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Ultra-soft 100 nm Thick Zero Poisson’s Ratio Film with 60% 
Reversible Compressibility

Chieu Nguyen, Vivek Maheshwari†, and Ravi F. Saraf‡

‡Department of Chemical and Biomolecular Engineering, Nebraska Center for Materials and 
Nanoscience, University of Nebraska-Lincoln, Lincoln, NE 68512

†Present Address: University of Waterloo, Canada

Abstract

About a 100 nm thick multilayer film of nanoparticle monolayers and polymer layers is shown to 

behave like cellular-foam with a modulus below 100 KPa. The 1.25 cm radius film adhered to a 

rigid surface can be compressed reversibly to 60% strain. The more than four orders of magnitude 

lower modulus compared to its constituents is explained by considering local bending in the 

(nano)cellular structure, similar to cork and wings of beetles. As the rigidity of the polymer 

backbone is increased in just four monolayers the modulus of the composite increases by over 

70%. Electro-optical map of the strain distribution over the area of compression and increase in 

modulus with thickness indicates the films have zero Poisson’s ratio.

Graphical Abstract
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Squeezing films of most solids, liquids and granular materials causes dilation in the lateral 

dimension which is characterized by a positive Poisson’s ratio. Auxetic materials,1 such as, 

special foams,2 crumpled graphite,3 zeolites,4 spectrin/actin membrane,5,6 and carbon 

nanotube laminates7 shrink, i.e., their Poisson’s ratio is negative. As a result of Poisson’s 

effect, the force to squeeze an amorphous material, for example, a viscous thin film coating 

adhered to rigid surface increases by over million fold as the thickness decreases from 10 
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μm to 100 nm due to constrain on lateral deformations and off-plane relaxation.8 In contrast, 

for zero-Poisson’s ratio material, the absence of lateral deformation on bending, 

compressing, or extending, they can be tightly rolled or designed to make soft ultra thin film 

without any thickness enhancement. Due to a special cellular structure,9 cork is a near- zero- 

Poisson’s- ratio- material that does not dilate or contract on compression,10 therefore it can 

be pressed in a wine bottle with ease to form a seal.2 Wings of beetles also have near zero 

Poisson’s ratio.11 No lateral strain during flight allows the wings to morph without (energy 

expensive) bulging and buckling in other directions.12 Biomimicked special cellular 

urethane foams are designed with zero Poisson’s ratio to make morphing wings for (future) 

fuel efficient aircraft.13 Gas, is an ideal zero Poisson’s ratio material that, easily compresses 

while constrained in the lateral direction.1 Thus, a soft, gas-like, solid thin film that can be 

conformally deposited on surfaces of any shape will be an effective coating for improving 

damping, cushioning, and traction for gripping. Especially, the soft modulus comparable to 

tissue (i.e., less than 100 KPa)14 will have potential applications, for example, as coating on 

surgical tools to improve traction to grip delicate tissue samples with high precision for 

robotics and minimally invasive surgery, 15–18 as a surface coating on a complex 3D scaffold 

to regulate differentiation of stem cells by regulating the modulus in the 10 to 100 KPa 

range,19 as a highly compressible pressure-sensitive dielectric or conductive film for tactile 

sensing on par with a human finger for surgical and robotic applications, 17,20–23 and as soft-

cellular-structured porous coating on to 3D scaffold surface for cell proliferation24.

We demonstrate, ultra-soft, 100 nm films of polymer/nanoparticle composite made by 

conventional dip coating on solid surface that can be reversibly compressed over 60% strain 

between rigid plates requiring (very low) stresses below 100 KPa. Using a strategy similar to 

cellular foams where compressive strain is distributed in the off-plane direction by local 

bending,25 we demonstrate a general approach to fabricate nano-structured composite films 

of modulus in 30 to 100 KPa range. The modulii of individual components of the film, Au 

and CdS nanoparticles in a polymer matrix, are well above 1 GPa, including the polymer 

matrix.26 The 104-fold reduction in modulus and gas-like compressibility is explained as 

local (reversible) bending of the polymer layer as the nanoparticles in adjacent layers 

interdigitate on compression.

The composite film is made by dip coating alternate layers of poly(allylamine 

hydrochloride) (PAH) and poly(styrene sulfonate) (PSS) followed by absorbing a monolayer 

of 10 nm Au or 3 nm CdS particles27 (Fig. 1(a) and (b)). The molecular weights are 15,000 

and 70,000 Daltons; and solution concentrations are 0.1% and 0.2% by weight, for PAH and 

PSS, respectively. The films are deposited on an Indium-Tin-Oxide (ITO) electrode on glass. 

The final structure is composed of three layers of Au nanoparticles and two layers of CdS 

nanoparticles spaced by N layers of PSS and PAH that alternate such that PAH is in contact 

with the nanoparticle layer or the electrode. Over 60 samples with N ranging from 3 to 21 

layers are studied. The average thickness of the PSS/PAH layer, measured by ellipsometry 

for N = 3 to 21 layer films on Si is 1.12 nm/layer. The estimated thickness of the composite 

film ranges from 65 to 180 nm. The load is applied by pressing a flat Al platen onto a 12.5 

mm radius optically smooth quartz disk coated with 500 nm thick Cr/Au electrode placed on 

the device. The Al platen is attached to a ball-and-socket joint to ensure uniform force 

distribution. A bias, V, is applied across the thickness of the film and the current, I, and 
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electroluminescence intensity, Iel, from CdS is recorded concomitantly as a function of 

applied stress, σ, to quantitatively measure the strain, ε, in the film. The “tactile image” is 

recorded by focusing the electroluminescent light distribution on CCD camera (instead of 

PMT tube) (Fig. 1(c)). The tactile image is sensitive to local modulation in electron 

tunneling due to local strain.23 The uniform light in tactile image, especially closer to the 

edge compared to the center indicates that the stress distribution is uniform. A uniform stress 

distribution under no slip condition from center to the edge indicates no Poisson’s effect.8

As the film is squeezed, the particles come closer; and both I and IEL increase. The 

sensitivity on I-V characteristics of the device to stresses <100 KPa indicates that the 

modulus of the film is expected to be low (Fig. 2(a)). In contrast, the current, through a pure 

polymer film made of 84 layers of PSS/PAH incorporating no nanoparticles, does not exhibit 

any dependence on σ for the same range (Fig. 2(b)). The (expected) high toughness of pure 

polymer film on squeezing is typical for a solid thin film due to confinement of in-plane 

strain. The linear I-V behavior of the film made from just PSS and PAH is due to (ohmic) 

ionic current, IN, due to the hygroscopic nature of polyelectrolytes. The ohmic current, IN = 

V/R, where R is the (ionic) resistance. An order of magnitude higher current and nonlinear I-

V behavior in the composite film, compared to pure polymer, is due to electron tunneling 

between the adjacent nanoparticles along the thickness direction superimposed on IN. The 

nonlinear tunneling current, IT, given by the Fowler- Nordheim equation is IT = 

Pexp(−aK/V), where P is proportional to the number of percolating channels, a is the 

tunneling distance between the particles, and K is a proportionality constant. 23,28 As a 

result, the total current for the composite film is given by I = V/R + Pexp(−aK/V). By 

differentiating the I-V at fixed σ, the differential conductance, dI/dV, as a function of V is 

obtained (Fig. 2(c)). On extrapolating to V→0, [dI/dV]V=0 = 1/R at various σ is estimated 

(Fig. 2(c) inset). As expected, R deceases monotonically as σ increases. Subsequently, by 

subtracting the ionic current and fitting a single exponential to V versus I – V/R (= It), P and 

aK are determined. Interestingly, from the IT characteristics, as the film deforms, the 

tunneling current increases largely due to P (Fig. 2(d)) while the inter-particle distance 

remains nominally constant (Fig. 2(d) inset). Thus, on deformation, the rise in tunneling 

current occurs primarily due to a liner increase in the number of percolation channels as the 

particles come closer, i.e., IT ~ P. Furthermore, the tunneling current is exclusively through 

the CdS nanoparticles; and electroluminescence only occurs due to transport through CdS, 

i.e., IEL ~ IT. Thus, a linear correspondence between IEL ~ P at all the σ is expected (Fig. 

2(e)).

The compressive strain in the film is estimated from R. The ionic resistance is given by R = 

ρL/A, where ρ is the resistivity, L is the film thickness, and A is the “effective” cross-

sectional area for ion transport along the thickness of the film. The resistivity, ρ ~ 1/c, where 

c is a concentration of mobile ions, i.e., charge density. Assuming the number of ions does 

not change on compression (i.e., the lateral strain is negligible), c ~ 1/AL. Thus, R ~ (1/AL)
−1(L/A), or R ~ L2. Important to note is that even though A may change on deformation due 

to a more constricted path for ion conduction as particles come closer, the scaling R ~ L2 is 

still valid. Considering affine deformation, the strain in the film is given by εaff = (Ro0.5 – 

R0.5)/RO
0.5, where RO is obtained by extrapolating the ionic resistance to σ = 0 (Fig. 2(c) 

inset). A typical stress-strain curve shows two distinct regimes: at low stress, the 
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deformation is linear with low modulus; and subsequently, the strain tends to flatten leading 

to a higher modulus similar to the densification observed in foams25 (Fig. 3 and Fig. S1 in 

the Supporting Information Online (SIO)). Typical stress-strain curves for the other values of 

N studied among the more than 60 films tested are shown in the SIO (Fig. S1). The data at 

low stress-strain is difficult due to the small forces involved. Although a low friction 

universal joint is used to ensure flat contact, a small force is needed to “settle” the 

parallelism between the film and the Al platen before deformation of the film commences. 

Based on the data obtained for the low stress linear regime, the strains are 35% to 60% for 

all of the samples tested. Similar to conventional foams, at high strains, the actual strain may 

be smaller than εaff in the densification region.25

The large reversible strain with low modulus of the composite films is qualitatively 

explained in terms of a simple model (Fig. 4(a)). Owing to large particle density,23 highly 

stratified, parallel layers of Au nanoparticles are formed (Fig. 1, SEM image). The non-

conformal coating of the polymer on high density Au particle coverage leads to inter-particle 

voids (Fig. 4(a)). Voids in the interstitial regions have been inferred from x-reflectivity 

measurements on similar multilayer structure incorporating nanoparticle.29 As the film is 

compressed, the larger Au nanoparticle will bend or squeeze the polymer layer containing 

the smaller CdS particles. The schematic, nominally to scale for N = 7 that will have a 

nominal thickness of ~7 nm for the PSS/PAH layers, shows ε of ~40% by local bending and 

squeezing of the polymer layer. As the tunneling current is exponentially sensitive to inter-

particle distance, which does not change significantly (Fig. 2(d) inset), the primary mode of 

deformation is by bending and not squeezing. The reversibility also suggests that the film 

does not rupture during buckling. The deformation of the cellular structure in Fig. 4(a) is 

similar to cork10 where the schematically marked nodes of the cell correspond to the 

location of the Au nanoparticles (Fig 4(b). Consistent with the bending, as the interposer 

layer gets thicker, the film becomes stiffer leading to higher modulus (Fig. 4(c), even though 

the amount of polymer relative to the nanoparticles increases. Conventionally, due to 

Poisson’s effect, the lateral strain on compression is relived more effectively as thickness 

increases leading to lower stiffness. A reverse effect is observed in films studied: The 

stiffness increases monotonically with thickness in the range studied (Fig. 4(c), inset). This 

implies that the strain in the lateral direction is insignificant or zero, in other words, the 

Poisson’s ratio is close to zero.

To further evaluate the validity of the bending model, the stiffness of the interposer layer is 

significantly reduced by eliminating CdS particles. As expected, the modulus is lowered 

compared to CdS-containing film (Fig. 4(d)). Furthermore, the plateau occurs at a lower 

stress level indicating that the pure polymer interposer layer is easier to bend at lower stress 

levels (Fig. 4(d) and Fig S1 in SIO). Conversely, consistent with the bending model, 

replacing the flexible PSS polymer with a more rigid electrolyte, heparin, the modulus is 

enhanced twofold. Furthermore, the modulus can be reduced by increasing the Au particle 

size to incorporate larger voids. For example, for N = 9, the modulus is reduced from ~55 to 

~30 KPa as Au particle size increases from 10 to 15 nm (Fig. S2, SIO).

In summary, a ~100 nm thick layered film of polymer and nanoparticle monolayers is self-

assembled to impart gas-like compressibility with a modulus of 50 to 100 KPa that is 
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comparable to tissue. The compression modulus of the film is four orders of magnitude 

lower than its individual constituents. The low modulus and large reversible compressibility 

up to 60% strain is explained by local bending of the polymer layer. The modulus of the 

composite film increases with film thickness. The measurements on the mechanics of the 

film indicate that the Poisson’s ratio is zero. The films can be self-assembled by sequential 

dip coating process to form a soft, foam-like coating for applications, such as, improving 

traction to grip delicate tissues by surgical tools, sensitive tactile devices, and coatings on 

scaffolds for stem cell differentiation. To our knowledge, this is the first demonstration of 

thin films of thickness in nanometer scale that exhibit zero Poisson’s ratio. The approach can 

be generalized to micron to centimeter scale by using larger particles and inter particle 

layering material.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: 
(a) Schematic of electrical characterization of the device showing the load application and 

optical signal collection on a photomultiplier tube (PMT). Films are made with three and 

two monolayer of Au and CdS particles, respectively. (b) The 140 nm wide scanning 

electron microscope (SEM) image (with no metal deposition) shows the three 10 nm Au 

particle layers. The CdS particles are too small to visualize. (c) The tactile image of the 

quartz disk formed on the CCD camera at 40 KPa. Reproduced with permission from 

Reference 21. Copyright 2008 WILEY-VCH.
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Figure 2: 
Electrical response of the film on uniaxial compression. (a) A typical change in I-V response 

at different applied stress (N = 13). The line is a fit to the tunneling and ionic current model. 

Inset: Corresponding IEL measured concomitantly with the I-V characterization. (b) The I-V 

curve does not change for PSS/PAH film (N =84 with no nanoparticles). (c) Typical effect of 

stress on dI/dV versus V behavior (N =5). (d) Typical behavior of tunneling parameters, P 

and aK, as a function of stress for three films. Each data point is based on an I-V curve at 

fixed. σ. (e) Typical correspondence between P and IEL (N = 5).

Nguyen et al. Page 8

Nano Lett. Author manuscript; available in PMC 2019 April 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3: 
Typical mechanical behavior of two films calculated from ionic resistance exhibiting the 

reversible deformation to high compressive strains. Typical behavior of other values of N 

studied is in SOM, Fig. S1.
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Figure 4: 
(a) The two local deformation modes on compression are bending and squeezing of the 

dielectric layer. The relative dimensions of the schematic are nominally to scale depicting a 

strain of about 40% in N =7 film. (b) The electron microscope image of the cellular structure 

of cork. Reproduced with permission from Reference 9. Copyright 2005 Maney Publishing. 

Idealized model with an overlay of the nanoparticle/polymer layered structure. The width of 

the image is 350 μm. Reproduced with permission from Reference 10. Copyright 2010 John 

Wiley and Sons. (c) Effect of N on the modulus of the film based on initial linear region 

(Fig. 3) averaged over 60 samples. (d) The effect of stiffness of the polymer layer on the 

modulus of the film made from three layers of 10 nm Au particle monolayer with no CdS 

particles.
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Supporting Information Online 
 

Two sets of data are presented.  All the samples have three layers of Au and two layers of CdS 

nanoparticles as schematically shown in Fig. 1.  The number of polymer layers, N is indicated in 

the Figure. The Au nanoparticle size is 10 nm (Figure A) and 15 nm (Figure B).  
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Figure S1:  Typical stress-strain curve for  N = 3, 7, 9, 17, and 21.  

Figure S2:  Stress-strain curve for three monolayers of 15 nm Au particle and two monolayers 

of 3 nm CdS particles.  
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