, λ2, λ3)ζ
3−i + i

)∣∣∣∣∣ i ∈ I

}

for any (λ1, λ2, λ3, λ4) ∈ F
4
2. We define the KM-arc A′′ in PG(2, q) using the tuple (kζ, kζ2, kζ3, k). Its point

set is given by S ′′
0 ∪

⋃
v∈F

4

2

S ′′
v with

S ′′
0 = {(0, 1, x) | Trq(k2ζix) = 0, i = 0, 1, 2 ∧ Trq(k

2ζ3x) = 1}

and

S ′′
(λ1,λ2,λ3,λ4)

=

{(
1, k

3∑

i=1

λiζ
i + kλ4,

3∑

i=1

fi(λ1, λ2, λ3)ζ
3−i + i

)∣∣∣∣∣ i ∈ I

}

since {x | Trq(kζix) = 0, i = 0, 1, 2, 3} = {x | ∀t ∈ F16 : Trq(ktx) = 0} and Trq((kζ
i)βj) = Tr16(ζ

iζ3−j) = δi,j
for i = 0, 1, 2, 3 and j = 1, 2, 3. Let γ be the collineation induced by the trivial field automorphism and the

matrix C′ = C
(

1 0 0
0 k 0
0 0 1

)
where we interpret C over Fq. It is immediate that

(
S ′
λ

)γ
= S ′′

λ
for all λ ∈ F

4
2.

Furthermore,

(S ′
0)

γ
= {(0, k, 1 + i) | i ∈ I} = {(0, 1, k−1(1 + i)) | ∀t ∈ F16 : Trq(kit) = 0}
= {(0, 1, x) | ∀t ∈ F16 : Trq(k

2xt+ kt) = 0}
= {(0, 1, x) | ∀t ∈ F16 : Trq(k

2xt) = Tr16(t)}
= {(0, 1, x) | Trq(k2ζix) = 0, i = 0, 1, 2 ∧ Trq(k

2ζ3x) = 1}
= S ′′

0

In the penultimate step we used that Trq is F2-linear, that
〈
ζ, ζ2, ζ3, 1

〉
= F16 and that Tr16(1) = Tr16(ζ) =

Tr16(ζ
2) = 0 and Tr16(ζ

3) = 1.
We conclude that A′ = (A′′)γ . We also know that A and A′′ are isomorphic since the tuples (α1, α2, α3, 1)

and (kα1, kα2, kα3, k) give rise to PΓL-equivalent KM-arcs by Lemma 4.10. This proves the theorem.

Remark 5.15. The previous theorem also shows that when applying Theorem 5.2 for q = 16 we get a set of
17 points which forms a hyperoval together with (0, 0, 1). This hyperoval is the Lunelli-Sce hyperoval.

We end this section with a discussion on the existence of KM-arcs of type q/16.
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Remark 5.16. Previously KM-arcs of type q/16 in PG(2, q), q = 2h were known to exist for 4 | h, 5 | h and
6 | h through Constructions 1 and 2 (A), Construction 2 (B) and Construction 2 (C) applied on the example of
a KM-arc of type 4 in PG(2, 64) [16], respectively.

By Theorem 5.11 the construction from Theorem 5.2 can only be applied for 4 | h, 6 | h and 7 | h and given
admissible tuples. The KM-arcs of type 2h−4 in PG(2, 2h) with 4 | h, constructed through Theorem 5.2 using
an admissible tuple (α1, α2, α3, 1) with 〈α1, α2, α3, 1〉 = F16 ⊂ Fq were already known to exist since they are
by Theorem 5.14 PΓL-equivalent to the KM-arcs of type q/16 obtained by applying Construction 2 (A) on a
Lunelli-Sce hyperoval. Note that Construction 2 (A) can also be applied on a regular hyperoval. In this case we
find a translation KM-arc of type q/16, which cannot arise from the construction in Theorem 5.2 by Theorem
5.9.

The KM-arcs of type 2h−4 in PG(2, 2h) with 6 | h, constructed through Theorem 5.2 using an admissible
tuple (α1, α2, α3, 1) with 〈α1, α2, α3, 1〉 = 〈F4,F8〉 ⊂ Fq were already known to exist since they are by Theorem
5.10 and Remark 5.13 PΓL-equivalent to the KM-arcs of type q/16 obtained by applying Construction 2 (C)
on the KM-arc of type 4 in PG(2, 64) described in [16]. Note that no other KM-arcs of type 2h−4 in PG(2, 2h)
with 6 | h, are known (unless h is also a multiple of 4, 5 or 7).

The KM-arcs of type 2h−4 in PG(2, 2h) with 7 | h, constructed through Theorem 5.2 using an admissible
tuple (α1, α2, α3, 1) with 〈α1, α2, α3, 1〉 =

〈
z, z2, z4, 1

〉
⊂ Fq or 〈α1, α2, α3, 1〉 =

〈
z11, z22, z44, 1

〉
⊂ Fq were not

described before, so are two new families of examples (the KM-arcs of both families are inequivalent by Remark
5.12).
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