
Forecasting IT Security Vulnerabilities -
An Empirical Analysis

Emrah Yasasina∗, Julian Presterb, Gerit Wagnera, Guido Schryenc

aDepartment of Management Information Systems, University of Regensburg, Universitätsstraße 31, 93053
Regensburg, Germany

bSchool of Information Systems, UNSW Business School, Kensington NSW 2052, Australia
cFaculty of Business Administration and Economics, Paderborn University, Warburger Strasse 100, 33098

Paderborn, Germany

Abstract

Today, organizations must deal with a plethora of IT security threats and to ensure smooth and

uninterrupted business operations, firms are challenged to predict the volume of IT security vulner-

abilities and allocate resources for fixing them. This challenge requires decision makers to assess

which system or software packages are prone to vulnerabilities, how many post-release vulnerabili-

ties can be expected to occur during a certain period of time, and what impact exploits might have.

Substantial research has been dedicated to techniques that analyze source code and detect security

vulnerabilities. However, only limited research has focused on forecasting security vulnerabilities

that are detected and reported after the release of software. To address this shortcoming, we ap-

ply established methodologies which are capable of forecasting events exhibiting specific time series

characteristics of security vulnerabilities, i.e., rareness of occurrence, volatility, non-stationarity,

and seasonality. Based on a dataset taken from the National Vulnerability Database (NVD), we use

the Mean Absolute Error (MAE) and Root Mean Square Error (RMSE) to measure the forecasting

accuracy of single, double, and triple exponential smoothing methodologies, Croston’s methodology,

ARIMA, and a neural network-based approach. We analyze the impact of the applied forecasting

methodology on the prediction accuracy with regard to its robustness along the dimensions of the

examined system and software package “operating systems”, “browsers” and “office solutions” and

the applied metrics. To the best of our knowledge, this study is the first to analyze the effect

of forecasting methodologies and to apply metrics that are suitable in this context. Our results

show that the optimal forecasting methodology depends on the software or system package, as some

methodologies perform poorly in the context of IT security vulnerabilities, that absolute metrics

can cover the actual prediction error precisely, and that the prediction accuracy is robust within the

two applied forecasting-error metrics.

Keywords: Security vulnerability, Prediction, Forecasting, Competition setup, Time series

∗Corresponding author
Email address: emrah.yasasin@wiwi.uni-regensburg.de (Emrah Yasasina)

Preprint submitted to Computers & Security September 10, 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Regensburg Publication Server

https://core.ac.uk/display/228384478?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

1. Introduction

The impact of information technology (IT) security vulnerabilities can be substantial: In an

industry study, IBM estimates that reputation-related costs resulting from software security vul-

nerabilities which lead to a disruption of business operations range in the millions of dollars per

disruption (IBM Global Study, 2013). The economic consequences of breaches have been exam-5

ined by FireEye, a network security company. Specifically, their data breach cost report for 2016

revealed that 76 % of respondents would take their business away from a vendor that had demon-

strated negligent data handling practices (eWeek, 2016; FireEye, 2016). Similarly, the 2016 Cost of

Data Breach report by the Ponemon Institute and IBM Security showed that the average total cost

of a breach is US$4 million, an increase of 29% since 2013, with disruptions in daily operations being10

the most severe category of impact (Ponemon Institute, 2016). In the aftermath of a breach, firms

are challenged to mitigate the long-term financial impact by restoring customer trust. In essence,

these reports indicate that vulnerabilities pose permanent risks for firms for which they need to be

prepared. These risks are as diverse as they are plentiful, e.g., network attacks (GhasemiGol et al.,

2016), loss or theft of personal data, loss or theft of commercially sensitive information, inopera-15

ble IT systems (making the business unable to function after being hacked), intellectual property

infringement, and extortion, which can lead to serious financial damage (ContractorUK, 2016).

Predictions of the numbers of post-release vulnerabilities are an important input for several

managerial decisions in which avoiding aforementioned damages is a critical objective. Especially,

those that are designed without assuming access to proprietary information, such as code structure20

or software development practices, are needed in a range of situations. First, from the perspective

of organizations developing software, established techniques for predicting and detecting bugs are

complemented by techniques specifically designed for forecasting post-release vulnerabilities (Walden

et al., 2014). In this specific context, vulnerability forecasting methodologies which do not require

analyses of (running) software systems are convenient for developers to avoid degrading service qual-25

ity and to assess vulnerabilities when software systems are not available, e.g., due to maintenance

(Venter and Eloff, 2004). Significant managerial decisions include proactively prioritizing and direct-

ing resources for security inspection, testing, and patching accordingly (Kim et al., 2007; Shin et al.,

2011; Walden et al., 2014; Venter and Eloff, 2004). Predicted numbers of vulnerabilities can also

serve as critical input for strategic decisions on when to release a software product (Kim and Kim,30

2016). Second, from the perspective of organizations managing their software portfolio, numbers of

vulnerabilities expected in external software products inform decisions to acquire, and discontinue

(potentially proprietary) software. In this case, forecasting techniques that do not require access

to the code or other non-public information are the only viable option to forecast vulnerabilities

2

of proprietary software whose code is not publicly accessible (Roumani et al., 2015). Such assess-35

ments of vulnerability offer measures of trustworthiness and security of software products (Kim and

Kim, 2016), which are necessary to evaluate the functional characteristics of software products in

software portfolio management decisions, including selection and discontinuance decisions (Franch

and Carvallo, 2003; Zaidan et al., 2015; Kim et al., 2007). Third, organizations developing apps

and extensions must react to vulnerabilities and corresponding security updates of their underlying40

platform software (Tiwana, 2015), such as browsers and operating systems, extending the rele-

vance of anticipating vulnerability occurrence to resource planning and platform-homing decisions

of third-party developers.

Our study focuses on the research challenge of forecasting the number of post-release security

vulnerabilities in subsequent periods of time. Time-series analyses can be expected to provide a45

viable option for vulnerability predictions for two reasons. First, the rolling-release model adopted

by many software projects, such as the Linux kernel (approx. every 2-3 months), results in the

regular release of revised software that can be subjected to scrutiny and attacked by hackers. Sec-

ond, annual hacker meetings (e.g., DEFCON and Pwn2Own) create regular spikes in vulnerability

searches. Although substantial research on pre-release vulnerability detection has been published50

(Walden et al., 2014), our sample does not provide evidence for declining post-release vulnerabilities

detection rates for software products still under active development. This indicates that despite

evolving techniques for pre-release vulnerability detection, the importance of post-release vulnera-

bility forecasting remains intact. To reliably forecast the number of vulnerabilities for a particular

system or software package, we contend that forecasting methodologies must account for four fun-55

damental properties of security vulnerabilities (Gegick et al., 2009; Joh and Malaiya, 2009): First,

vulnerabilities are rare events (Shin et al., 2011); to be specific, it is not uncommon that no vul-

nerabilities are reported throughout several months. Second, with respect to those months where

vulnerabilities are observed, there are a few periods in which a comparatively high numbers of vul-

nerabilities are reported. For instance, 19 vulnerabilities (CVE-2012-1126 to CVE-2012-1144) were60

reported for the Firefox browser in April 2012 (MITRE Corporation, 2017a), while there were none

in May and June, 2014. Third, time series of vulnerabilities are not necessarily stationary, 1 mean-

ing that they do not have the same expected value and variance at each point in time. One reason

for this is the development of software within the version history. While some versions represent

minor changes, others include substantial changes in the software. For example, the completely over-65

hauled Firefox implemented in the new Quantum version represented major changes in performance

and security. These include a stricter and more confined framework for extensions and additional

1“A time series is stationary if its statistical properties (mean, variance and autocorrelation) are held constant

over time” (Ferreiro, 1987, p. 65).

3

sandboxing (Mozilla, 2017). In our study, we therefore take different versions of each package into

account and examine them separately. Finally, the discovery of vulnerabilities may follow seasonal

patterns, which is explained by the increasing implementation of time-based software release cycles70

(Joh and Malaiya, 2009), and which are becoming the dominant development model in open-source

and proprietary projects. For instance, the Linux project releases new kernels on a regular basis,

while Microsoft follows a time-based model for releasing updates for Windows.

The academic literature dealt with the study of IT security vulnerabilities using regression tech-

niques for prediction (Shin and Williams, 2008; Chowdhury and Zulkernine, 2011; Shin et al., 2011;75

Zhang et al., 2011; Shin and Williams, 2013; Walden et al., 2014), machine learning techniques

(Neuhaus et al., 2007; Gegick et al., 2009; Nguyen and Tran, 2010; Scandariato et al., 2014), statis-

tical analyses with the help of reliability growth models and vulnerability discovery models (Ozment,

2006; Ozment and Schechter, 2006; Joh, 2011), and time series analysis (Roumani et al., 2015; Last,

2016). While an evaluation of these methodologies shows sound performance values, we observe that80

none of these approaches consider methodologies which account for the unique rareness of occurrence

and high volatility of vulnerabilities. Furthermore, only two recent studies (Roumani et al., 2015;

Last, 2016) focus on vulnerability forecasting from a time series perspective. While Roumani et al.

(2015) implemented ARIMA and exponential smoothing, Last (2016) implemented both regression

models (Linear, Quadratic, and Combined) and machine learning techniques to forecast vulnerabil-85

ities of browsers, operating systems, and video players. Both studies show an acceptable fit and can

be helpful to forecast security vulnerabilities. However, the techniques applied in these studies do

not explicitly address the specific properties of security vulnerabilities. Since prediction accuracy

depends on the characteristics of the forecasting methodology, we implement methodologies that

are particularly suitable for the properties of security vulnerability time-series, such as Croston’s90

methodology (Croston, 1972).

Furthermore, the particular system or software package under consideration needs attention, as

different packages have different release cycles and numbers of vulnerabilities that are not taken into

account when not grouped together. It is necessary to differentiate between different versions due to

changes within the development history. We therefore argue that the prediction accuracy depends95

on the system or software packages. For instance, the number of vulnerabilities is related to the

market share and the maturity stage of the product: for example, Alhazmi et al. (2007) point out

that if a system or software starts to attract attention and users start switching to it, the number

of vulnerabilities will increase. Another example is the degree of maturity. A system or software is

likely to have more vulnerabilities in its early stages rather than a mature one which has been used100

and tested for years.

Finally, the usage of suitable accuracy metrics is also a crucial point when examining the forecast

quality. The academic literature provides a lot of accuracy metrics (cf. the literature reviews on

4

accuracy metrics Hyndman and Koehler (2006); Hyndman et al. (2006); Willemain et al. (2004);

Willmott et al. (1985)), but not all are suitable when the time series are zero-inflated. For example,105

prediction accuracy metrics which compute the percentage error of the forecast and actual vulner-

abilities are not adaptable by definition. These metrics produce infinite / undefined values when

there are no actual vulnerabilities reported for time t.

The aforementioned arguments concerning the methodology, object and metrics of vulnerability

prediction result in the research question,110

“How accurately can different forecasting methodologies predict IT security vulnerabilities?”,

for which we analyse the accuracy with regard to its robustness along the dimensions of examined

system and software packages and applied metrics. To the best of our knowledge, this study is the

first that analyses the effect of forecasting methodologies which take into account the uniqueness

and rareness of vulnerability time series and applies forecasting metrics that are suitable in this115

context.

The remainder of the paper is structured as follows: Next, we provide an overview of related

work. In Section 3, we explain our methodology and the data set. In Section 4, we present and

discuss the results of our empirical study. The paper closes with a summary.

2. Research Background120

In this section, we give a short overview of related research by discussing and highlighting current

research streams of IT security vulnerabilities and their forecasting.

2.1. IT Security Vulnerabilities

Currently, there is no standardized definition of the term security vulnerability, and answering

the question “what is a security vulnerability?” remains a challenge (Microsoft Corporation 2015).125

We adopt the terms “vulnerability” and “exposure” of the U.S. MITRE Corporation as “security

vulnerability” for two reasons: First, the “Common Vulnerabilities and Exposures” (CVE) entries

are not only used by many empirical papers (Singh et al., 2016; Johnson et al., 2016; Younis et al.,

2016; Chatzipoulidis et al., 2015; Ozment, 2006; Ozment and Schechter, 2006; Joh, 2011; Wang

et al., 2008; Last, 2016), but also by numerous information security product and service vendors130

(Schryen, 2011, 2009) such as Adobe, Apple, IBM or Microsoft (MITRE Corporation, 2017b); and

second, the definition of vulnerabilities in the context of the CVE program covers weaknesses in

the computational logic found in software and hardware components that, when exploited, result

in a negative impact on confidentiality, integrity, or availability (MITRE Corporation, 2017c). We

therefore adopt the CVE system’s definition of an information security vulnerability being “a mistake135

in software that can be directly used by a hacker to gain access to a system or network” (MITRE

5

Corporation, 2017c). Accordingly, vulnerabilities allow attackers to successfully violate security

policies by, for example, executing commands as another user, reading or changing data despite such

access being restricted, posing as another entity, or conducting a denial of service attack (MITRE

Corporation, 2017c; Telang and Wattal, 2007). A schematic classification of vulnerabilities is shown140

in the figure below.

Vulnerabilities

detected

• pre/post-release
undetected

reported

• internally/publicly
unreported

Investigated
area in this work

Figure 1: Classification of Vulnerabilities (based on Schryen, 2011).

The status of security vulnerabilities offers a useful perspective for classifying extant research

(cf. Figure 1). Since undetected and unreported vulnerabilities cannot be observed, empirical

research generally focuses on the rightmost branch of Figure 1. In this branch of research, which is

a natural complement to the established research stream on software defect detection, most papers145

focus on techniques for detecting vulnerabilities within the software development life cycle (cf.

Walden et al., 2014). This focus on detecting pre-release security vulnerabilities naturally correlates

with internal rather than external reporting. Our work focuses on the incipient research stream

dedicated to forecasting post-release and publicly reported security vulnerabilities (e.g., Roumani

et al., 2015; Walden et al., 2014; Kim and Kim, 2016). In contrast to traditional detection techniques150

implemented in internal software project settings, this research stream generally does not assume

access to proprietary and confidential information such as software code or developer characteristics.

6

2.2. IT Security Vulnerability Forecasting

The following table illustrates the IT security vulnerability forecasting literature:

Table 1: IT Security Vulnerability Prediction Models

Article Applications Predictors Technique Data Source

Regression Techniques

Shin and

Williams (2008)

JavaScript Engine

of Firefox

Code Complexity Logistic Regression Mozilla Foundation

Security Advisories,

Bugzilla

Chowdhury and

Zulkernine (2011)

Firefox Web

Browser

Complexity,

Coupling and

Cohesion

Naive Bayes, Decision

Tree, Random Forest,

Logistic Regression

Mozilla Foundation

Security Advisories,

Bugzilla

Shin et al. (2011) Firefox Web

Browser, Red Hat

Linux Kernel

Complexity,

Code Churn,

Developer

Activity

Logistic Regression Mozilla Foundation

Security Advisories,

Bugzilla, National

Vulnerability Database,

Red Hat Security

Advisory

Smith and

Williams (2011)

WordPress,

WikkaWikki

SQL Hotspots Logistic Regression WordPress,

WikkaWikki

Vulnerability Reports

Zhang et al.

(2011)

Adobe, Internet

Explorer, Linux,

Apple, Windows

Period of Time

between

Vulnerabilities

Linear Regression,

Least Mean Square,

Multi-Layer

Perceptron, RBF

Network, SMO

Regression, Gaussian

Processes

National Vulnerability

Database

Shin and

Williams (2013)

Firefox Web

Browser

Complexity,

Code Churn,

Prior Faults

Logistic Regression Mozilla Foundation

Security Advisories,

Bugzilla

Walden et al.

(2014)

PHPMyAdmin,

Moodle, Drupal

Complexity,

Source Code,

Vulnerability

Locations

Random Forest National Vulnerability

Database, Project

Announcements

Machine Learning

Neuhaus et al.

(2007)

Mozilla Project Imports and

Function Calls

SVM Mozilla Foundation

Security Advisories,

Bugzilla

Gegick et al.

(2009)

Cisco Software

System

Non-Security

Failures

Classification and

Regression Tree Models

Cisco Fault-Tracking

Database

7

Nguyen and Tran

(2010)

JavaScript Engine

of Firefox

Component

Dependency

Graphs

Bayesian Network,

Naive Bayes, Neural

Networks, Random

Forest, SVM

Mozilla Foundation

Security Advisories,

Bugzilla

Scandariato et al.

(2014)

Android

Applications

Text Mining of

Java Code

Decision Trees,

k-Nearest Neighbor,

Naive Bayes, Random

Forest, SVM

Source Code of Used

Applications with

Fortify Source Code

Analyzer

Statistical Models

Ozment (2006) OpenBSD Number of

Failure Data

Reliability Growth

Models

OpenBSD Web Page,

ICAT, Bugtraq,

OSVDB, ISS X-Force

Ozment and

Schechter (2006)

OpenBSD Time between

Failures

Statistical Code

Analysis, Reliability

Growth Models

OpenBSD web page,

ICAT, Bugtraq,

OSVDB, ISS X-Force

Joh (2011) Windows XP, OS X

10.6, IE 8, Safari

Number of

Vulnerabilities

Vulnerability Discovery

Models

NVD, Secunia, OSVDB

Time Series Analysis

Last (2016) Different Browsers,

Operating Systems,

Video Players

Number of

Vulnerabilities

Regression Models,

Machine Learning

National Vulnerability

Database

Roumani et al.

(2015)

Chrome, Firefox,

IE, Safari, Opera

Number of

Vulnerabilities

ARIMA, Exponential

Smoothing

National Vulnerability

Database

The above table shows that the extant literature mainly uses regression techniques for prediction155

(Shin and Williams, 2008; Chowdhury and Zulkernine, 2011; Shin et al., 2011; Zhang et al., 2011;

Shin and Williams, 2013; Walden et al., 2014). For instance, Shin and Williams (2008) adopted code

complexity that differentiate between vulnerable functions and investigated whether code complexity

can be useful for vulnerability detection. The results indicate that complexity can predict vulnera-

bilities at a low false positive rate, but at a high false negative rate. In a similar work, Shin et al.160

(2011) examined whether complexity, code churn, and developer activity can be used to distinguish

vulnerable from neutral files, and to forecast vulnerabilities. Shin and Williams (2013) showed that

fault and vulnerability prediction models provide good accuracy in forecasting vulnerable code loca-

tions across a wide range of classification thresholds. Chowdhury and Zulkernine (2011) developed

an approach to automatically predict vulnerabilities based on historical data, complexity, coupling,165

and cohesion by using four alternative statistical and data mining techniques. The results indicate

that structural information from the non-security realm such as complexity, coupling, and cohesion

is useful in vulnerability prediction. In their study, they were able to predict approximately 75 % of

the vulnerable-prone files. Walden et al. (2014) compared the vulnerability prediction effectiveness

based on complexity, source code, and vulnerability locations in the source code for the forecast of170

8

vulnerable files. They showed that text mining provides a high recall for PHPMyAdmin, Moodle,

and Drupal code analysis.

Other than approaches using mainly regression techniques, there are alternative predictors and

techniques used as well. For example, Smith and Williams (2011) analyzed whether SQL hotspots

provide a useful heuristic for the prediction of web application vulnerabilities. Their analysis reveals175

that the more SQL hotspots a file contains per line of code, the higher the probability that this file

will contain vulnerabilities. Neuhaus et al. (2007) introduced a support vector machine (SVM) based

tool that achieved high accuracy in predicting vulnerable components in software code based on

imports and function calls. Furthermore, Gegick et al. (2009) created a classification and regression

tree model to determine the probability of a component having at least one vulnerability. The180

evaluation shows that non-security failures provide useful information as input variables for security-

related prediction models. Nguyen and Tran (2010) demonstrated that dependency graphs are

another viable option to predict vulnerable components, while Scandariato et al. (2014) used the

source code of Android applications as input for text mining approaches, statistical methodologies,

and artificial intelligence techniques to determine which components of a project are likely to contain185

vulnerabilities. After validating their approach by applying it to various Android applications, they

determined that a dependable prediction model can be built.

Statistical models were also used to examine vulnerability predictions. For instance, (Ozment,

2006; Ozment and Schechter, 2006) used reliability growth models, and statistical analyses showed

that these have acceptable one-step-ahead predictive accuracy for the set of independent data points.190

Joh (2011) applied vulnerability discovery processes in major web servers and browsers: The analyses

show reasonable prediction capabilities for both time-based and effort-based models for datasets from

Web servers and browsers.

More recently, time series analysis has also been used to forecast the number of vulnerabilities.

For example, Roumani et al. (2015) considered time series models (ARIMA, exponential smoothing)195

for the prediction of security vulnerabilities. The results reveal that time series models provide a

good fit and can be helpful to predict vulnerabilities. Last (2016) analyzed the forecast of vulnera-

bilities from different browsers, operating systems, and video players using both regression models

(Linear, Quadratic, and Combined) and machine learning techniques. The evaluation of these

methodologies indicates significant predictive performance in forecasting zero-day vulnerabilities.200

However, a more detailed analysis of these approaches uncovers three issues: First, the literature

on predicting the number of IT security vulnerabilities from a time series approach is rather sparse;

second, predictions on which software components are more likely to be vulnerable do not provide

insights into the volume of vulnerabilities that will occur; and third, none of these research foci

address the uniqueness of vulnerabilities, namely, rareness of their occurrence and high volatility (as205

noted in Section 1). We therefore concentrate on predicting the number of IT security vulnerabilities

9

from a time series perspective, taking into account methodologies and accuracy metrics that are

suitable for these two properties inter alia. The next section explains the different methodologies

and accuracy metrics used in this study.

3. Methodology and Data210

In this section, we motivate and outline the forecast methodologies implemented in our study

and introduce a consistent notation (Subsection 3.1), presenting accuracy metrics to compare the

different forecast approaches which are suitable in the context of security vulnerability forecasting

(Subsection 3.2). Finally, we describe the data set in terms of analyzed software systems (Subsection

3.3).215

3.1. Forecasting Methodology

In line with the study of Nikolopoulos et al. (2016), we implement a multiple forecasting approach,

in which we compare several forecasting methodologies and evaluate their performance in terms of

forecasting accuracy.

We forecast time series of monthly security vulnerabilities using the forecasting horizons of one,220

two, and three months. We then evaluate the results against a test set of held out security vul-

nerability data. Time-series forecasting approaches are organized in five main research streams:

(Exponential) Smoothing methodologies, regression methodologies, (advanced) statistical models,

neural networks, and (other) data mining algorithms (Wang et al., 2009). We refer to Chatfield

(2000), who identifies key aspects which need to be considered when choosing a forecasting method-225

ology. These include the properties of the time series being forecasted and the forecast accuracy of

the method.

In our study, we use two types of forecasting methodologies. The first group of forecasting

methodologies we use are not specifically designed for the purpose of zero-inflated time series.2

However, these methodologies are used widely in both practice and academic literature, and very230

recently for predicting the number of IT security vulnerabilities (Roumani et al., 2015). These

forecasting methodologies within this first group comprise single, double, and triple exponential

smoothing methodologies (SES, DES, and TES), which are also referred to as single exponential,

Holt’s linear trend method, and Holt-Winter’s method. In addition, we implement an ARIMA based

approach, which is an advanced statistical model.235

Regarding our context, time series of IT security vulnerabilities differ from conventional series

in the respect that they have multiple periods of zero values. Forecasting methodologies that are

2Zero-inflated time series are time series which contain a lot of zero values and show a high volatility when a value

occurs.

10

appropriate for zero-inflated time series are thus especially suitable in our context (Ogcu Kaya and

Demirel, 2015). Such time series with a lot of zero values are well-known in intermittent demand

analysis: Many scholars have recognized and contributed to the problems of predicting infrequent240

and irregular demand patterns, i.e., the observed demand during many periods is zero, interspersed

by occasional periods with irregular non-zero demand (Johnston and Boylan, 1996).

We therefore use a second group of forecasting methodologies that are designed for the purpose

of handling such time series. In particular, we apply Croston’s methodology and a Neural Net-

work based approach. Croston (1972) highlighted the inadequacies of common methodologies for245

intermittent demand forecasting and developed a method, which is one of the widely used forecast-

ing methodologies for intermittent demand (Shenstone and Hyndman, 2005; Syntetos et al., 2015).

From a methodological point of view, it is built upon the estimation from the demand size and

inter-arrival rate: The original time series is decomposed into a time series without zero values and

a second one that captures durations of zero valued intervals (Herbst et al., 2014). In addition,250

we want to shed light on the following methodological association with Croston’s methodology and

SES: When data is aggregated, i.e., if in our case we had grouped the different versions together,

the zero-inflation of the data would have been decreased. In the academic literature, it is discussed

that such an aggregation could lead to time series containing no zero values for the higher aggrega-

tion levels (where the mean intermittent demand interval will be equal to unity) (Petropoulos and255

Kourentzes, 2015). In this particular case, Croston’s methodology is equivalent to SES in the case

where all periods have non-zero demands and the literature suggests using SES instead (Petropoulos

and Kourentzes, 2015). However, as we separated different versions of software and system pack-

ages, this is not the case for our data. We therefore include Croston’s methodology. Furthermore,

the suitability of Croston’s methodology for such time series has been empirically shown. It per-260

forms more effectively in forecasting zero-inflated and intermittent demand time series data (e.g.,

Kourentzes (2013); Gutierrez et al. (2008)). For example, Willemain et al. (1994) have demon-

strated that Croston’s methodology gives superior forecasts to some competing methodologies when

predicting zero-inflated time series.

Besides Croston’s methodology, we use a Neural Network-based approach that “are used to265

provide dynamic demand rate forecasts, which do not assume constant demand rate in the future

and can capture interactions between the non-zero demand and the inter-arrival rate of demand

events” (Kourentzes, 2013, p. 198). Kourentzes (2013) have shown evidence for the applicability of

neural network approaches in predicting zero-inflated time series. We therefore include both Cros-

ton’s methodology and artificial neural networks, which better address the specific characteristics270

of security vulnerability time series data.

The predicted outcome variable ŷt+h|t, used throughout the paper, is defined as the forecasted

value ŷ at time (t + h), where t is the starting time and h the proposed forecast horizon. In our

11

study, we test three different forecasting horizons covering short (one month, h = 1), medium (two

months, h = 2), and long (three months, h = 3) time frames.275

3.1.1. Exponential Smoothing Methodologies

Single Exponential Smoothing

The idea behind SES is to weigh the most recent observations against the observations from the

more distant past using the parameter α. Forecasts are calculated using weighted averages where

the weights decrease exponentially as observations lie further in the past. In other words, smaller280

weights are associated with older observations. SES only depends on the linear parameter lt, which

denotes the level of the series at time t. Due to this definition, SES predicts every value into the

future with the same value, derived from the last observed level. Our outcome variable can in this

case be described as ŷt+1|t. For smaller values of α more weight is given to the observations from

the more distant past. The equation for single exponential smoothing is listed as the following:285

ŷt+h|t = ŷt+1|t = lt (1)

lt = αyt + (1− α)lt−1

Double Exponential Smoothing

Single exponential smoothing can be extended to allow forecasting of data with a linear trend,

which is called the double exponential smoothing method. This was carried out by Charles C. Holt

in 1957. This method is slightly more complicated than the original one without trend. In order to

add the trend component to the outcome variable ŷt+1|t the term bt, which denotes the slope of the

time series at time t:

ŷt+h|t = lt + hbt (2)

lt = αyt + (1− α)(lt−1 + bt−1)

bt = β(lt − lt−1) + (1− β)bt−1

While Parameter lt still denotes the level, bt represents the slope of the time series. The weight

β is used to weigh the slope between the two most recent observations against the observations from

the more distant past using the parameter α.

Triple Exponential Smoothing290

This approach is an extension of DES, with added seasonality often referred as triple exponential

smoothing (TES). There are three components in this model (cf. Equation 3). As in the previous

model, the first denotes the level while the second represents the trend component. In TES, the

12

third term st denotes the seasonality component. The outcome variable ŷt+1|t can thus be defined

as follows:

ŷt+h|t = lt + hbt + st+hm−m (3)

lt = α(yt − st−m) + (1− α)(lt−1 + bt−1)

bt = β(lt − lt−1) + (1− β)bt−1

st = γ(yt − lt−1 − bt−1) + (1− γ)st−m

Where hm = [(h− 1) mod m] + 1, which ensures that the estimates of the seasonal parameters

came from the correct season.

While Parameter lt and bt are analogously defined as SES and DES, the weight γ is introduced

to weigh the seasonality component over the m most recent time periods.

3.1.2. ARIMA295

In an Auto Regressive Integrated Moving Average (ARIMA) model, the future value of a variable

is assumed to be a linear function of several past observations and random errors. ARIMA models

combine differencing with auto-regression and a moving average model. We used the ARIMA(p, d, q)

model where p is the order of the autoregressive part, d is the degree of first differencing involved,

and q is the order of the moving average part. The general equation of an ARIMA(p, d, q) model is

the following (Der Voort et al., 1996):

ŷ′t+h|t = c+ Φ1y
′
t + Φ2y

′
t−1 + . . .+ Φpy

′
t−p + θ1et−1 + θ2et−2 + . . .+ θqet−q + et (4)

where yt denotes the number of vulnerabilities at time t, ŷt+h|t is the forecast of the time series y. c is

a constant and Φp are the coefficients (to be determined by the model) of the autoregressive model.

et is a zero mean white noise error factor, and together with the coefficients, θq forms the moving

average terms. Since stationarity is a requirement for ARIMA forecasting models and security

vulnerabilities have been found to be non-stationary (Arora et al., 2006, 2010), we appropriately300

transformed the data using differentiation. With this, ŷ′t+h|t and y′t are the differenced series (degree

of differentiation depending on d).

3.1.3. Croston’s Methodology

In order to account for the characteristic properties of security vulnerability time series data,

we chose Croston’s methodology as an additional forecasting methodology, specifically the bias ad-

justed version of Croston’s methodology developed by Syntetos and Boylan (1999). The method

of Croston (1972) separately forecasts the non-zero periods’ magnitudes and the inter-arrival time

between successive non-zero periods using SES. ŷt+h|t is then defined as the forecasted mean of

security vulnerabilities. This method basically decomposes the intermittent vulnerabilities into two

13

parts: the number of non-zero vulnerabilities ẑt+h|t and the time interval between those vulnera-

bility periods v̂t+h|t, and then applies the single exponential smoothing on both parts. Croston’s

methodology uses only one weight parameter α for both SES parts; therefore, ŷt+h|t, the estimate

of mean non-zero vulnerabilities at time t, is defined as follows:

ŷt+h|t =
ẑt+h|t

v̂t+h|t
(5)

ẑt+h|t =

zt if yt = 0

αyt + (1− α)zt if yt 6= 0

v̂t+h|t =

vt if yt = 0

αyt + (1− α)ŷt if yt 6= 0

Croston’s methodology is widely used in the intermittent demand forecasting. Furthermore “the

standard method to be used in the industry nowadays, being implemented in many ERP systems and305

dedicated forecasting software” (Petropoulos et al., 2016).

3.1.4. Neural Network

The last method, which makes use of neural networks (Nnet), is also particularly useful when

dealing with zero-inflated time series. It has been used extensively to predict lumpy and intermittent

demand and has shown good accuracy (Gutierrez et al., 2008; Kourentzes, 2013; Amin-Naseri and310

Tabar, 2008). We applied a feed-forward neural network with a single hidden layer. While J

denotes the number of time series observations used as input pj for the neural network, the number

of forecasted security vulnerabilities ŷt+h|t are defined as follows:

ŷt+h|t = β0 +

I∑
i=1

βig

γ0j +

J∑
j=1

γijpj

 (6)

where w = (β,γ) are the weights of the network with β = [β1, ..., βI] and γ = [γ11, ..., γIJ] for

the output and the hidden layers respectively. The β0 and γ0j are the biases of each neuron, which315

function as the intercept in a regression for each neuron. I is the number of hidden nodes in the

network and g(·) is a non-linear transfer function, which in our case is the sigmoid logistic function

and provides the nonlinear capabilities to the model.

3.2. Accuracy Metrics

The literature on accuracy metrics can be divided into four types of forecasting error metrics3320

(Hyndman et al., 2006): Absolute metrics such as the mean absolute error (MAE) or root mean

3Note that we cannot determine true/false positive rates, since the number of vulnerabilities per month is not a

binary outcome.

14

square error (RMSE), percentage-error metrics such as the mean absolute percent error (MAPE)

or mean arctangent absolute percentage error (MAAPE), relative-error metrics, which average the

ratios of the errors from a designated method to the errors of a naive method (e.g., Median Relative

Absolute Error (MdRAE)), and scale-free error metrics, which express each error as a ratio to an325

average error from a baseline method (Mean Absolute Scaled Error (MASE)).

From the above-mentioned accuracy metrics, percentage-error metrics, relative-error metrics,

and the mean absolute scaled error are not suitable for the following reasons: As we deal with zero-

inflated time series, percentage-error metrics such as the MAPE are not well-defined, i.e., MAPE has

the significant disadvantage of producing infinite or undefined values for zero or close-to-zero actual330

values (Kim and Kim, 2016). Other percentage-error metrics which were developed for zero-inflated

time series have other drawbacks. For instance, although MAAPE is being designed for the purpose

of intermittent demand forecasting (Kim and Kim, 2016), it is in itself not sufficient for interpreting

the forecasting accuracy due to its definition drawback: Regardless of the prediction, it maps every

value to the worst value of π
2 when the actual value is zero (yt = 0).335

Relative-error metrics have similar shortcomings because it would involve division by zero and

therefore is not adaptable to zero-inflated time series as well (Hyndman et al., 2006). The fourth

group of metrics, the mean absolute scaled error, is also not suitable in our context, as we applied a

rolling origin forecasting evaluation. Due to this, it is not usable in our context as the denominator

becomes indefinite. To sum up, neither of these metrics is appropriate for zero-inflated time series340

because zero observations may yield division by zero problems (Syntetos and Boylan, 2005).

Therefore and in line with other studies (e.g., Arora and Taylor (2016); Taylor and Snyder (2012);

Zhao et al. (2014)), in this study we use absolute forecast accuracy metrics due to the following

reasons: First, both the mean absolute error (MAE) and the root mean square error (RMSE) can

reflect the prediction accuracy of zero-inflated time series. Second, both accuracy metrics are widely345

used in the forecasting literature, and third, absolute error metrics are calculated as a function of

the forecast errors so that we can interpret the deviation in alignment with the structure of the

time series. In the academic literature, a combination of metrics of MAE and RMSE is suggested

to assess the model performance (Chai and Draxler, 2014). In the next subsection, we explain the

MAE and the RMSE, and in Subsection 3.2.3, we associate the accuracy metrics and time series350

structure in order to interpret the MAE and RMSE values.

3.2.1. Accuracy Metric: Mean Absolute Error

In order to capture the absolute forecasting error and to interpret our results, we assessed the

Mean Absolute Error (MAE). The MAE is one of the most commonly used metric for evaluating

the absolute error, defined as the average of the absolute errors between the measured and predicted355

values (Gospodinov et al., 2006):

15

MAE =
1

N

N∑
t=1

(|yt − ŷt|) . (7)

The MAE is a scale-dependent accuracy metric and uses the same scale as the data being

measured (Hyndman et al., 2006). As our datasets contain only IT security vulnerabilities, we

can compare the absolute forecast errors between the different versions of software and system

application packages.360

A value of 0 means a perfect forecast accuracy: All predicted values are equal to the real values.

To give a sense for interpretability, we want to provide some examples for MAE as well with the

same examples we used previously for explaining MAE’s values.

Let us assume that the number of actually published security vulnerabilities during a period t

equals yt = 10. Let us further assume that the number of predicted vulnerabilities equals ŷt = 11.365

As we have only one observation, the value of MAE would get a value of 1, which is close to its

theoretical minimum of 0.

Let us now assume that the number of actually published security vulnerabilities during a period

t equals yt = 5. Let us further assume that the number of predicted vulnerabilities equals 100, i.e.,

ŷt = 100. As we have only one observation, the value of MAE would get a value of 95. However,370

regarding MAE, the value of 95 is not enough to solely explain the interpretability of MAE, which

we want to highlight with the following example: If the actually published security vulnerabilities

during a period t had been yt = 10000 and the predicted vulnerabilities equaled 10095, the MAE

would still have been 95 but on a reasonable fit as we had only an overestimation of 0.95%, while in

the first scenario we had an overestimation of 95%. These examples show that for the interpretability375

of MAE, we must associate the MAE value with the actual published security vulnerabilities as MAE

is a sum of error terms et : R≥0 → R≥0 for t ∈ N with et : (|yt − ŷt|).

3.2.2. Accuracy Metric: Root Mean Square Error

We further assessed the Root Mean Square Error (RMSE) in order to capture the absolute

forecasting error and to interpret our results. The RSME is also one of the most commonly used380

metric for evaluating the absolute error and is defined as

RMSE =

√∑N
t=1 (yt − ŷt)2

N
. (8)

The RMSE is similar to the MAE a scale-dependent accuracy metric and uses the same scale as

the data being measured (Hyndman et al., 2006). A value of 0 means a perfect forecast accuracy:

All predicted values are equal to the real values. Mathematically spoken, RMSE is a mapping of

error terms et : R≥0 → R≥0 for t ∈ N with et : (yt − ŷt)2.385

16

3.2.3. Accuracy Metrics and Time Series Structure

We explained in the Subsections 3.2.1 and 3.2.2 how MAE and RMSE are defined. Comparing

both metrics, MAE is less sensitive to extreme values than RMSE (Li and Heap, 2011; Willmott,

1982; Willemain et al., 2004). When the differences between the MAE and RMSE are close to each

other, it means that very large errors are unlikely to have occurred (Li and Shi, 2010). The academic390

literature does not provide exact ranges for both the MAE and RMSE, as acceptable values depend

on the underlying context (Willmott and Matsuura, 2005). However, in general, low values close

to the theoretical minimum of zero are considered to be good (Chaplot et al., 2000). We can use

both the MAE and RMSE to give a sense of the interpretability and the relation of both accuracy

metrics regarding the predicted and the actual values. Consider the following exemplary time series395

of vulnerabilities by assuming y the actual published and ŷ the predicted vulnerabilities in the time

frame {t = 1 . . . 6}:

Table 2: Example of Actual Published and Predicted Vulnerabilities.

t t = 1 t = 2 t = 3 t = 4 t = 5 t = 6

y 0 0 1 0 5 0

ŷ 0 0 0 2 5 0

A closer look at the predicted values in this example reveals that only in t = 3 and t = 4 we

have a slight mismatch between the actual and the predicted values with one being underestimated

(y3 = 1 and ŷ3 = 0) and an overestimation in t4 with y4 = 0 and ŷ4 = 2. All in all, the forecasted400

values are good, which is reflected in the value of MAE and RMSE. The computation shows that

MAE is rather low with 0.5 and is close to its theoretical minimum. The RMSE’s value is 0.91 and

is very low as well, and is close to its theoretical minimum. In this example, the mean of the actual

published vulnerabilities is 1.0 and the mean of the predicted vulnerabilities is 1.17. Comparing

the means with the MAE and RMSE values, it shows that there is a good fit of the predicted405

vulnerabilities.

We can state that a low mean of actual published vulnerabilities over a wide time frame (e.g., 5

years) indicates that the time series contains a lot of zero values. Using MAE and RMSE ensures

that we reflect upon the prediction accuracy in a meaningful manner. A low MAE and RMSE close

to the mean of the actual vulnerabilities shows that there is a good fit of the prediction method.410

On the other hand, a high MAE and RMSE, which means that they are greater than the mean of

the actual vulnerabilities, indicates that the deviation of the predicted vulnerabilities is high and

the prediction accuracy rather poor.

17

3.3. Dataset: National Vulnerability Database

We select a dataset from the National Vulnerability Database (NVD),4 which provides a com-415

prehensive list of unique vulnerability and exposure data and maps it to corresponding system

or software package (Martin, 2001). The NVD is a freely available US government data source

maintained by the National Institute of Standards and Technology (NIST). Since its launch in

1997, it has reported standardized information about almost 80,000 software vulnerabilities. Al-

though other security vulnerability databases do exist, which are often community projects, such as420

Vulners (www.vulners.com), The Exploit Database (www.exploit-db.com), or Packet Storm’s Vul-

nerability Database (www.packetstormsecurity.com), the NVD database still remains widely used

and the most exhaustive resource for security vulnerability data. The dataset has been shown to be

particularly useful for “understanding trends and patterns in software vulnerabilities, so that one can

better manage the security of computer systems that are pestered by the ubiquitous software security425

flaws” (Zhang et al., 2011).

Table 3 shows a description of the application domains5 and corresponding software and system

packages covered in our analysis. Within these application domains, we analyze a balanced mix of

closed source and open source software packages comprising the most prevalent software solutions

in terms of market share. Our dataset covers the time period from January 2002 to June 2016.430

We further distinguish the system and software packages along their major version releases, since a

package’s version can serve as a reliable predictor for its vulnerability discovery rate (Alhazmi et al.,

2005). We use the version numbers provided by the NVD database for each security vulnerability and

group them by their major releases. Since the objective of our paper is to forecast recently appearing

security vulnerabilities we focus on the root version of the software product where the vulnerability435

first appeared. Some vulnerabilities remain unpatched over multiple software versions and are

therefore listed under multiple versions in the NVD dataset. Despite the fact that this total number,

as reported on the NVD website, accurately reflects the number of vulnerabilities present in a

specific software product and version, we filter for the number of uniquely originating vulnerabilities.

Although this approach results in different sample sizes, we avoid aggregating multiple versions of a440

particular package to account for the individual vulnerability characteristics of each major version.6

Finally, the vulnerabilities were aggregated per month to generate an adequate dataset for our

analysis.

4The NVD-XML-Files are available at https://nvd.nist.gov/download.cfm.
5Note that we do not use the application domains to predict or explain vulnerabilities. Instead, the grouping

should allow for more convenient comparisons of related software products.
6An exception to this are the Firefox versions starting from version 7 and Thunderbird versions since the versioning

of these products does not reflect major changes in steps from one version to another. We labeled these as “rolling

versions”.

18

Table 3: Description of the Software and System Package

Application Domain Software / System Package Release Date Open Source

Browser Mozilla Firefox 2002 Yes

Browser Google Chrome 2008 Partially

Browser Internet Explorer 1995 No

Browser Safari 2003 No

Office Microsoft Office 1990 No

Office Thunderbird 2004 Yes

OS Mac OS X 2001 No

OS Ubuntu 2004 Yes

OS Microsoft Windows 1985 No

Table 4 shows the descriptive statistics of the used software and system packages.

Table 4: Descriptive Statistics

Software / System Package Version Time Frame Vulnerabilities Monthly Average

Firefox v0 01/08/04 - 01/06/16 74 0.52

v1 01/12/04 - 01/06/16 119 0.86

v2 01/08/05 - 01/06/16 61 0.47

v3 01/12/06 - 01/06/16 117 1.026

v7 01/11/11 - 01/06/16 110 2

v8 rolling 01/12/11 - 01/06/16 196 3.63

Google Chrome v1 01/09/08 - 01/06/16 86 0.92

v2 01/05/10 - 01/06/16 458 6.27

v3 01/05/11 - 01/06/16 499 8.18

v4 01/04/15 - 01/06/16 168 12

Internet Explorer v5 01/03/99 - 01/06/16 157 0.76

v6 01/04/98 - 01/06/16 373 1.71

v7 01/12/05 - 01/06/16 31 0.25

v8 01/05/08 - 01/06/16 99 1.02

v9 01/06/11 - 01/06/16 288 4.8

v10 01/03/13 - 01/06/16 77 1.97

v11 01/12/13 - 01/06/16 152 5.07

Mac OS X v0 01/07/01 - 01/06/16 174 4.83

v2 01/12/02 - 01/06/16 36 0.22

v3 01/11/03 - 01/06/16 53 0.35

19

Table 4: Descriptive Statistics

Software / System Package Version Time Frame Vulnerabilities Monthly Average

v4 01/06/05 - 01/06/16 137 0.79

v5 01/11/07 - 01/06/16 130 1.26

v6 01/03/10 - 01/06/16 22 0.29

v8 01/03/13 - 01/06/16 82 2.10

v9 01/11/13 - 01/06/16 50 1.61

v10 01/11/14 - 01/06/16 51 0.25

v11 01/09/15 - 01/06/16 140 15.56

MS Office 2001 01/12/99 - 01/06/16 16 0.08

2003 01/03/06 - 01/06/16 136 1.11

2010 01/11/10 - 01/06/16 34 0.51

Safari v1 01/06/03 - 01/06/16 20 0.13

v2 01/07/05 - 01/06/16 20 0.15

v3 01/06/07 - 01/06/16 214 1.98

v4 01/02/09 - 01/06/16 91 1.03

v6 01/06/13 - 01/06/16 27 0.75

v7 01/03/14 - 01/06/16 71 2.63

v8 01/11/14 - 01/06/16 78 4.11

v9 01/12/15 - 01/06/16 17 2.83

Thunderbird rolling 01/08/04 - 01/06/16 116 0.82

Ubuntu v11.04 01/09/08 - 01/06/16 17 0.18

v12.04 01/05/12 - 01/06/16 94 1.92

v14.04 01/05/14 - 01/06/16 54 2.16

Windows XP 01/11/01 - 01/06/16 166 0.95

Vista 01/02/07 - 01/06/16 40 0.36

7 01/06/07 - 01/06/16 105 0.97

4. Empirical Results and Discussion445

We predicted the number of IT security vulnerabilities based on the forecasting methodologies

implemented in the R package “forecast” (Hyndman, 2017).

4.1. Results

Since forecasting research has shown that long-term forecasts are generally limited in their pre-

dictive accuracy, we evaluated our methodologies on relatively short time frames forecasting one,450

20

two, and three months ahead into the future (Leitch and Ernesttanner, 1995; Öller and Barot, 2000).

We could not find any substantial differences in forecasting accuracy between the shorter forecasting

horizons of one or two months in comparison to the longer one of three months. Apart from the

findings of prior research and the results of our own analysis, we consider a three-month forecasting

horizon to strike a reasonable balance between having enough time to react and having accurate455

prediction accuracies for decision makers. Throughout the paper, forecasting accuracy (MAE and

RMSE) is therefore reported for the entire time frame available (cf. Table 4). Figures 2 to 18 present

the overall prediction accuracy (MAE and RMSE) for the analyzed software and system packages.

The figures are grouped according to application domains to facilitate comparisons between related

software products. We show data that is subdivided into the major versions (x-axis) for the fore-460

casting horizon of three months.7 The absolute metrics’ scores are aggregated for the whole time

frame as described in Table 4. The performance for the forecasting methodologies and the different

versions of the system and software packages is provided in Table 5, 6, and 7.

Safari Internet Explorer

Firefox Google Chrome

Sa
fa

ri
1

Sa
fa

ri
2

Sa
fa

ri
3

Sa
fa

ri
4

Sa
fa

ri
6

Sa
fa

ri
7

Sa
fa

ri
8

Sa
fa

ri
9

In
te

rn
et

Exp
lo
re

r
5

In
te

rn
et

Exp
lo
re

r
6

In
te

rn
et

Exp
lo
re

r
7

In
te

rn
et

Exp
lo
re

r
8

In
te

rn
et

Exp
lo
re

r
9

In
te

rn
et

Exp
lo
re

r
10

In
te

rn
et

Exp
lo
re

r
11

Fire
fo
x

0

Fire
fo
x

1

Fire
fo
x

2

Fire
fo
x

3

Fire
fo
x

7

Fire
fo
x

ro
lli

ng

G
oo

gl
e
C
hr

om
e
1

G
oo

gl
e
C
hr

om
e
2

G
oo

gl
e
C
hr

om
e
3

G
oo

gl
e
C
hr

om
e
4

2

10
20

40

2

10
20

40

Method

SES

DES

TES

Croston

Arima

NNet

Figure 2: Prediction Accuracy (MAE) for Browsers, h=1 (month)

7Note that the time frame of three months (h=3) means that vulnerabilities were summed up quarterly. The

prediction pertains to the next quarter.

21

Safari Internet Explorer

Firefox Google Chrome

Sa
fa

ri
1

Sa
fa

ri
2

Sa
fa

ri
3

Sa
fa

ri
4

Sa
fa

ri
6

Sa
fa

ri
7

Sa
fa

ri
8

Sa
fa

ri
9

In
te

rn
et

Exp
lo
re

r
5

In
te

rn
et

Exp
lo
re

r
6

In
te

rn
et

Exp
lo
re

r
7

In
te

rn
et

Exp
lo
re

r
8

In
te

rn
et

Exp
lo
re

r
9

In
te

rn
et

Exp
lo
re

r
10

In
te

rn
et

Exp
lo
re

r
11

Fire
fo
x

0

Fire
fo
x

1

Fire
fo
x

2

Fire
fo
x

3

Fire
fo
x

7

Fire
fo
x

ro
lli

ng

G
oo

gl
e
C
hr

om
e
1

G
oo

gl
e
C
hr

om
e
2

G
oo

gl
e
C
hr

om
e
3

G
oo

gl
e
C
hr

om
e
4

0

5

10

15

0

5

10

15

Method

SES

DES

TES

Croston

Arima

NNet

Figure 3: Prediction Accuracy (RMSE) for Browsers, h=1 (month)

Microsoft Office Thunderbird

O
ffi

ce
20

01

O
ffi

ce
20

03

O
ffi

ce
20

10

T
hu

nd
er

bi
rd

0

1

2

3
Method

SES

DES

TES

Croston

Arima

NNet

Figure 4: Prediction Accuracy (MAE) for Office Solutions, h=1 (month)

22

Windows Ubuntu Mac OS X

W
in

do
w
s
X
P

W
in

do
w
s
V
ist

a

W
in

do
w
s
7

U
bu

nt
u

11
04

U
bu

nt
u

12
04

U
bu

nt
u

14
04

M
ac

O
S

X
0

M
ac

O
S

X
2

M
ac

O
S

X
3

M
ac

O
S

X
4

M
ac

O
S

X
5

M
ac

O
S

X
6

M
ac

O
S

X
8

M
ac

O
S

X
9

M
ac

O
S

X
10

M
ac

O
S

X
11

2

10

20

Method

SES

DES

TES

Croston

Arima

NNet

Figure 5: Prediction Accuracy (MAE) for Operating Systems, h=1 (month)

Windows Ubuntu Mac OS X

W
in

do
w
s
X
P

W
in

do
w
s
V
ist

a

W
in

do
w
s
7

U
bu

nt
u

11
04

U
bu

nt
u

12
04

U
bu

nt
u

14
04

M
ac

O
S

X
0

M
ac

O
S

X
2

M
ac

O
S

X
3

M
ac

O
S

X
4

M
ac

O
S

X
5

M
ac

O
S

X
6

M
ac

O
S

X
8

M
ac

O
S

X
9

M
ac

O
S

X
10

M
ac

O
S

X
11

2

10
20

40

80

Method

SES

DES

TES

Croston

Arima

NNet

Figure 6: Prediction Accuracy (RMSE) for Operating Systems, h=1 (month)

23

Safari Internet Explorer

Firefox Google Chrome

Sa
fa

ri
1

Sa
fa

ri
2

Sa
fa

ri
3

Sa
fa

ri
4

Sa
fa

ri
6

Sa
fa

ri
7

Sa
fa

ri
8

Sa
fa

ri
9

In
te

rn
et

Exp
lo
re

r
5

In
te

rn
et

Exp
lo
re

r
6

In
te

rn
et

Exp
lo
re

r
7

In
te

rn
et

Exp
lo
re

r
8

In
te

rn
et

Exp
lo
re

r
9

In
te

rn
et

Exp
lo
re

r
10

In
te

rn
et

Exp
lo
re

r
11

Fire
fo
x

0

Fire
fo
x

1

Fire
fo
x

2

Fire
fo
x

3

Fire
fo
x

7

Fire
fo
x

ro
lli

ng

G
oo

gl
e
C
hr

om
e
1

G
oo

gl
e
C
hr

om
e
2

G
oo

gl
e
C
hr

om
e
3

G
oo

gl
e
C
hr

om
e
4

2

10
20

40

2

10
20

40

Method

SES

DES

TES

Croston

Arima

NNet

Figure 7: Prediction Accuracy (MAE) for Browsers, h=2 (months)

24

Safari Internet Explorer

Firefox Google Chrome

Sa
fa

ri
1

Sa
fa

ri
2

Sa
fa

ri
3

Sa
fa

ri
4

Sa
fa

ri
6

Sa
fa

ri
7

Sa
fa

ri
8

Sa
fa

ri
9

In
te

rn
et

Exp
lo
re

r
5

In
te

rn
et

Exp
lo
re

r
6

In
te

rn
et

Exp
lo
re

r
7

In
te

rn
et

Exp
lo
re

r
8

In
te

rn
et

Exp
lo
re

r
9

In
te

rn
et

Exp
lo
re

r
10

In
te

rn
et

Exp
lo
re

r
11

Fire
fo
x

0

Fire
fo
x

1

Fire
fo
x

2

Fire
fo
x

3

Fire
fo
x

7

Fire
fo
x

ro
lli

ng

G
oo

gl
e
C
hr

om
e
1

G
oo

gl
e
C
hr

om
e
2

G
oo

gl
e
C
hr

om
e
3

G
oo

gl
e
C
hr

om
e
4

0

5

10

15

0

5

10

15

Method

SES

DES

TES

Croston

Arima

NNet

Figure 8: Prediction Accuracy (RMSE) for Browsers, h=2 (months)

Microsoft Office Thunderbird

O
ffi

ce
20

01

O
ffi

ce
20

03

O
ffi

ce
20

10

T
hu

nd
er

bi
rd

0

1

2

Method

SES

DES

TES

Croston

Arima

NNet

Figure 9: Prediction Accuracy (MAE) for Office Solutions, h=2 (months)

25

Microsoft Office Thunderbird

O
ffi

ce
20

01

O
ffi

ce
20

03

O
ffi

ce
20

10

T
hu

nd
er

bi
rd

0

1

2

3
Method

SES

DES

TES

Croston

Arima

NNet

Figure 10: Prediction Accuracy (RMSE) for Office Solutions, h=2 (months)

Windows Ubuntu Mac OS X

W
in

do
w
s
X
P

W
in

do
w
s
V
ist

a

W
in

do
w
s
7

U
bu

nt
u

11
04

U
bu

nt
u

12
04

U
bu

nt
u

14
04

M
ac

O
S

X
0

M
ac

O
S

X
2

M
ac

O
S

X
3

M
ac

O
S

X
4

M
ac

O
S

X
5

M
ac

O
S

X
6

M
ac

O
S

X
8

M
ac

O
S

X
9

M
ac

O
S

X
10

M
ac

O
S

X
11

2

10

20

Method

SES

DES

TES

Croston

Arima

NNet

Figure 11: Prediction Accuracy (MAE) for Operating Systems, h=2 (months)

Windows Ubuntu Mac OS X

W
in

do
w
s
X
P

W
in

do
w
s
V
ist

a

W
in

do
w
s
7

U
bu

nt
u

11
04

U
bu

nt
u

12
04

U
bu

nt
u

14
04

M
ac

O
S

X
0

M
ac

O
S

X
2

M
ac

O
S

X
3

M
ac

O
S

X
4

M
ac

O
S

X
5

M
ac

O
S

X
6

M
ac

O
S

X
8

M
ac

O
S

X
9

M
ac

O
S

X
10

M
ac

O
S

X
11

2

10
20

40

80

Method

SES

DES

TES

Croston

Arima

NNet

Figure 12: Prediction Accuracy (RMSE) for Operating Systems, h=2 (months)

26

Safari Internet Explorer

Firefox Google Chrome

Sa
fa

ri
1

Sa
fa

ri
2

Sa
fa

ri
3

Sa
fa

ri
4

Sa
fa

ri
6

Sa
fa

ri
7

Sa
fa

ri
8

Sa
fa

ri
9

In
te

rn
et

Exp
lo
re

r
5

In
te

rn
et

Exp
lo
re

r
6

In
te

rn
et

Exp
lo
re

r
7

In
te

rn
et

Exp
lo
re

r
8

In
te

rn
et

Exp
lo
re

r
9

In
te

rn
et

Exp
lo
re

r
10

In
te

rn
et

Exp
lo
re

r
11

Fire
fo
x

0

Fire
fo
x

1

Fire
fo
x

2

Fire
fo
x

3

Fire
fo
x

7

Fire
fo
x

ro
lli

ng

G
oo

gl
e
C
hr

om
e
1

G
oo

gl
e
C
hr

om
e
2

G
oo

gl
e
C
hr

om
e
3

G
oo

gl
e
C
hr

om
e
4

2

10
20

40

2

10
20

40

Method

SES

DES

TES

Croston

Arima

NNet

Figure 13: Prediction Accuracy (MAE) for Browsers, h=3 (months)

27

Safari Internet Explorer

Firefox Google Chrome

Sa
fa

ri
1

Sa
fa

ri
2

Sa
fa

ri
3

Sa
fa

ri
4

Sa
fa

ri
6

Sa
fa

ri
7

Sa
fa

ri
8

Sa
fa

ri
9

In
te

rn
et

Exp
lo
re

r
5

In
te

rn
et

Exp
lo
re

r
6

In
te

rn
et

Exp
lo
re

r
7

In
te

rn
et

Exp
lo
re

r
8

In
te

rn
et

Exp
lo
re

r
9

In
te

rn
et

Exp
lo
re

r
10

In
te

rn
et

Exp
lo
re

r
11

Fire
fo
x

0

Fire
fo
x

1

Fire
fo
x

2

Fire
fo
x

3

Fire
fo
x

7

Fire
fo
x

ro
lli

ng

G
oo

gl
e
C
hr

om
e
1

G
oo

gl
e
C
hr

om
e
2

G
oo

gl
e
C
hr

om
e
3

G
oo

gl
e
C
hr

om
e
4

0

5

10

15

20

0

5

10

15

20

Method

SES

DES

TES

Croston

Arima

NNet

Figure 14: Prediction Accuracy (RMSE) for Browsers, h=3 (months)

Microsoft Office Thunderbird

O
ffi

ce
20

01

O
ffi

ce
20

03

O
ffi

ce
20

10

T
hu

nd
er

bi
rd

0

1

2

Method

SES

DES

TES

Croston

Arima

NNet

Figure 15: MAE for Office Solutions, h=3 (months)

28

Microsoft Office Thunderbird

O
ffi

ce
20

01

O
ffi

ce
20

03

O
ffi

ce
20

10

T
hu

nd
er

bi
rd

0

1

2

3
Method

SES

DES

TES

Croston

Arima

NNet

Figure 16: Prediction Accuracy (RMSE) for Office Solutions, h=3 (months)

Windows Ubuntu Mac OS X

W
in

do
w
s
X
P

W
in

do
w
s
V
ist

a

W
in

do
w
s
7

U
bu

nt
u

11
04

U
bu

nt
u

12
04

U
bu

nt
u

14
04

M
ac

O
S

X
0

M
ac

O
S

X
2

M
ac

O
S

X
3

M
ac

O
S

X
4

M
ac

O
S

X
5

M
ac

O
S

X
6

M
ac

O
S

X
8

M
ac

O
S

X
9

M
ac

O
S

X
10

M
ac

O
S

X
11

2

10

20

Method

SES

DES

TES

Croston

Arima

NNet

Figure 17: Prediction Accuracy (MAE) for Operating Systems, h=3 (months)

Windows Ubuntu Mac OS X

W
in

do
w
s
X
P

W
in

do
w
s
V
ist

a

W
in

do
w
s
7

U
bu

nt
u

11
04

U
bu

nt
u

12
04

U
bu

nt
u

14
04

M
ac

O
S

X
0

M
ac

O
S

X
2

M
ac

O
S

X
3

M
ac

O
S

X
4

M
ac

O
S

X
5

M
ac

O
S

X
6

M
ac

O
S

X
8

M
ac

O
S

X
9

M
ac

O
S

X
10

M
ac

O
S

X
11

2

10
20

40

80

Method

SES

DES

TES

Croston

Arima

NNet

Figure 18: Prediction Accuracy (RMSE) for Operating Systems, h=3 (months)

29

Table 5: Forecasting Results (Mean Absolute Error / Root Mean Squared Error) for all Forecasting

Methodologies and Software / System Packages over a 1 Month Forecasting Horizon

Method SES DES TES Arima Croston NNet

Firefox Versions

v0 (0.92 / 1.27) (0.75 / 1.28) (0.73 / 1.23) (0.72 / 1.2) (0.63 / 1.14) (1.35 / 1.54)

v1 (1.66 / 1.7) (1.05 / 1.79) (0.96 / 1.62) (1.01 / 1.68) (0.91 / 1.65) (3.61 / 4.1)

v2 (0.72 / 1.12) (0.69 / 1.19) (0.62 / 1.04) (0.61 / 1.02) (0.56 / 1.02) (1.56 / 1.77)

v3 (0.93 / 1.27) (1.95 / 3.34) (0.7 / 1.17) (0.74 / 1.23) (0.64 / 1.16) (1.64 / 1.86)

v7 (15.81 / 5.25) (3.2 / 5.47) (2.87 / 4.83) (2.98 / 4.98) (2.39 / 4.33) (9.37 / 10.64)

v8 rolling (14.86 / 5.09) (3.43 / 5.88) (2.62 / 4.4) (2.95 / 4.92) (2.81 / 5.1) (4.91 / 5.57)

Google Chrome Versions

v1 (0.58 / 0.94) (0.75 / 1) (0.75 / 0.88) (0.82 / 0.94) (0.62 / 0.95) (1.15 / 1.78)

v2 (32.52 / 7.01) (5.63 / 7.49) (5.6 / 6.56) (6.05 / 6.91) (3.97 / 6.09) (7.3 / 11.25)

v3 (37.48 / 7.53) (5.77 / 7.67) (5.75 / 6.73) (6.56 / 7.49) (5.33 / 8.18) (8.75 / 13.5)

v4 (61.42 / 9.63) (7.01 / 9.32) (12.53 / 14.66) (7.2 / 8.22) (5.08 / 7.8) (10.24 / 15.79)

Internet Explorer Versions

v5 (0.44 / 0.79) (0.78 / 1.1) (0.54 / 0.75) (0.63 / 0.88) (0.51 / 0.75) (1.6 / 2.13)

v6 (1.59 / 2.64) (1.89 / 2.66) (1.78 / 2.5) (1.77 / 2.46) (1.99 / 2.92) (2.35 / 3.14)

v7 (0.29 / 0.65) (0.48 / 0.68) (0.45 / 0.63) (0.47 / 0.66) (0.41 / 0.61) (0.67 / 0.89)

v8 (1.13 / 1.68) (1.25 / 1.76) (1.06 / 1.49) (1.11 / 1.54) (1.12 / 1.65) (1.57 / 2.1)

v9 (2.95 / 4.07) (2.91 / 4.11) (2.35 / 3.29) (2.94 / 4.08) (2.63 / 3.86) (3.51 / 4.69)

v10 (1.14 / 3.19) (2.05 / 2.89) (1.99 / 2.79) (1.7 / 2.35) (2.29 / 3.37) (2.48 / 3.31)

v11 (3.39 / 4.84) (3.81 / 5.37) (3.33 / 4.66) (3.25 / 4.5) (2.86 / 4.21) (4.9 / 6.55)

Mac OS X Versions

v0 (0.5 / 1.65) (0.63 / 1.67) (0.75 / 1.61) (0.77 / 1.64) (0.4 / 1.54) (1.12 / 1.78)

v2 (0.25 / 0.81) (0.32 / 0.84) (0.36 / 0.77) (0.38 / 0.8) (0.2 / 0.79) (0.92 / 1.46)

v3 (0.31 / 1) (2.49 / 6.63) (0.44 / 0.94) (0.47 / 1) (0.23 / 0.88) (0.89 / 1.4)

v4 (0.4 / 1.31) (0.59 / 1.57) (0.59 / 1.28) (0.58 / 1.24) (0.28 / 1.09) (1.27 / 2.01)

v5 (0.79 / 2.6) (2.17 / 5.77) (1.07 / 2.32) (0.82 / 1.75) (0.59 / 2.32) (2.34 / 3.7)

v6 (0.65 / 2.12) (0.87 / 2.32) (0.86 / 1.85) (0.96 / 2.04) (0.46 / 1.8) (1.83 / 2.9)

v8 (1.48 / 4.84) (1.92 / 5.11) (2.02 / 4.36) (2.21 / 4.72) (1.18 / 4.58) (10.11 / 16.01)

v9 (0.54 / 1.75) (0.85 / 2.26) (0.77 / 1.66) (0.77 / 1.64) (0.41 / 1.59) (1.21 / 1.91)

v10 (5.04 / 16.5) (6.71 / 17.85) (4.01 / 8.66) (7.3 / 15.56) (3.7 / 14.4) (14.1 / 22.34)

v11 (7.63 / 24.98) (33.42 / 88.88) (9.41 / 20.32) (10.54 /

22.49)

(5.37 / 20.93) (11.66 / 18.47)

Microsoft Office Versions

v2001 (0.3 / 0.43) (0.31 / 0.44) (0.3 / 0.42) (0.3 / 0.42) (0.28 / 0.41) (0.5 / 0.67)

v2003 (1.25 / 1.78) (1.28 / 1.8) (1.24 / 1.74) (1.26 / 1.75) (1 / 1.48) (1.62 / 2.16)

v2010 (0.57 / 0.81) (0.57 / 0.81) (0.52 / 0.72) (0.59 / 0.81) (0.53 / 0.79) (0.75 / 1)

Safari Versions

v1 (0.05 / 0.4) (0.34 / 0.89) (0.18 / 0.38) (0.18 / 0.39) (0.09 / 0.35) (0.33 / 0.53)

v2 (0.11 / 0.61) (0.24 / 0.65) (0.26 / 0.57) (0.29 / 0.61) (0.17 / 0.66) (0.76 / 1.2)

v3 (21.19 / 8.33) (3.22 / 8.56) (3.51 / 7.59) (3.87 / 8.25) (1.86 / 7.24) (9.73 / 15.41)

v4 (8.6 / 5.31) (2.32 / 6.18) (2.2 / 4.74) (2.31 / 4.93) (1.23 / 4.79) (10.48 / 16.6)

30

Table 5: Forecasting Results (Mean Absolute Error / Root Mean Squared Error) for all Forecasting

Methodologies and Software / System Packages over a 1 Month Forecasting Horizon

Method SES DES TES Arima Croston NNet

v6 (1.91 / 2.5) (1.01 / 2.68) (1.04 / 2.25) (1.14 / 2.43) (0.74 / 2.89) (2.68 / 4.25)

v7 (8.15 / 5.17) (2.1 / 5.58) (2.46 / 5.32) (2.31 / 4.92) (1.06 / 4.15) (4.8 / 7.61)

v8 (44.23 /

12.04)

(4.76 / 12.66) (1.22 / 2.63) (4.78 / 10.2) (2.55 / 9.93) (7.78 / 12.32)

v9 (4.91 / 4.01) (1.64 / 4.36) (1.46 / 3.16) (2.04 / 4.36) (0.87 / 3.39) (2.23 / 3.53)

Thunderbird Versions

rolling (0.82 / 1.43) (1.18 / 2.03) (0.8 / 1.34) (0.84 / 1.4) (0.78 / 1.42) (2.91 / 3.3)

Ubuntu Versions

v11.04 (0.39 / 0.67) (0.41 / 0.71) (0.37 / 0.62) (0.38 / 0.64) (0.35 / 0.63) (0.89 / 1.02)

v12.04 (1.76 / 3.08) (2.31 / 3.96) (1.66 / 2.78) (1.82 / 3.03) (1.58 / 2.87) (3.66 / 4.16)

v14.04 (1.07 / 1.86) (3.99 / 6.84) (1.37 / 2.3) (1.14 / 1.91) (1.02 / 1.84) (2.46 / 2.79)

Windows Versions

XP (1.09 / 1.54) (1.12 / 1.59) (1.04 / 1.45) (1.08 / 1.52) (0.99 / 1.45) (1.56 / 2.08)

Vista (0.44 / 0.62) (0.48 / 0.68) (0.4 / 0.56) (0.43 / 0.6) (0.39 / 0.57) (0.62 / 0.83)

Version 7 (0.85 / 1.21) (3.6 / 5.08) (0.75 / 1.05) (0.81 / 1.12) (0.76 / 1.12) (1.45 / 1.94)

Table 6: Forecasting Results (Mean Absolute Error / Root Mean Squared Error) for all Forecasting

Methodologies and Software / System Packages over a 2 Month Forecasting Horizon

Method SES DES TES Arima Croston NNet

Firefox Versions

v0 (0.95 / 1.29) (0.76 / 1.3) (0.74 / 1.25) (0.72 / 1.21) (0.64 / 1.16) (1.35 / 1.52)

v1 (1.65 / 1.7) (1.04 / 1.79) (0.96 / 1.62) (1.02 / 1.69) (0.91 / 1.66) (3.56 / 4.02)

v2 (0.72 / 1.13) (0.7 / 1.21) (0.61 / 1.04) (0.62 / 1.02) (0.57 / 1.04) (1.59 / 1.79)

v3 (0.95 / 1.29) (2.09 / 3.6) (0.69 / 1.18) (0.75 / 1.25) (0.67 / 1.22) (1.64 / 1.85)

v7 (16.79 / 5.42) (3.33 / 5.73) (2.92 / 4.94) (3.06 / 5.09) (2.5 / 4.55) (8.98 / 10.13)

v8 rolling (15.15 / 5.15) (3.54 / 6.09) (2.6 / 4.4) (2.98 / 4.95) (2.73 / 4.96) (5.51 / 6.21)

Google Chrome Versions

v1 (0.6 / 0.95) (0.77 / 1.02) (0.78 / 0.89) (0.84 / 0.95) (0.6 / 0.93) (1.32 / 1.71)

v2 (36.55 / 7.45) (6.3 / 8.29) (6.14 / 7.02) (6.48 / 7.35) (4.06 / 6.27) (9.53 / 12.34)

v3 (38.57 / 7.65) (5.93 / 7.81) (5.96 / 6.82) (6.7 / 7.61) (5.18 / 8.01) (10.55 / 13.65)

v4 (61.7 / 9.68) (6.92 / 9.12) (15.83 / 18.1) (7.41 / 8.42) (5.29 / 8.17) (10.67 / 13.81)

Internet Explorer Versions

v5 (0.44 / 0.79) (0.84 / 1.17) (0.54 / 0.75) (0.64 / 0.88) (0.51 / 0.76) (1.58 / 2.14)

v6 (1.61 / 2.68) (1.93 / 2.71) (1.83 / 2.55) (1.84 / 2.54) (2.07 / 3.06) (2.61 / 3.53)

v7 (0.30 / 0.66) (0.49 / 0.69) (0.46 / 0.64) (0.48 / 0.66) (0.41 / 0.61) (0.63 / 0.85)

v8 (1.11 / 1.66) (1.24 / 1.74) (1.05 / 1.46) (1.13 / 1.56) (1.11 / 1.65) (1.53 / 2.08)

v9 (2.97 / 4.12) (2.96 / 4.15) (2.4 / 3.34) (3 / 4.14) (2.87 / 4.26) (3.48 / 4.71)

v10 (0.97 / 2.45) (1.68 / 2.36) (1.66 / 2.31) (1.58 / 2.18) (1.68 / 2.48) (1.86 / 2.52)

v11 (3.38 / 4.96) (3.98 / 5.58) (3.38 / 4.7) (3.27 / 4.51) (3.11 / 4.62) (4.87 / 6.6)

Mac OS X Versions

v0 (0.5 / 1.65) (0.65 / 1.68) (0.79 / 1.61) (0.83 / 1.64) (0.4 / 1.57) (0.98 / 1.76)

31

Table 6: Forecasting Results (Mean Absolute Error / Root Mean Squared Error) for all Forecasting

Methodologies and Software / System Packages over a 2 Month Forecasting Horizon

Method SES DES TES Arima Croston NNet

v2 (0.25 / 0.81) (0.32 / 0.84) (0.38 / 0.77) (0.4 / 0.8) (0.21 / 0.81) (0.77 / 1.39)

v3 (0.3 / 1) (2.75 / 7.14) (0.46 / 0.94) (0.51 / 1.01) (0.24 / 0.94) (0.77 / 1.38)

v4 (0.4 / 1.33) (0.64 / 1.66) (0.63 / 1.29) (0.62 / 1.24) (0.31 / 1.19) (1.05 / 1.88)

v5 (0.78 / 2.57) (2.43 / 6.29) (1.13 / 2.32) (0.89 / 1.77) (0.64 / 2.48) (1.76 / 3.16)

v6 (0.65 / 2.13) (0.91 / 2.36) (0.91 / 1.86) (1.03 / 2.05) (0.48 / 1.85) (1.44 / 2.59)

v8 (1.49 / 4.9) (2 / 5.2) (2.14 / 4.39) (2.4 / 4.77) (1.2 / 4.68) (8.47 / 15.19)

v9 (0.53 / 1.74) (0.87 / 2.27) (0.82 / 1.68) (0.84 / 1.66) (0.4 / 1.57) (1.27 / 2.28)

v10 (5.25 / 17.24) (7.38 / 19.14) (4.35 / 8.9) (8.05 / 15.97) (3.83 / 14.91) (11.63 / 20.85)

v11 (6.11 / 20.08) (35.57 / 92.3) (9.08 / 18.6) (9.99 / 19.83) (4.89 / 19.03) (12.18 / 21.85)

Microsoft Office Versions

v2001 (0.3 / 0.43) (0.31 / 0.44) (0.3 / 0.42) (0.3 / 0.42) (0.28 / 0.42) (0.53 / 0.72)

v2003 (1.27 / 1.79) (1.29 / 1.82) (1.26 / 1.75) (1.27 / 1.76) (1.08 / 1.61) (1.64 / 2.23)

v2010 (0.58 / 0.82) (0.58 / 0.81) (0.52 / 0.73) (0.59 / 0.82) (0.56 / 0.83) (0.75 / 1.01)

Safari Versions

v1 (0.05 / 0.41) (0.38 / 0.99) (0.19 / 0.39) (0.2 / 0.39) (0.1 / 0.37) (0.3 / 0.54)

v2 (0.11 / 0.61) (0.25 / 0.64) (0.28 / 0.57) (0.31 / 0.61) (0.18 / 0.69) (0.59 / 1.06)

v3 (21.31 / 8.37) (3.31 / 8.59) (3.72 / 7.62) (4.18 / 8.29) (2.05 / 7.95) (9.22 / 16.54)

v4 (8.98 / 5.43) (2.53 / 6.56) (2.33 / 4.77) (2.59 / 5.14) (1.29 / 5.01) (8.12 / 14.57)

v6 (1.94 / 2.52) (1.04 / 2.7) (1.1 / 2.26) (1.24 / 2.46) (0.8 / 3.1) (2.41 / 4.32)

v7 (8.57 / 5.3) (2.22 / 5.76) (2.55 / 5.22) (2.52 / 4.99) (1.2 / 4.68) (5.21 / 9.34)

v8 (49.8 / 12.79) (6.07 / 15.76) (1.29 / 2.65) (5.89 / 11.68) (2.89 / 11.23) (10.05 / 18.03)

v9 (4.5 / 3.85) (1.63 / 4.22) (1.58 / 3.25) (2.13 / 4.22) (0.85 / 3.31) (2.86 / 5.12)

Thunderbird Versions

rolling (0.82 / 1.43) (1.22 / 2.09) (0.79 / 1.34) (0.84 / 1.4) (0.79 / 1.43) (2.78 / 3.13)

Ubuntu Versions

v11.04 (0.39 / 0.68) (0.42 / 0.73) (0.38 / 0.64) (0.39 / 0.65) (0.38 / 0.69) (0.87 / 0.98)

v12.04 (1.77 / 3.1) (2.39 / 4.1) (1.63 / 2.76) (1.84 / 3.06) (1.6 / 2.9) (3.79 / 4.27)

v14.04 (1.17 / 2.04) (4.78 / 8.22) (1.37 / 2.33) (1.24 / 2.07) (1.07 / 1.95) (2.16 / 2.44)

Windows Versions

XP (1.1 / 1.55) (1.14 / 1.59) (1.05 / 1.46) (1.1 / 1.54) (1.03 / 1.52) (1.52 / 2.06)

Vista (0.44 / 0.62) (0.51 / 0.71) (0.4 / 0.56) (0.44 / 0.61) (0.41 / 0.6) (0.62 / 0.85)

Version 7 (0.86 / 1.22) (4.04 / 5.67) (0.76 / 1.06) (0.82 / 1.13) (0.76 / 1.13) (1.4 / 1.9)

Table 7: Forecasting Results (Mean Absolute Error / Root Mean Squared Error) for all Forecasting

Methodologies and Software / System Packages over a 3 Month Forecasting Horizon

Method SES DES TES Arima Croston NNet

Firefox Versions

v0 (0.99 / 1.32) (0.78 / 1.34) (0.76 / 1.28) (0.73 / 1.22) (0.65 / 1.18) (1.36 / 1.6)

v1 (1.67 / 1.71) (1.05 / 1.81) (0.97 / 1.63) (1.02 / 1.7) (0.91 / 1.66) (3.33 / 3.91)

v2 (0.72 / 1.12) (0.7 / 1.21) (0.62 / 1.04) (0.61 / 1.03) (0.57 / 1.04) (1.41 / 1.65)

v3 (0.95 / 1.29) (2.25 / 3.87) (0.7 / 1.18) (0.75 / 1.26) (0.69 / 1.25) (1.65 / 1.94)

32

Table 7: Forecasting Results (Mean Absolute Error / Root Mean Squared Error) for all Forecasting

Methodologies and Software / System Packages over a 3 Month Forecasting Horizon

Method SES DES TES Arima Croston NNet

v7 (17.6 / 5.56) (3.55 / 6.1) (3.02 / 5.08) (3.15 / 5.27) (2.65 / 4.83) (8.46 / 9.94)

v8 rolling (15.33 / 5.19) (3.65 / 6.27) (2.64 / 4.43) (2.97 / 4.98) (2.75 / 5.01) (5.32 / 6.25)

Google Chrome Versions

v1 (0.62 / 0.97) (0.79 / 1.06) (0.77 / 0.91) (0.83 / 0.97) (0.62 / 0.96) (1.39 / 1.76)

v2 (38.37 / 7.63) (6.71 / 8.97) (6.2 / 7.3) (6.46 / 7.58) (4.14 / 6.36) (9.68 / 12.3)

v3 (40.03 / 7.79) (5.95 / 7.94) (5.86 / 6.89) (6.6 / 7.74) (5.43 / 8.34) (10.94 / 13.9)

v4 (55.13 / 9.14) (6.66 / 8.9) (20.05 / 23.58) (7.2 / 8.45) (5.15 / 7.91) (11.05 / 14.04)

Internet Explorer Versions

v5 (0.43 / 0.79) (0.89 / 1.25) (0.54 / 0.75) (0.64 / 0.88) (0.51 / 0.76) (1.98 / 2.6)

v6 (1.62 / 2.71) (1.95 / 2.74) (1.84 / 2.57) (1.86 / 2.58) (2.06 / 3.06) (2.75 / 3.6)

v7 (0.31 / 0.66) (0.49 / 0.69) (0.46 / 0.64) (0.48 / 0.67) (0.42 / 0.62) (0.69 / 0.9)

v8 (1.13 / 1.68) (1.27 / 1.78) (1.07 / 1.49) (1.15 / 1.6) (1.13 / 1.68) (1.67 / 2.19)

v9 (2.98 / 4.14) (2.97 / 4.18) (2.41 / 3.37) (3.01 / 4.18) (2.93 / 4.36) (3.68 / 4.82)

v10 (0.93 / 2.21) (1.63 / 2.29) (1.62 / 2.26) (1.6 / 2.22) (1.41 / 2.1) (1.9 / 2.49)

v11 (3.41 / 5.09) (4.21 / 5.9) (3.43 / 4.78) (3.29 / 4.56) (3.16 / 4.7) (4.76 / 6.24)

Mac OS X Versions

v0 (0.5 / 1.66) (0.66 / 1.68) (0.81 / 1.61) (0.83 / 1.65) (0.41 / 1.59) (0.92 / 1.75)

v2 (0.25 / 0.82) (0.33 / 0.85) (0.39 / 0.77) (0.4 / 0.8) (0.21 / 0.82) (0.71 / 1.36)

v3 (0.3 / 1) (2.96 / 7.59) (0.47 / 0.94) (0.51 / 1) (0.25 / 0.96) (0.72 / 1.38)

v4 (0.4 / 1.32) (0.68 / 1.75) (0.64 / 1.28) (0.62 / 1.24) (0.32 / 1.23) (1.02 / 1.95)

v5 (0.77 / 2.52) (2.68 / 6.87) (1.16 / 2.32) (0.9 / 1.79) (0.63 / 2.43) (1.55 / 2.96)

v6 (0.65 / 2.15) (0.94 / 2.4) (0.94 / 1.87) (1.04 / 2.06) (0.49 / 1.89) (1.4 / 2.67)

v8 (1.5 / 4.95) (2.06 / 5.27) (2.23 / 4.44) (2.42 / 4.81) (1.23 / 4.76) (7.74 / 14.74)

v9 (0.52 / 1.7) (0.97 / 2.5) (0.86 / 1.71) (0.83 / 1.65) (0.39 / 1.52) (1.18 / 2.24)

v10 (5.42 / 17.82) (7.91 / 20.26) (4.41 / 8.78) (8.25 / 16.4) (3.96 / 15.35) (11.39 / 21.7)

v11 (6.63 / 21.8) (35.66 / 91.34) (9.07 / 18.08) (9.73 / 19.36) (4.96 / 19.22) (12.82 / 24.43)

Microsoft Office Versions

v2001 (0.3 / 0.43) (0.32 / 0.44) (0.3 / 0.42) (0.3 / 0.42) (0.28 / 0.42) (0.55 / 0.72)

v2003 (1.28 / 1.81) (1.31 / 1.84) (1.27 / 1.77) (1.28 / 1.77) (1.13 / 1.68) (1.75 / 2.29)

v2010 (0.58 / 0.82) (0.58 / 0.81) (0.52 / 0.73) (0.59 / 0.82) (0.56 / 0.83) (0.75 / 0.98)

Safari Versions

v1 (0.05 / 0.41) (0.43 / 1.11) (0.2 / 0.39) (0.2 / 0.4) (0.1 / 0.37) (0.28 / 0.53)

v2 (0.11 / 0.61) (0.25 / 0.65) (0.29 / 0.57) (0.31 / 0.61) (0.18 / 0.71) (0.53 / 1.01)

v3 (21.47 / 8.41) (3.37 / 8.63) (3.84 / 7.66) (4.19 / 8.33) (2.1 / 8.14) (8.34 / 15.89)

v4 (9.17 / 5.49) (2.65 / 6.8) (2.41 / 4.8) (2.63 / 5.23) (1.31 / 5.08) (7.96 / 15.17)

v6 (1.98 / 2.55) (1.07 / 2.73) (1.13 / 2.25) (1.25 / 2.49) (0.84 / 3.24) (2.16 / 4.13)

v7 (8.9 / 5.41) (2.35 / 6.02) (2.63 / 5.24) (2.55 / 5.06) (1.23 / 4.77) (5.06 / 9.65)

v8 (53.76 / 13.3) (6.87 / 17.61) (1.32 / 2.64) (6.25 / 12.44) (2.99 / 11.61) (10.55 / 20.11)

v9 (5.75 / 4.35) (1.75 / 4.49) (1.72 / 3.42) (2.26 / 4.49) (0.86 / 3.33) (2.32 / 4.42)

Thunderbird Versions

rolling (0.82 / 1.44) (1.27 / 2.18) (0.81 / 1.35) (0.85 / 1.42) (0.8 / 1.46) (2.57 / 3.02)

Ubuntu Versions

33

Table 7: Forecasting Results (Mean Absolute Error / Root Mean Squared Error) for all Forecasting

Methodologies and Software / System Packages over a 3 Month Forecasting Horizon

Method SES DES TES Arima Croston NNet

v11.04 (0.39 / 0.69) (0.43 / 0.74) (0.4 / 0.66) (0.39 / 0.66) (0.4 / 0.73) (0.86 / 1.01)

v12.04 (1.79 / 3.14) (2.47 / 4.24) (1.64 / 2.76) (1.84 / 3.08) (1.63 / 2.97) (3.69 / 4.34)

v14.04 (0.97 / 1.7) (5.61 / 9.63) (1.3 / 2.18) (1.09 / 1.83) (0.88 / 1.6) (1.8 / 2.11)

Windows Versions

XP (1.1 / 1.56) (1.14 / 1.61) (1.05 / 1.47) (1.1 / 1.54) (1.05 / 1.56) (1.6 / 2.1)

Vista (0.44 / 0.63) (0.52 / 0.73) (0.4 / 0.56) (0.44 / 0.61) (0.41 / 0.61) (0.64 / 0.83)

Version 7 (0.86 / 1.22) (4.47 / 6.28) (0.76 / 1.06) (0.82 / 1.14) (0.77 / 1.14) (1.47 / 1.93)

Figures 19 - 21 plot the time series and forecasts for Internet Explorer (v6), Microsoft Office

(full), and Windows (XP) for the different forecasting methodologies. As we have a total of 270465

different software and system packages and versions, we only provide representative examples here8.

The three plots serve as exemplary cases for the three application domains displayed in Table 3,

which consist of three highly popular and widely used software products. Additionally, we selected

three version numbers that covered a sufficiently long time frame of vulnerability data.

8The other plots can be obtained from the authors.

34

NNet

Arima

Croston

TES

DES

SES

20
02

20
03

20
04

20
05

20
06

20
07

20
08

20
09

20
10

20
11

20
12

20
13

20
14

20
15

20
16

20
17

0
5

10
15
20
25

0
5

10
15
20
25

0
5

10
15
20
25

0
5

10
15
20
25

0
5

10
15
20
25

0
5

10
15
20
25

N
u

m
b

er
of

V
u

ln
er

ab
il

it
ie

s

Actual Vulnerabilities Predicted Vulnerabilities

Figure 19: Time Series and Forecasts for Internet Explorer (v6)

35

NNet

Arima

Croston

TES

DES

SES

20
02

20
03

20
04

20
05

20
06

20
07

20
08

20
09

20
10

20
11

20
12

20
13

20
14

20
15

20
16

20
17

0

5

10

15

0

5

10

15

0

5

10

15

0

5

10

15

0

5

10

15

0

5

10

15

N
u

m
b

er
of

V
u

ln
er

ab
il

it
ie

s

Actual Vulnerabilities Predicted Vulnerabilities

Figure 20: Time Series and Forecasts for Microsoft Office (full)

36

NNet

Arima

Croston

TES

DES

SES

20
02

20
03

20
04

20
05

20
06

20
07

20
08

20
09

20
10

20
11

20
12

20
13

20
14

20
15

20
16

20
17

0

5

10

0

5

10

0

5

10

0

5

10

0

5

10

0

5

10

N
u

m
b

er
of

V
u

ln
er

ab
il

it
ie

s

Actual Vulnerabilities Predicted Vulnerabilities

Figure 21: Time Series and Forecasts for Windows (XP)

37

4.2. Discussion470

Regarding the forecast of the expected number of IT security vulnerabilities, our work supports

organizations in improving specific aspects of IT security management, helping to protect organi-

zations against costly data breaches that could significantly harm their brand image. This is also

backed by a Ponemon Institute study which revealed that an incident caused by insecure software

costs businesses an average US$4 million (Ponemon Institute, 2017). It is also crucial to consider475

these security aspects when acquiring new software or removing software from the portfolio. For

instance, the 2016 Internet Security Threat Report by Symantec revealed that in 2015, the number

of zero-day vulnerabilities more than doubled to 54, a 125 percent increase from the year before. A

new zero-day vulnerability was found every week (on average) in 2015, and these figures are set to

increase in the future (Symantec, 2016). The results of our study help organizations to effectively480

address the economic threats of security vulnerabilities inherent in software products.

In the following, we therefore want to focus our discussion on how the accuracy of the different

forecasting methodologies is affected by the software and system packages, and how robust our

results are with regard to different error metrics. Our discussion thereby contributes to the rising

stream of literature analyzing IT security vulnerabilities from a time series perspective, and examines485

how the prediction accuracy of IT security vulnerabilities’ time series is impacted by the applied

forecasting methodology.

4.2.1. Prediction Accuracy Depending on Software and System Packages

Figures 19 - 21 display the characteristics of the time series with regards to its volatility and

rareness of occurrence. The plots further show that depending on the forecasting methodology, the490

difference between predicted and actual values varies considerably. While Croston’s methodology

produces smooth predictions with low variability, the other methodologies rapidly adapt to variations

of the time series which impacts the prediction accuracy. There is a tendency that the forecasting

methodology SES and Neural Network are less suitable (cf. Figures 2 - 18). In the case of Neural

Networks, this tendency applies to all software and system packages. The reason for the poor495

results of SES and Neural Networks lies in the properties of security vulnerability time series data,

rareness of occurrence, and a tendency towards outliers. Both characteristics have an impact on

the effectiveness of the applied forecasting methodology. In the intermittent demand literature,

this phenomenon is widely known. The infrequent demand arrivals, coupled with variable demand

sizes whenever demand occurs, render the problem of accurately estimating the demand especially500

challenging (Petropoulos and Kourentzes, 2015). Translating this to our context, this means that the

sudden appearance of vulnerabilities for a few periods results in an overestimation of vulnerabilities

in the following periods of time, i.e., vulnerabilities are predicted even if there were none. This

explains the poor performance of these two methodologies. Significantly, the result tables reveal

38

that different types of forecasting methodologies lead to different performances. To interpret the505

measures, we also want to discuss the values of MAE and RMSE at this point. As MAE and RMSE

are absolute metrics, “good” and “poor” values depend on the scale of the data. For this, we refer

to Table 4, which shows the overall vulnerabilities of the entire analyzed time frame as well as a

monthly average as well. We can use the monthly average as a baseline to set this value in relation to

MAE and RMSE respectively. For most of the software and system package we observe a monthly510

vulnerability average between 1 and 4 rounded which we can use as good values for MAE. The

reason for this is that MAE takes the absolute value of forecast errors and averages them over the

entire time of the forecast time periods. Therefore, the monthly average provides a good basis to

examine the MAE values. The results in the Tables 5 - 7 show the following:

• Croston’s methodology and ARIMA show the best performance and have low MAE values (in515

terms of MAE values ranging between 1 to 4) for the vast majority of the software and system

packages.

• SES, DES and TES and Neural Network perform very volatilely and we observe very poor

MAE values for the last Safari versions up to an MAE value of 53.76.

For practice, it is important to state which method to use in order to guide a good selection of a520

forecasting methodology that performs properly. A first implication is that Croston’s method and

ARIMA can be recommended for predicting IT security vulnerabilities, as they consistently achieve

low forecasting errors. The exponential smoothing methods are more susceptible to the time series’

nature of IT security vulnerabilities time, so that their usage is not recommended at all. Regarding

Neural Network, we applied a feed-forward neural network with a single hidden layer. However, it525

turned out that this approach does not perform well in our context. In literature, there are other

neural network forecasting approaches such as a back propagation neural network with adaptive

differential evolution algorithm for time series forecasting (Wang et al., 2015), wavelet neural network

(Doucoure et al., 2016), or combinations of neural network with random walk (Adhikari and Agrawal,

2014), to name only a few that might be investigated in this context too.530

From an intra-related observation between the different software and system packages, it is

evident that for some methodologies, the prediction accuracy varies considerably. For example,

within browsers, DES together with SES and Neural Networks have achieved significantly poorer

prediction accuracies for Mac OS X (cf. Figures 5, 6, 11, 12, 17, 18), or TES with SES and Neural

Networks for some versions of Google Chrome (cf. Figures 2, 3, 7, 8, 13, 14). In general, we observe535

that the accuracy of the forecasting methodologies depends on the applied software and system

packages, and further note that approximately more or less the same prediction accuracy is close to

its theoretical minimum for both metrics, except for SES and Neural Networks (cf. Figures 2 - 18).

These observations have two implications: First, the choice of the optimal forecasting methodology

39

depends on the software or system package as some methodologies are not suitable such as SES and540

Neural Networks, and second, from a managerial point of view, the tendency of low prediction errors

offers decision makers a good choice to use these forecasting methodologies in order to anticipate

the development of IT security vulnerabilities of their software and system applications in their

organization’s portfolio. A closer look at the Tables 5 - 7 reveals the following:

• Except the first version, Google Chrome is challenging to forecast: The MAE values ranges545

from 3.97 (Croston’s methodology) to 61.7 (SES).

• For Operating Systems, in general the forecasting methodologies are able to predict the amount

of vulnerabilities well. The majority of the MAE values are in good ranges within 1 and 4

(rounded).

4.2.2. Robustness of Different Measures of Prediction Accuracy550

Another issue deserving of attention is the robustness of our results in terms of the used

forecasting-error metrics MAE and RMSE. For instance, our discussion in the prior subsection re-

vealed the poor performance of SES and Neural Networks. The crucial question is how to interpret

these values and the robustness of the prediction accuracy within the two applied forecasting-error

metrics.555

We can observe that the poor performance of SES and Neural Networks is independent from

the applied metrics MAE and RMSE - both metrics show the same tendency. For most cases, in

light of our discussion in the prior subsection, we observe that the values of MAE are close to zero,

meaning that the prediction accuracy was good. The actual absolute prediction accuracy for MAE

as well as for RMSE was low in most cases (cf. Tables 5 - 7) with the exceptions of SES and560

Neural Networks for browsers. The tendency of the other methodologies shows that the forecasting

methodologies’ decomposition of the zero valued intervals is sufficient to capture the high volatility.

Important implications from this result are that that the prediction error is independent from the

applied metrics, and that the prediction accuracy was good for the forecasting methodologies despite

dealing with time series that contain many zero values. This is backed up by Table 4, in which the565

actual vulnerabilities within the time frame and the monthly averages are shown. Regarding the

latter implication, a closer look at Safari v1 reveals that within the time of 13 years, 20 vulnerabilities

occurred, implying that this time series contains a lot of zero values and, if vulnerabilities appear,

they are volatile.

Regarding the robustness of our results, we observe a same tendency for both forecasting error570

metrics, which suggests that the outcome of the accuracy of a particular forecasting methodology is

independent from the choice of the metric. Figures 2 - 18 show only slight variations between MAE

and RMSE for the different forecasting methodologies. Based on the analysis shown in the Tables

40

5 - 7 and as outlined in our discussion above, we observe that our results are robust in terms of

performing the same in both MAE and RMSE.575

To conclude, we can derive the implications that (1) the metrics MAE and RMSE can measure

the actual prediction error accurately in the context of IT security vulnerabilities, and (2) the

accuracy results of the forecasting methodologies are robust in terms of the independence from the

applied metrics.

5. Conclusion580

This paper addresses the problem of forecasting the number of post-release IT security vulnera-

bilities of different system and software packages, including operating systems, browsers, and office

solutions. The analysis of vulnerabilities with time series methodologies is a rising stream in the

literature, to which our study contributes an extensive analysis of forecasting methodologies. We

apply six forecasting methodologies that are particularly appropriate for the four properties of vul-585

nerability time series: rareness of occurrence, volatility, non-stationarity, and seasonality. We review

the pros and cons of forecasting error metrics and demonstrate the appropriateness of the absolute

error forecasting metric. Using the metrics MAE and RMSE, we discussed the forecasting accuracy

based on the robustness factors software and system packages, and highlight the independence of

the accuracy results from the metrics.590

Our study reveals several important implications: First, the selection of a forecasting method-

ology depends on the software or system package as some methodologies show poor performances

(such as SES and Neural Networks). On the other hand, Croston’s method and ARIMA can be

recommended for forecasting IT security vulnerabilities as they consistently achieve low forecasting

errors. Second, our results are relevant to managerial decision makers, as they demonstrate the595

accuracy of IT security vulnerability forecasts, which can inform critical decisions on organizational

software portfolios. Third, we were able to show that absolute metrics overcome disadvantages of

others, e.g., percentage-error metrics, and that absolute metrics can cover the actual prediction error

precisely in the context of IT security vulnerabilities. Fourth, we show that the accuracy results of

the forecasting methodologies are robust in terms of the independence from using absolute metrics.600

Our study has a few limitations: Although we followed a structured and accurate search process

to identify IT security vulnerabilities from the most extensive database NVD and linked the vul-

nerabilities uniquely to the corresponding root software and system package, we may have missed

vulnerabilities, or missed those not included in the NVD database. A further limitation arises from

the limitation of the used methodologies. In our study, we used univariate time series methods,605

where the prediction of a given variable depends on a model fitted to past observations of the given

time series (Chatfield, 1988). This results in the following methodological limitations:

41

1. The used (univariate) forecasting methodologies cannot include explanatory variables and the

projection of the number of vulnerabilities merely do not allow for a more detailed investigation

of the properties of the underlying vulnerability (Newbold and Granger, 1974). For example,610

releasing the software early vs. late in the development process would be an interesting angle

of analysis. That would, however, require access to proprietary/confidential data, which is not

given in our context. Variables such as characteristics of the source code, the developers, or the

internal development methods are not available in such settings and were therefore purposefully

omitted. Instead of targeting a comprehensive explanation of the root causes of vulnerabilities,615

our paper focuses on forecasting the number of post-release security vulnerabilities, treating

internals of the software producer, including proprietary and confidential information, as a

black box.

2. The concentration on magnitudes (i.e., the number of vulnerabilities) are designed to select

point predictions that minimize an expected squared error cost function (i.e., MAE and RMSE620

in our case) and these forecasting techniques often extrapolate the current trend into the

future (Kling, 1987). Existing forecasting methodologies that are designed in particular for

the prediction of turning points use signal detection from indicators and stochastic simulation

of future events (Kling, 1987). In the case of prediction of vulnerabilities, such indicators

might include developer skills, code characteristics and development methodologies and for625

the stochastic simulation, one might refer to the analysis of vulnerabilities before and after a

(major) release in future analysis.

We further want to provide an outlook on how even better forecasting and interpretability can

be achieved. To achieve better forecasting accuracy, historical data on vulnerabilities that were

found, e.g., by software engineers, and closed but not publicly announced, could be explored. This630

would increase the number of vulnerabilities and produce less zero values, in turn leading to better

forecasting results with those methodologies not designed for the purpose of dealing with zero-

inflated time series (e.g., the exponential smoothing methodologies). In this regard, the impact of

increasing public awareness, partly sparked by targeted bounty programs, on vulnerability detection

might be included in future research. It was shown that monetary incentives significantly correlate635

with the number of vulnerabilities reported, so that large companies such as Facebook, Github, and

PayPal started to collaborate with security researchers or to participate in corresponding programs

on third-party bug bounty platforms such as Wooyun, HackerOne, BugCrowd, or Cobalt (Zhao

et al., 2015). In our set of software vendors, Google and Mozilla pursue this approach and provide

cash rewards for security researchers who identify security vulnerabilities in their products. With640

the help of such programs, the number of detected vulnerabilities would increase and corresponding

data could be included in time series approaches. This, as discussed above, leads in turn to a

42

decrease in zero values and can further improve the prediction accuracy. Developer skills are a

further promising predictor of vulnerabilities. Our paper could therefore be complemented by a

broader analysis of software projects advanced by individual developers or small teams, allowing for645

a better identification of skill-related effects on the occurrence of vulnerabilities.

To conclude, we hope that our study encourages academics to develop suitable forecasting

methodologies for post-release IT security vulnerabilities, which could subsequently improve predic-

tion accuracy.

650

Acknowledgments. The research leading to these results was supported by the Hanns-Seidel

foundation (HSS) (https://www.hss.de/en/) and by the “Bavarian State Ministry for Education,

Science and the Arts” as part of the FORSEC research association (https://www.bayforsec.de/

en/start/).

43

https://www.hss.de/en/
https://www.bayforsec.de/en/start/
https://www.bayforsec.de/en/start/
https://www.bayforsec.de/en/start/

References655

Adhikari, R., Agrawal, R., 2014. A combination of artificial neural network and random walk models

for financial time series forecasting. Neural Computing and Applications 24 (6), 1441–1449.

Alhazmi, O., Malaiya, Y., Ray, I., 2005. Security Vulnerabilities in Software Systems: A Quanti-

tative Perspective. In: Jajodia, S., Wijesekera, D. (Eds.), Proceedings of the 19th Annual IFIP

WG 11.3 Working Conference on Data and Applications Security. Vol. 3654 of Lecture Notes in660

Computer Science. Springer-Verlag, Berlin, Heidelberg, August 7-10, Storrs, Connecticut, USA,

pp. 281–294.

Alhazmi, O. H., Malaiya, Y. K., Ray, I., 2007. Measuring, analyzing and predicting security vulner-

abilities in software systems. Computers & Security 26 (3), 219–228.

Amin-Naseri, M., Tabar, B. R., 2008. Neural Network Approach to Lumpy Demand Forecasting for665

Spare Parts in Process Industries. In: Gunawan, T. S. (Ed.), Proceedings of the 2008 International

Conference on Computer and Communication Engineering. IEEE Computer Society, May 13-15,

Kuala Lumpur, Malaysia, pp. 1378–1382.

Arora, A., Krishnan, R., Telang, R., Yang, Y., 2010. An Empirical Analysis of Software Vendors’

Patch Release Behavior: Impact of Vulnerability Disclosure. Information Systems Research 21 (1),670

115–132.

Arora, A., Nandkumar, A., Telang, R., 2006. Does Information Security Attack Frequency Increase

with Vulnerability Disclosure? An Empirical Analysis. Information Systems Frontiers 8 (5), 350–

362.

Arora, S., Taylor, J. W., 2016. Forecasting Electricity Smart Meter Data Using Conditional Kernel675

Density Estimation. Omega 59, 47–59.

Chai, T., Draxler, R. R., 2014. Root Mean Square Error (RMSE) or Mean Absolute Error (MAE)?

- Arguments against Avoiding RMSE in the Literature. Geoscientific Model Development 7 (3),

1247–1250.

Chaplot, V., Walter, C., Curmi, P., 2000. Improving soil hydromorphy prediction according to DEM680

resolution and available pedological data. Geoderma 97 (3-4), 405–422.

Chatfield, C., 1988. What is the ’Best’ Method of Forecasting? Journal of Applied Statistics 15 (1),

19–38.

Chatfield, C., 2000. Time-Series Forecasting. Chapman & Hall/CRC, Boca Raton, Florida, USA.

44

Chatzipoulidis, A., Michalopoulos, D., Mavridis, I., 2015. Information Infrastructure Risk Prediction685

through Platform Vulnerability Analysis. Journal of Systems and Software 106, 28–41.

Chowdhury, I., Zulkernine, M., 2011. Using Complexity, Coupling, and Cohesion Metrics As Early

Indicators of Vulnerabilities. Journal of Systems Architecture 57 (3), 294–313.

ContractorUK, May 2016. IT Contractor Guide to Data Breach and Cyber Security Insurance.

URL http://www.contractoruk.com/insurance/guide_cyber_security_and_data_breach_690

insurance_it_contractors.html

Croston, J. D., 1972. Forecasting and Stock Control for Intermittent Demands. Journal of the

Operational Research Society 23 (3), 289–303.

Der Voort, M., Dougherty, M., Watson, S., 1996. Combining Kohonen Maps with ARIMA Time

Series Models to Forecast Traffic Flow. Transportation Research 4 (5), 307–318.695

Doucoure, B., Agbossou, K., Cardenas, A., 2016. Time series prediction using artificial wavelet

neural network and multi-resolution analysis: Application to wind speed data. Renewable Energy

92, 202–211.

eWeek, May 2016. Unpatched Software and the Rising Cost of Breaches: Security Reports.

URL http://www.eweek.com/security/unpatched-software-and-the-rising-cost-of-700

breaches-security-reports.html

Ferreiro, O., 1987. Methodologies for the Estimation of Missing Observations in Time Series. Statis-

tics & Probability Letters 5 (1), 65–69.

FireEye, May 2016. Beyond The Bottom Line : The Real Cost Of Data Breaches.

URL https://www2.fireeye.com/rs/848-DID-242/images/rpt-beyond-bottomline.pdf705

Franch, X., Carvallo, J. P., 2003. Using quality models in software package selection. IEEE software

20 (1), 34–41.

Gegick, M., Rotella, P., Williams, L., 2009. Toward Non-Security Failures as a Predictor of Secu-

rity Faults and Failures. In: Massacci, F., Redwine, S., Zannone, N. (Eds.), Proceedings of the

First International Symposium on Engineering Secure Software and Systems. Engineering Secure710

Software and Systems. Springer-Verlag, Berlin, Heidelberg, February 4-6, Leuven, Belgium, pp.

135–149.

GhasemiGol, M., Ghaemi-Bafghi, A., Takabi, H., 2016. A Comprehensive Approach for Network

Attack Forecasting. Computers & Security 58, 83–105.

45

http://www.contractoruk.com/insurance/guide_cyber_security_and_data_breach_insurance_it_contractors.html
http://www.contractoruk.com/insurance/guide_cyber_security_and_data_breach_insurance_it_contractors.html
http://www.contractoruk.com/insurance/guide_cyber_security_and_data_breach_insurance_it_contractors.html
http://www.eweek.com/security/unpatched-software-and-the-rising-cost-of-breaches-security-reports.html
http://www.eweek.com/security/unpatched-software-and-the-rising-cost-of-breaches-security-reports.html
http://www.eweek.com/security/unpatched-software-and-the-rising-cost-of-breaches-security-reports.html
https://www2.fireeye.com/rs/848-DID-242/images/rpt-beyond-bottomline.pdf

Gospodinov, N., Gavala, A., Jiang, D., 2006. Forecasting volatility. Journal of Forecasting 25 (6),715

381–400.

Gutierrez, R. S., Solis, A. O., Mukhopadhyay, S., 2008. Lumpy Demand Forecasting Using Neural

Networks. International Journal of Production Economics 111 (2), 409–420.

Herbst, N. R., Huber, N., Kounev, S., Amrehn, E., 2014. Self-Adaptive Workload Classification and

Forecasting for Proactive Resource Provisioning. Concurrency and Computation: Practice and720

Experience 26 (12), 2053–2078.

Hyndman, R. J., 2017. Forecasting Functions for Time Series and Linear Models. R package version

8.0.

URL http://github.com/robjhyndman/forecast

Hyndman, R. J., Koehler, A. B., 2006. Another Look at Measures of Forecast Accuracy. Interna-725

tional Journal of Forecasting 22 (4), 679–688.

Hyndman, R. J., et al., 2006. Another Look at Forecast-Accuracy Metrics for Intermittent Demand.

Foresight: The International Journal of Applied Forecasting 4 (4), 43–46.

IBM Global Study, 2013. The Economics of IT Risk and Reputation: What Business Continuity

and IT Security Really Mean to Your Organisation. Tech. rep., Ponemon Institute.730

URL http://public.dhe.ibm.com/common/ssi/ecm/rl/en/rlw03022gben/RLW03022GBEN.

PDF

Joh, H., 2011. Quantitative Analyses of Software Vulnerabilities. Ph.D. thesis, Colorado State Uni-

versity.

Joh, H., Malaiya, Y. K., 2009. Seasonal variation in the vulnerability discovery process. In: Inter-735

national Conference on Software Testing Verification and Validation. IEEE, pp. 191–200.

Johnson, P., Gorton, D., Lagerström, R., Ekstedt, M., 2016. Time between Vulnerability Disclosures:

A Measure of Software Product Vulnerability. Computers & Security 62, 278–295.

Johnston, F., Boylan, J. E., 1996. Forecasting for Items with Intermittent Demand. Journal of the

Operational Research Society 47 (1), 113–121.740

Kim, J., Malaiya, Y., Ray, I., 2007. Vulnerability Discovery in Multi-Version Software Systems. In:

Cukic, B., Dong, J. (Eds.), Proceedings of the Tenth IEEE High Assurance Systems Engineering

Symposium. IEEE Computer Society, November 14-16, Dallas, Texas, USA, pp. 141–148.

Kim, S., Kim, H., 2016. A New Metric of Absolute Percentage Error for Intermittent Demand

Forecasts. International Journal of Forecasting 32 (3), 669–679.745

46

http://github.com/robjhyndman/forecast
http://public.dhe.ibm.com/common/ssi/ecm/rl/en/rlw03022gben/RLW03022GBEN.PDF
http://public.dhe.ibm.com/common/ssi/ecm/rl/en/rlw03022gben/RLW03022GBEN.PDF
http://public.dhe.ibm.com/common/ssi/ecm/rl/en/rlw03022gben/RLW03022GBEN.PDF

Kling, J. L., 1987. Predicting the Turning Points of Business and Economic Time Series. Journal of

Business, 201–238.

Kourentzes, N., 2013. Intermittent demand forecasts with neural networks. International Journal of

Production Economics 143 (1), 198–206.

Last, D., 2016. Forecasting Zero-Day Vulnerabilities. In: Trien, J. P., Prowell, S. J., Goodall, J. R.750

(Eds.), Proceedings of the Eleventh Annual Cyber and Information Security Research Conference.

Association for Computing Machinery, April 5 - 7, Oak Ridge, Tennessee, USA, pp. 1–4, Article

No. 13.

Leitch, G., Ernesttanner, J., 1995. Professional economic forecasts: are they worth their costs?

Journal of Forecasting 14 (2), 143–157.755

Li, G., Shi, J., 2010. On Comparing Three Artificial Neural Networks for Wind Speed Forecasting.

Applied Energy 87 (7), 2313–2320.

Li, J., Heap, A. D., 2011. A Review of Comparative Studies of Spatial Interpolation Methods in

Environmental Sciences: Performance and Impact Factors. Ecological Informatics 6 (3-4), 228–

241.760

Martin, R. A., 2001. Managing Vulnerabilities in Networked Systems. Computer 34 (11), 32–38.

MITRE Corporation, 2017a. CVE - Common Vulnerabilities and Exposures: Download CVE.

URL https://cve.mitre.org/data/downloads/

MITRE Corporation, 2017b. CVE - Common Vulnerabilities and Exposures: Request a CVE ID.

URL https://cve.mitre.org/cve/request_id.html765

MITRE Corporation, 2017c. CVE - Common Vulnerabilities and Exposures: Terminology.

URL http://cve.mitre.org/about/terminology.html

Mozilla, November 2017. Release Notes for v 57.0.

URL https://www.mozilla.org/en-US/firefox/57.0/releasenotes/

Neuhaus, S., Zimmermann, T., Holler, C., Zeller, A., 2007. Predicting Vulnerable Software Compo-770

nents. In: Ning, P. (Ed.), Proceedings of the Fourteenth ACM Conference on Computer and Com-

munications Security. Association for Computing Machinery, October 29-November 2, Alexandria,

Virginia, USA, pp. 529–540.

Newbold, P., Granger, C. W., 1974. Experience with Forecasting Univariate Time Series and the

Combination of Forecasts. Journal of the Royal Statistical Society: Series A (General) 137 (2),775

131–146.

47

https://cve.mitre.org/data/downloads/
https://cve.mitre.org/cve/request_id.html
http://cve.mitre.org/about/terminology.html
https://www.mozilla.org/en-US/firefox/57.0/releasenotes/

Nguyen, V. H., Tran, L. M. S., 2010. Predicting Vulnerable Software Components with Dependency

Graphs. In: Scandariato, R., Williams, L. (Eds.), Proceedings of the Sixth International Workshop

on Security Measurements and Metrics. Association for Computing Machinery, September 16-17,

Bolzano, Italy, pp. 1–8, Article No. 3.780

Nikolopoulos, K., Buxton, S., Khammash, M., Stern, P., 2016. Forecasting Branded and Generic

Pharmaceuticals. International Journal of Forecasting 32 (2), 344–357.

Ogcu Kaya, G., Demirel, O. F., 2015. Parameter Optimization of Intermittent Demand Forecasting

by Using Spreadsheet. Kybernetes 44 (4), 576–587.

Öller, L.-E., Barot, B., 2000. The accuracy of European growth and inflation forecasts. International785

Journal of Forecasting 16 (3), 293–315.

Ozment, A., 2006. Software Security Growth Modeling: Examining Vulnerabilities with Reliability

Growth Models. In: Gollmann, D., Massacci, F., Yautsiukhin, A. (Eds.), Proceedings of the First

Workshop on Quality of Protection. Vol. 23 of Advances in Information Security. Springer Boston

Massachusetts, September 19-22, Como, Italy, pp. 1–13.790

Ozment, A., Schechter, S. E., 2006. Milk or Wine: Does Software Security Improve with Age? In:

Keromytis, A. D. (Ed.), Proceedings of the Fifteenth Conference on USENIX Security Sympo-

sium - Volume 15. USENIX Association Berkeley, California, USA, July 31-August 4, Vancouver,

British Columbia, Canada, pp. 93–104.

Petropoulos, F., Kourentzes, N., 2015. Forecast combinations for intermittent demand. Journal of795

the Operational Research Society 66 (6), 914–924.

Petropoulos, F., Kourentzes, N., Nikolopoulos, K., 2016. Another Look at Estimators for Intermit-

tent Demand. International Journal of Production Economics 181 (Part A), 154–161.

Ponemon Institute, June 2016. IBM — Ponemon Cost of Data Breach 2016.

URL http://www-03.ibm.com/security/infographics/data-breach/800

Ponemon Institute, June 2017. IBM — 2017 Ponemon Cost of Data Breach Study.

URL https://www.ibm.com/security/data-breach

Roumani, Y., Nwankpa, J. K., Roumani, Y. F., 2015. Time Series Modeling of Vulnerabilities.

Computers & Security 51, 32–40.

Scandariato, R., Walden, J., Hovsepyan, A., Joosen, W., 2014. Predicting Vulnerable Software805

Components via Text Mining. IEEE Transactions on Software Engineering 40 (10), 993–1006.

48

http://www-03.ibm.com/security/infographics/data-breach/
https://www.ibm.com/security/data-breach

Schryen, G., 2009. Security of Open Source and Closed Source Software: An Empirical Comparison

of Published Vulnerabilities. In: Kendall, K. E., Varshney, U. (Eds.), Proceedings of the Fifteenth

Americas Conference on Information Systems. Association for Information Systems, August 6 -

9, San Francisco, California, USA.810

Schryen, G., 2011. Is Open Source Security a Myth? What Do Vulnerability and Patch Data Say?

Communications of the ACM 54 (5), 130–139.

Shenstone, L., Hyndman, R. J., 2005. Stochastic Models Underlying Croston’s Method for Inter-

mittent Demand Forecasting. Journal of Forecasting 24 (6), 389–402.

Shin, Y., Meneely, A., Williams, L., Osborne, J., 2011. Evaluating Complexity, Code Churn, and De-815

veloper Activity Metrics as Indicators of Software Vulnerabilities. IEEE Transactions on Software

Engineering 37 (6), 772–787.

Shin, Y., Williams, L., 2008. An Empirical Model to Predict Security Vulnerabilities Using Code

Complexity Metrics. In: Rombach, D. (Ed.), Proceedings of the Second ACM-IEEE International

Symposium on Empirical Software Engineering and Measurement. Association for Computing820

Machinery, October 9-10, Kaiserslautern, Germany, pp. 315–317.

Shin, Y., Williams, L., 2013. Can Traditional Fault Prediction Models Be Used for Vulnerability

Prediction? Empirical Software Engineering 18 (1), 25–59.

Singh, U. K., Joshi, C., Gaud, N., 2016. Information Security Assessment by Quantifying Risk Level

of Network Vulnerabilities. International Journal of Computer Applications 156 (2), 37–44.825

Smith, B., Williams, L., 2011. Using SQL Hotspots in a Prioritization Heuristic for Detecting All

Types of Web Application Vulnerabilities. In: O’Conner, L. (Ed.), Proceedings of the 2011 IEEE

Fourth International Conference on Software Testing, Verification and Validation. IEEE Computer

Society, March 21-25, Berlin, Germany, pp. 220–229.

Symantec, April 2016. Symantec — 2016 Internet Security Threat Report.830

URL https://www.symantec.com/security-center/threat-report

Syntetos, A., Boylan, J., 1999. Correcting the Bias in Forecasts of Intermittent Demand. In: Gerald,

D. E. (Ed.), Proceedings of the Nineteenth International Symposium on Forecasting. June 26-30,

Washington, D.C., USA.

Syntetos, A. A., Babai, M. Z., Gardner, E. S., 2015. Forecasting Intermittent Inventory Demands:835

Simple Parametric Methods vs. Bootstrapping. Journal of Business Research 68 (8), 1746–1752.

Syntetos, A. A., Boylan, J. E., 2005. The Accuracy of Intermittent Demand Estimates. International

Journal of Forecasting 21 (2), 303–314.

49

https://www.symantec.com/security-center/threat-report

Taylor, J. W., Snyder, R. D., 2012. Forecasting Intraday Time Series with Multiple Seasonal Cycles

Using Parsimonious Seasonal Exponential Smoothing. Omega 40 (6), 748–757.840

Telang, R., Wattal, S., 2007. An Empirical Analysis of the Impact of Software Vulnerability An-

nouncements on Firm Stock Price. IEEE Transactions on Software Engineering 33 (8), 544–557.

Tiwana, A., 2015. Platform desertion by app developers. Journal of Management Information Sys-

tems 32 (4), 40–77.

Venter, H., Eloff, J. H., 2004. Vulnerability Forecasting - A Conceptual Model. Computers & Secu-845

rity 23 (6), 489–497.

Walden, J., Stuckman, J., Scandariato, R., 2014. Predicting Vulnerable Components: Software Met-

rics vs Text Mining. In: O’Conner, L. (Ed.), Proceedings of the Twenty-Fifth IEEE International

Symposium on Software Reliability Engineering. IEEE Computer Society, November 3-6, Naples,

Italy, pp. 23–33.850

Wang, J. A., Zhang, F., Xia, M., 2008. Temporal Metrics for Software Vulnerabilities. In: Sheldon,

F. T., Mili, A. (Eds.), Proceedings of the Fourth Annual Workshop on Cyber Security and In-

formation Intelligence Research. Association for Computing Machinery, May 12-14, Oak Ridge,

Tennessee, USA, pp. 1–3.

Wang, L., Zeng, Y., Chen, T., 2015. Back propagation neural network with adaptive differential855

evolution algorithm for time series forecasting. Expert Systems with Applications 42 (2), 855–863.

Wang, X., Smith-Miles, K., Hyndman, R., 2009. Rule Induction for Forecasting Method Selection:

Meta-learning the Characteristics of Univariate Time Series. Neurocomputing 72 (10), 2581–2594.

Willemain, T. R., Smart, C. N., Schwarz, H. F., 2004. A New Approach to Forecasting Intermittent

Demand for Service Parts Inventories. International Journal of forecasting 20 (3), 375–387.860

Willemain, T. R., Smart, C. N., Shockor, J. H., DeSautels, P. A., 1994. Forecasting Intermittent

Demand in Manufacturing: A Comparative Evaluation of Croston’s Method. International Journal

of Forecasting 10 (4), 529–538.

Willmott, C. J., 1982. Some Comments on the Evaluation of Model Performance. Bulletin of the

American Meteorological Society 63 (11), 1309–1313.865

Willmott, C. J., Ackleson, S. G., Davis, R. E., Feddema, J. J., Klink, K. M., Legates, D. R.,

O’Donnell, J., Rowe, C. M., 1985. Statistics for the Evaluation and Comparison of Models. Journal

of Geophysical Research: Oceans 90 (C5), 8995–9005.

50

Willmott, C. J., Matsuura, K., 2005. Advantages of the Mean Absolute Error (MAE) over the Root

Mean Square Error (RMSE) in Assessing Average Model Performance. Climate Research 30 (1),870

79–82.

Younis, A., Malaiya, Y. K., Ray, I., 2016. Assessing Vulnerability Exploitability Risk Using Software

Properties. Software Quality Journal 24 (1), 159–202.

Zaidan, A., Zaidan, B., Hussain, M., Haiqi, A., Kiah, M. M., Abdulnabi, M., 2015. Multi-criteria

analysis for os-emr software selection problem: A comparative study. Decision Support Systems875

78, 15–27.

Zhang, S., Caragea, D., Ou, X., 2011. An Empirical Study on Using the National Vulnerability

Database to Predict Software Vulnerabilities. In: Hameurlain, A., Liddle, S. W., Schewe, K.-

D., Zhou, X. (Eds.), Proceedings of the Twenty-Second International Conference on Database

and Expert Systems Applications. Vol. 6860 of Lecture Notes in Computer Science. August 29 -880

September 2, Toulouse, France, pp. 217–231.

Zhao, M., Grossklags, J., Liu, P., 2015. An Empirical Study of Web Vulnerability Discovery Ecosys-

tems. In: Ray, I. (Ed.), Proceedings of the Twenty-Second ACM SIGSAC Conference on Computer

and Communications Security. Association for Computing Machinery, October 12-16, Denver,

Colorado, USA, pp. 1105–1117.885

Zhao, W., Wang, J., Lu, H., 2014. Combining Forecasts of Electricity Consumption in China with

Time-Varying Weights Updated by a High-Order Markov Chain Model. Omega 45, 80–91.

51

	Introduction
	Research Background
	IT Security Vulnerabilities
	IT Security Vulnerability Forecasting

	Methodology and Data
	Forecasting Methodology
	Exponential Smoothing Methodologies
	ARIMA
	Croston's Methodology
	Neural Network

	Accuracy Metrics
	Accuracy Metric: Mean Absolute Error
	Accuracy Metric: Root Mean Square Error
	Accuracy Metrics and Time Series Structure

	Dataset: National Vulnerability Database

	Empirical Results and Discussion
	Results
	Discussion
	Prediction Accuracy Depending on Software and System Packages
	Robustness of Different Measures of Prediction Accuracy

	Conclusion

