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We investigated thickness-shear vibrations of a contoured, AT-cut quartz resonator with a pair of electrodes dis-
placed from the resonator centre. The scalar differential equations by Stevens and Tiersten for thickness-shear
vibrations of electroded and unelectroded quartz plates were employed. Based on the variational formulation of
the scalar differential equations established in a previous paper and the variation-based Ritz method with trigono-
metric functions as basis functions, free vibration resonance frequencies and trapped thickness-shear modes were
obtained. The effects of the electrode off centre on resonance frequencies and mode shapes were examined. When
the electrode off centre is about one hundredth of the electrode length, the relative frequency shift is of the or-
der of one part per million, significant in certain resonator design and applications. The electrode off centre also
causes the loss of symmetry of modes, which has an adverse effect on resonator frequency stability under a normal
acceleration.

1. INTRODUCTION

Piezoelectric crystal resonators are widely used as fre-
quency standards for time-keeping and frequency operation
with broad applications in telecommunication and sensing.
They have been under sustained study experimentally, numer-
ically, and theoretically.1–13 Most crystal resonators operate
with thickness-shear (TSh) modes of quartz plates. Contoured
plate resonators with nonuniform thickness are used for strong
energy trapping of their operating TSh modes, in which the
TSh vibration is confined near the resonator centre and decays
toward the resonator edge. Metal electrodes on crystal res-
onators are necessary for electrically exciting acoustical vibra-
tions through piezoelectric coupling. In a typical quartz plate
resonator, there are two electrodes on the plate’s top and bot-
tom surfaces. They cover the central part of the plate surfaces
only, leaving the border part of the plate unelectroded. Ideally,
the two electrodes should be identical and are perfectly placed
at the centre of the resonator. However, in real resonator manu-
facturing, one electrode is pre-deposited with a predetermined
thickness. Then the electrode on the other side of the plate

has a thickness that is determined by the frequency of the elec-
troded plate. This usually results in a plate with two electrodes
of slightly different thicknesses. In addition, the location of
the centre of the electrodes may be slightly off the centre of
the crystal plate due to manufacturing imperfections.

Since the frequency requirement of crystal resonators is very
high (usually in terms of parts per million or ppm for civilian
applications and several orders of magnitude higher in mili-
tary applications), the effects of imperfect electrodes have been
a constant concern in resonator design and manufacturing. The
effects of electrodes of unequal thicknesses can be taken into
consideration into a theoretical analysis in a relatively sim-
ple manner and has been studied by many researchers.14–17 It
has been shown that, for frequency consideration, to the low-
est order, it is the total thickness of the two electrodes that
matters. However, for the effects of off-centre electrodes, the
problem is much more complicated and challenging. Theo-
retical results on off-centre electrodes are very few. The only
relevant reference known to the authors of the present paper is
He et al.,18 which is on a related but different problem of mis-
matched or unequal electrodes. The analysis in He et al.18 was
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for the relatively simple case of a flat resonator in the special
case of straight crested modes with the TSh displacement vary-
ing along one of the two in-plane directions of the plate, x3,
only. In addition to the frequency effect, it is also known that
off-centre electrodes can cause symmetry loss in TSh modes
which has important implications in resonator frequency sta-
bility.19, 20 In general, the effects of off-centre electrodes are
still mostly unknown. They are potentially important and need
to be quantified.

In this paper, we study the effects of off-centre electrodes
in a contoured resonator with modes varying along both of the
in-plane directions of the plate, x3 and x1. Both the effects on
frequency and on mode shapes are considered.

2. CONTOURED RESONATOR WITH OFF-
CENTRE ELECTRODES

Consider a partially electroded, contoured quartz plate res-
onator of a variable thickness 2h with electrode off centre as
sketched in Fig. 1. In this paper we study the case where the top
and bottom electrodes shift in the same way. The case where
the two electrodes shift differently is important in applications
but it cannot be modelled within the theoretical framework of
the present paper and remains challenging.

Specifically, the thickness of the resonator is varying accord-
ing to:21

2h = 2h0[1 − (x1
2 + x3

2)

4Rh0
]; (1)

where R is the radius of curvature of the spherical surface of
the contoured resonator and 2h0 is the centre thickness. 2l is
the electrode length. 2h′ is the electrode thickness. We note
that for large (x1

2 + x3
3)

1
2 Eq. (1) may result in a zero or

even negative thickness. This is not a problem because, as the
results will show, in contoured resonators, the vibration dies
out quickly away from the centre of the plate before the plate
thickness diminishes to zero. Therefore it does not matter what
the plate thickness is for large (x1

2 +x3
3)

1
2 . The active region

of the resonator is characterized by a small (x1
2 + x3

3)
1
2 . For

small (x1
2 + x3

3)
1
2 we have, approximately:21

1

(2h)2
∼=

1

(2h0)2
[1 +

(x1
2 + x3

2)

2Rh0
]. (2)

3. VARIATIONAL ANALYSIS

The TSh motion of the resonator in Fig. 1 is governed by
the scalar differential equations22–26 which take slightly differ-
ent forms for the electroeded and unelectroded parts of the res-
onator. In our previous paper,27 the scalar equations were writ-
ten in variational form which provides the theoretical founda-
tion for analysing quartz TSh resonators using variation-based
techniques. The variational formulation has been shown to be
effective in the analyses of a flat resonator27 and a contoured
resonator,28 and both were perfect resonators without electrode

Figure 1. Side view of a contoured resonator with its varying thickness and
electrode off centre.

off centre. Below, we use the Ritz method based on the vari-
ational formulation to analyse the free vibration of the con-
toured resonator in Fig. 1 with electrode off centre.

The procedure and the major equations of the variational for-
mulation are formally the same as those in Shi et al.27 and
therefore are not repeated here. However, since the resonator
in the present paper is contoured and is with electrode off cen-
tre, there are significant complications. One is that the ωn

2 and
ωn

2 in Eq. (7)27 are no longer constants and are functions of
x1 and x3 as follows through Eq. (2):28

ωn
2 ∼=

n2π2ĉ(1)

ρ4h0
2 [1 +

(x1
2 + x3

2)

2Rh0
];

ωn
2 ∼=

n2π2c̄(1)

ρ4h0
2 [1 +

(x1
2 + x3

2)

2Rh0
]. (3)

Eq. (3) already appeared28 for a contoured resonator without
electrode off centre. The major complication in the present
paper is that because of the electrode off centre and the related
symmetry loss of the resonator structure, the basis functions
of the Ritz method27, 28 need to be extended greatly. To be
specific, consider the rectangular resonator with electrode off
centre in Fig. 2. According to the Ritz method, we construct
the following expression for the TSh displacement field using
the modes of a rectangular plate with a uniform thickness as
basis functions25:

u1
n =

∑
m,p

Ampcos(
mπx1

2l
)cos(

pπx3
2w

)+

+
∑
m1,p1

Am1p1
sin(

m1πx1
2l

)cos(
p1πx3

2w
)+

+
∑
m2,p2

Am2p2
cos(

m2πx1
2l

)sin(
p2πx3

2w
)+

+
∑
m3,p3

Am3p3sin(
m3πx1

2l
)sin(

p3πx3
2w

); (4)

where Amp, Am1p1
, Am2p2

and Am3p3
are undetermined con-

stants. The series expansion of the TSh displacement in Eq. (4)
has to include basis functions symmetric and antisymmetric in
both x3 and x1. As a consequence Eq. (4) is four times as long
as the series expansion27, 28 when there was no electrode off
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Figure 2. A rectangular resonator with electrode off centre.

centre. Eq. (4) is substituted into the variational functional,27

resulting in a quadratic form of the undetermined constants.
The minimization of the quadratic form leads to a system of
linear homogeneous equations for the undetermined constants.
For nontrivial solutions of the undetermined constants, the de-
terminant of the coefficient matrix of the linear equations has
to vanish, which yields the frequency equation. For each fre-
quency, the corresponding nontrivial solution of the undeter-
mined constants from the homogeneous equations determines
the corresponding mode shape. These are very complicated
and are carried out on a computer.

4. NUMERICAL RESULTS AND DISCUSSION

Consider an AT-cut quartz resonator with a typical centre
thickness 2h0 = 0.68783 mm, radius of curvature of the
contour R = 2000 mm, electrode/plate mass ratio R′ =

1.869×10−3, square electrodes of a = c = 5mm, and square
plate with l = w = 3a. For the modes of interest with slow in-
plane variations along x3 and x1, numerical tests show that the
trigonometric series in Eq. (4) converges rapidly. When 10 or
11 terms are kept in each of the x1 and x3 directions, the fun-
damental TSh frequency found has seven significant figures.
This is sufficient for ordinary resonator design. Ten terms in
each direction are used for the rest of the numerical calculation.
Generally, contoured resonators are used on the overtones, e.g.,
n = 3 or n = 5. Our theoretical formulation is valid for any
n. In the following we consider the fundamental mode with
n = 1 for numerical examples. It is known that modes with
larger values of n are qualitatively similar but decay faster out-
side the electroded region. The numerical results are organized
in the following order. The case of a perfect resonator without
electrode off centre is presented first as a reference. Then we
examine three separate cases with electrode off centre. We
vary d alone first with b fixed. Then we vary b alone with
d fixed. Finally we vary both d and b simultaneously.

Fig. 3 shows the operating mode of the resonator in the case
of b = 0 and d = 0, i.e., the case without electrode off centre as
a reference. Both a three-dimensional view and a contour view
of the distribution of the TSh displacement in the plane of the
plate are given. The mode is perfectly symmetric about the x3

and x1 axes, with the maximum displacement at the centre of
the electrode, which coincides with the centre of the plate. The
distribution is slightly elliptical because of the in-plane mate-
rial anisotropy of quartz. We note that the vibration is mainly
under the electrodes and decays rapidly outside them. This is
the so-called energy trapping by the electrodes and the contour.
The vibration decays to essentially zero near the plate edges
where mounting can be designed without affecting the oper-
ation of the device. For this perfectly symmetric mode, it is
known that the normal acceleration sensitivity of the resonator
is zero,19, 20 which is ideal for frequency stability consideration
of resonators when they are mounted on moving objects such
as missiles and satellites.

When d is varied alone, the operating mode and its fre-
quency are shown in Fig. 4 for three different values of d in in-
creasing order. When d varies, the electrodes move up or down
along x3 in Fig. 2. Its effect is hardly noticeable in Fig. 4(a)
when d is small. In Fig 4(b) it is visible that the vibration
distribution has extended in the positive x3 direction, follow-
ing the shift of the electrodes. In a contoured resonator, both
the electrodes and the contour affect energy trapping together.
The vibration tends to be in the centre of the plate where the
plate is thick, and also tends to be under the electrodes. In
Fig. 4 the effect of the contour dominates. As the electrodes
move up, the upper and lower boundaries of the vibrational re-
gion tend to follow the electrodes to some degree but the centre
of the vibration is still trapped by the contour at the centre. In
Fig. 4(c), the shift of the mode is very clear. We note that as
d increases, the frequency increases. This is because as the
electrodes move away from the plate centre where the vibra-
tion is large, the inertia of the electrodes is felt less and hence
the frequency increases.

Figure 5 shows the corresponding case when b is varied
alone and the electrodes move to the right in the positive x1
direction. Similar to the behaviour in Fig. 4, as the electrodes
shift to the right, the vibration distribution also extends to the
right, but the centre of the vibration seems to be still roughly
trapped at the plate centre, showing the dominance of the con-
tour in this case. The frequency increases slightly from (a) to
(c) as expected.

In Figure 6, both d and b are varied simultaneously while
maintaining b = d. In this case, following the electrodes, the
vibration distribution extends in the upper right direction as
expected. The frequency also increases slightly.

To have a closer look at the effects of the electrode off centre
on mode shapers, we plot the effect of d alone on mode shapes
from Fig. 4 along x1 = 0 in Fig. 7(a), and the effect of b alone
on mode shapes from Fig. 5 along x3 = 0 in Fig. 7(b). The loss
of symmetry of the modes can be clearly seen in Fig. 7, which
is important in resonator frequency stability consideration.19, 20

At present, the military requirement for the acceleration sensi-
tivity of resonators on accelerating weapon systems is moving
from 10−10

g to 10−12

g for the relative frequency shift per g. This
is experiencing great challenges. The loss of mode symmetry
contributes to acceleration sensitivity.19, 20 It is highly unde-
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Figure 3. A perfect resonator without electrode off centre. ω1 = 1.526029× 107 1
s

.

Table 1. Effect of electrode off centre on frequency.

Eccentric distance ω1(×107 1
s
) Relative difference (ppm)

b = 0, d = 0.01a 1.526030 0.7
b = 0, d = 0.05a 1.526035 4.0
b = 0, d = 0.1a 1.526053 15.7
b = 0, d = 0.2a 1.526128 64.9
d = 0, b = 0.01a 1.526030 0.7
d = 0, b = 0.05a 1.526036 4.6
d = 0, b = 0.1a 1.526057 18.3
d = 0, b = 0.2a 1.526141 73.4

d = 0.01a, b = 0.01a 1.526030 0.7
d = 0.05a, b = 0.05a 1.526042 8.5
d = 0.1a, b = 0.1a 1.526081 34.1
d = 0.2a, b = 0.2a 1.526238 136.9

b = 0, d = 0 1.526029 0.0

sirable and needs to be understood and controlled in resonator
design and production.

In Fig. 8(a), d = 0.2a is fixed while the radius of curvature
R of the contour is increased to reduce the dominance of the
contour. When R is large or the contour is less and hence the
electrodes become more dominant in energy trapping, it can
be seen that the loss of symmetry because of the electrode off
centre becomes more prominent. Figure 8(b) shows the corre-
sponding situation when b = 0.2a is fixed and R is increased.
The behaviour is similar to that in Fig. 8(a).

In Table 1, the relative frequency difference from a perfect
resonator is shown for various values of electrode off centre.
For the cases of b = 0 and d = 0.01a; d = 0 and b = 0.01a;
and d = b = 0.01a which have the smallest frequency dif-
ference, the relative frequency difference is of the order of
one part per million (ppm). Most precision resonators are
trimmed to frequency and an offset of 1 ppm due to electrode
mis-registration is unimportant and is corrected for in the trim-
ming process. However, the table shows that the frequency dif-
ference increases quickly as the electrode off centre becomes
larger.

5. CONCLUSION

The trigonometric series used in the Ritz method converges
rapidly and can produce frequencies with seven significant fig-
ures, accurate enough for ordinary resonator design. Numeri-
cal results show that when the energy trapping of the TSh vi-
bration is dominated by the contour, the mode centre is still
essentially at the plate centre but the distribution of the TSh vi-
bration extends in the direction of the shift of the electrodes.
Importantly, the TSh distribution loses its symmetry when
there is an electrode off centre. This has important implica-
tions in resonator frequency stability consideration. In the typ-
ical resonator studied, when the electrode off centre is about
one hundredth of the electrode length, the relative frequency
shift is of the order of one part per million, not insignificant in
resonator design and application.
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