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Amir Monemian Esfahani1, Weiwei Zhao1, Jennifer Y. Chen2, Changjin Huang3, Ning Xi4, 
Jun Xi2,*, Ruiguo Yang1,*

1Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, 
NE 48824, United States

2Department of Chemistry, Drexel University, Philadelphia, Pennsylvania 19104, United States

3Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, 
United States

4Department of Industrial and Manufacturing Systems Engineering, The University of Hong Kong, 
HK, China

Abstract

We previously reported the finding of a linear correlation between the change of energy dissipation 

(ΔD) of adhered cells measured with the quartz crystal microbalance with dissipation monitoring 

(QCM-D) and the level of focal adhesions of the cells. To account for this correlation, we have 

developed a theoretical framework for assessing the ΔD-response of adhered cells. We rationalized 

that the mechanical energy of an oscillating QCM-D sensor coupled with a cell monolayer is 

dissipated through three main processes: the interfacial friction through the dynamic restructuring 

(formation and rupture) of cell-extracellular matrix (ECM) bonds, the interfacial viscous damping 

by the liquid trapped between the QCM-D sensor and the basal membrane of the cell layer, and the 

intracellular viscous damping through the viscous slip between the cytoplasm and stress fibers as 

well as among stress fibers themselves. Our modeling study shows that the interfacial viscous 

damping by the trapped liquid is the primary process for energy dissipation during the early stage 

of the cell adhesion, whereas the dynamic restructuring of cell-ECM bonds becomes more 

prevalent during the later stage of the cell adhesion. Our modeling study also establishes a positive 

linear correlation between the ΔD-response and the level of cell adhesion quantified with the 
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number of cell-ECM bonds, which corroborates our previous experimental finding. This 

correlation with a wide well-defined linear dynamic range provides a much needed theoretical 

validation of the dissipation monitoring function of the QCM-D as a powerful quantitative 

analytical tool for cell study.

Graphical Abstract

Keywords

quartz crystal microbalance; energy dissipation; cell adhesion; cell mechanics; biomechanical 
model; biosensing

INTRODUCTION

The quartz crystal microbalance with dissipation monitoring (QCM-D) is a mechanical 

sensing device that measures mechanical and mass changes of an adlayer on the surface of a 

QCM-D sensor. When an alternating voltage is applied to a QCM-D sensor which is made of 

a disk-shaped AT-cut quartz crystal sandwiched between a pair of electrodes (Figure 1A), 

the piezoelectric quartz crystal generates a shear-mode oscillation resulting from the 

difference in the lateral displacements along its top and bottom surfaces (Figure 1B). The 

frequency of the oscillating sensor disk is extremely sensitive to the mass coupled to the 

surface of the sensor disk. If such a mass is small and rigid, the change in mass can be 

determined according to the Sauerbrey relationship based on the change in resonance 

frequency of the oscillating sensor crystal1. When the mass is soft and/or submerged in 

liquid medium, the Sauerbrey relationship becomes invalid. The damping of the oscillating 

QCM crystal can be characterized with the change of energy dissipation, ΔD, a 

dimensionless quantity that is defined as, D  =  
Edissipated
2πEstored

, where Edissipated is the energy 

dissipated during one cycle of oscillation and Estored is the energy stored in the oscillating 

sensor disk.

Because of its fine displacement (nanometer scale) and ultra-high oscillation frequency (a 

fundamental resonance frequency of 5 MHz or higher), the QCM-D is capable of 

simultaneously measuring real-time changes of resonance frequency (Δf) and energy 

dissipation (ΔD) of the oscillating sensor disk with high sensitivity and temporal resolution. 

Such capability has been extended to applications ranging from chemical2, physical3, 
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biological4,5, to biomedical research6. In particular, the viscoelasticity and absorptions of 

polymers7,8 and biomolecules such as proteins9, DNA10,11 and lipids12 have been examined. 

In recent years, QCM-D has been successfully applied to cell biology studies13–21. As a 

real-time label-free sensing approach, it has been particularly effective in examining cell 

adhesions. In such studies, the time-dependent change of resonance frequency (Δf)22–27 is 

typically used as a marker for monitoring the adhesion of cells onto the surface of a QCM-D 

sensor and providing kinetic information of the adhesion process. Because of the 

viscoelastic nature and the aqueous surrounding of the cell, the Δf-response is not directly 

proportional to the change of cell mass (Δm). Thus, such Δf-based measurement is more a 

qualitative assessment of the cell adhesion. The time-dependent change of energy dissipation 

(ΔD)26–32 has been used to complement the measurement of the Δf-response by providing 

information on the intrinsic structural and mechanical properties of adherent cells29,33–38. 

However, the dissipative processes that are responsible for the measured ΔD-response of 

adherent cells remains controversial27,28,30,39,40.

In our studies of cell adhesion39,40, we have found a linear correlation between the ΔD-
response of adhered cells and their areal density of focal adhesions. Focal adhesions are 

cellular protein complexes that are primarily responsible for linking the intracellular 

environment to the extracellular matrix (ECM) and the substratum41,42. More specifically, 

the ECM on the substrate binds to integrin receptors on the cell membrane. The resulting 

ECM-integrin linkages lead to the formation of focal adhesions that interact with 

intracellular cytoskeleton. Since the area of focal adhesions is quantitatively related to the 

mechanical strength of the cell adhesion43–46, we used the ΔD-response as a quantitative 

measure of the strength of the cell adhesion in examining epidermal growth factor (EGF)-

induced de-adhesion of MCF10A cells39,40. Such quantitative assessment allowed us to 

identify a series of sequential events in the EGF-induced cell de-adhesion process which 

consists of a rapid de-adhesion, transition, and re-adhesion.

To further validate this correlation between the ΔD-response and the areal density of focal 

adhesions of adhered cells, we have developed a theoretical framework for assessing 

dissipation of the mechanical energy of an oscillating QCM-D sensor coupled with a cell 

monolayer. Some of the existing quantitative models for describing the physical behavior of 

the QCM-D were constructed based on equivalent circuit and impedance analysis27,47. An 

equivalent circuit which models the electrical characteristics of a quartz crystal resonator in 

contact with a viscoelastic material, i.e. the cultured cell layer, is capable of providing the 

change in the viscoelastic property of the material based on the recorded impedance data. A 

different approach developed by Voinova and coworkers48, based on continuum mechanics, 

models the mechanical wave propagation through a viscoelastic material covered by a 

Newtonian fluid. By setting up appropriate boundary conditions, the change in frequency 

and energy dissipation can be expressed in terms of the physical properties of the 

viscoelastic thin film and the Newtonian fluid. These and other modeling approaches 

reviewed by Johannsmann49, Kanazawa50 and Ellis51, usually treat a layer of biomolecules 

as a static homogenous film. Such treatment, when applied to adherent cells, does not take 

the dynamic restructuring of cell adhesion into account. Intracellular damping between the 

cytoplasm and the stress fibers is ignored as well52,53. More importantly, current modeling 

approaches do not consider the complex nature of the interface between the basal region of a 
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cell layer and the surface of the QCM-D sensor. This interface not only serves as the 

physical linkage between the cell layer and the substrate surface, but also is capable of 

trapping the liquid medium, both of which may cause significant amounts of damping to an 

oscillating QCM-D sensor28.

Considering our experimental finding of the linear correlation between the areal density of 

focal adhesions and the ΔD-response of adherent cells39,40, we expect that the dissipative 

processes that contribute to the ΔD-response should be those cellular behaviors that are 

capable of influencing the dynamic restructuring of focal adhesions. These cellular 

behaviors include those that have been overlooked by the current modeling approaches. 

Herein, we have developed a biomechanical model for assessing the kinetics of the 

oscillation of a cell-adhered QCM-D sensor disk by taking into account the dynamic 

restructuring of the focal adhesion and stress fibers. The model considers the following three 

primary energy dissipative processes: the interfacial friction between the cell and the sensor 

disk, the intracellular damping of stress fibers, and the interfacial viscous damping by the 

liquid trapped between the basal membrane and the sensor disk. We used this model to 

quantitatively evaluate the contribution of each process to the ΔD-response and examine the 

relationship between the ΔD-response and the cell adhesion.

MODEL DEVELOPMENT

Rationalization

The ΔD-response is known to measure the loss of the mechanical energy of an oscillating 

QCM-D sensor disk caused largely by the interfacial friction and internal friction of the 

adsorbate54. In cell studies, the interfacial friction lies at the interface between the adhered 

cell layer and the oscillating QCM-D sensor disk. At the molecular level, we consider the 

interfacial friction as a result of dynamic restructuring of the integrin-ECM bonds (i.e., 

integrin-ECM linkages, cell-ECM bonds, or adhesion bonds): ECM ligands on the sensor 

surface continuously engage to or dissociate from integrin receptors on the basal membrane 

of the cell when they are in close vicinity. Integrin-ECM bonds are weak noncovalent 

interaction which has a limited lifetime. Under zero force, a large number of integrin-ECM 

bonds remain close to equilibrium between engagement and dissociation55. Such 

equilibrium will be tilted more toward dissociation upon application of an external force 

which lowers the energy barrier for the bond dissociation56. Dynamic restructuring of the 

adhesion bonds in response to low extracellular tension has been previously demonstrated 

experimentally at the molecular level57,58.

In our model, successful engagement of multiple integrin-ECM bonds enables the sensor 

disk and the cell layer to be physically coupled and oscillate synchronously, the 

characteristics of a “stick” regime. The oscillation of the sensor disk stretches the integrin-

ECM bonds and transforms part of the mechanical energy of the oscillating sensor disk to 

the potential energy of the adhesion bonds. When an adhesion bond elongates to the extent 

that the endured mechanical energy of the bond exceeds its bond dissociation energy, the 

ECM ligand will disengage from the integrin receptor, i.e., bond rupture, and the stored 

energy of the sensor disk will be dissipated. The rupture of a large number of adhesion 

bonds will perturb the synchronized oscillation and shift the mechanical regime of the 
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QCM-D sensor from the “stick” regime to a “slip” regime. In this work, we applied Bell’s 

model, a popular theoretical framework for analysis of the kinetics of reversible adhesion of 

the cell59,60, to examine the biomechanics and energy conversion that govern such stick-slip 

transition during the dynamic restructuring of adhesion bonds of adhered cells.

We also consider that the stick-slip transition occurs between the oscillating QCM-D sensor 

disk and the liquid medium trapped between the sensor disk and the basal region of the 

adhered cell layer. This transition which has been previously examined theoretically61,62 and 

experimentally63 is known to cause the loss of the mechanical energy of the oscillating 

sensor disk and give rise to the ΔD-response64,65. A further characterization of this transition 

based on the ΔD-response is described in Supporting Information (S4 and table S1). The 

internal friction of the adhered cell layer in the form of intracellular viscous damping is the 

third dissipative process examined in this study. We specifically focused on the intracellular 

viscous slip between stress fibers and the cytoplasm, and among stress fibers themselves. 

These cellular behaviors are closely associated with the dynamic restructuring of the 

cytoskeleton of the cells, which dictates the viscoelasticity of the cell layer and can influence 

the ΔD-response14,38. The intracellular viscous slip is mechanically coupled to the stick-slip 

transition at the cell-substrate interface through the stress fiber-integrin-ECM linkages and 

can thus be influenced by the oscillation of the QCM-D sensor disk. We applied the 

viscoelastic Voigt element, i.e., a spring-dashpot combination in parallel, to examine this 

dissipative process.

In summary, our biomechanical model takes into account three intrinsic biomechanical 

processes involving cells that are adhered to the QCM-D sensor disk. All three processes 

have been previously established experimentally and are capable of damping the oscillation 

of the sensor disk through energy dissipation.

Dynamics of the oscillating sensor disk

In our biomechanical model, we treated the QCM-D sensor disk as a harmonic oscillator65 

that is driven by an anchoring spring horizontally as shown in Figure 1C. This harmonic 

oscillator retains all the important characteristics of the QCM-D, such as the size and mass 

density of the sensor disk, the oscillation frequency, and the distribution profile of the 

oscillation amplitude65. The dynamics of the oscillation of the sensor disk can be defined by 

the following equation:

mẍ  +  ηlẋ  +  FP  +  Kx  =  0, (1)

where m is the mass of the sensor disk; ηl is the viscous coefficient for the trapped liquid 

medium; x is the index of the sensor disk in the direction of oscillation; K is the spring 

constant of the anchoring spring that drives the oscillation of the sensor disk. Therefore, mẍ
denotes the inertial force resulting from the acceleration of the sensor disk and Kx is the 

restoring force in the spring. The physical interaction between the cell layer and the sensor 

disk is characterized with the interfacial viscous damping ηlẋ by the liquid medium and with 

the peeling force Fp by the cells through integrin-ECM bonds. The peeling force FP 
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originates from the sum of adhesive forces (F) in the elongated integrin-ECM bonds along 

the opposite direction of oscillation.

The energy dissipation measurement with the QCM-D, defined based on energy dissipation 

factor (D), can be inferred from the loss of the mechanical energy of the sensor disk due to 

the damping effect for a given period during the oscillation in the following equation,

D  =  
Edissipated
2πEstored

  =  
Ein  −  Eout

2πEin
. (2)

where the stored energy Estored of the system originates from the initial energy input: 

Ein  =  1
2KA0

2, where A0 is the initial oscillation amplitude. The dissipated energy Edissipated 

is defined as the difference between the input energy and the output energy, which is equal 

to the sum of the kinetic energy of the sensor disk and the potential energy of the anchoring 

spring: Eout  =  1
2mẋ2  +  1

2Kx2.

Dynamics of cell adhesion

In our biomechanical model, we treated integrin-ECM bonds as an ensemble of elastic 

springs that connect the cell and the moving sensor disk66 as shown in Figure 1D. Each bond 

resides in one of the two states: a closed bond state when an integrin is fully engaged with 

ECM, or an open bond state when the integrin is disengaged (ruptured) from ECM. Thus, 

the peeling force Fp can be derived from the sum of the adhesive forces (F) in all of closed 

integrin-ECM bonds projected in the opposite direction of oscillation (−x). Assuming that all 

the integrin-ECM bonds distribute uniformly along the basal membrane and contribute 

equally to the peeling force,

FP  =   ∑
i = 1

N
qiFi

x, (3)

where i is the bond index and N is the total number of integrin receptors at the basal 

membrane that involve in the formation of integrin-ECM bonds; Fi
x is the adhesive force in 

the ith bond, Fi, projected in the −x direction; qi is the state of the bond with 

qi  =   0 open bond
1 closed bond.

The stochastic transition between a closed bond and an open bond can be defined by:

qi(t  +  Δt)  =  qi(t)  −  qi(t)H −ξi  +  Δtkoffv   +   1  −  qi(t) H −ξi  +  Δtkon(1  −  v) , (4)

where H(⋅) is the Heaviside step function. ξi is a random number belonging to [0,1], which 

introduces the stochastic component to bond transition66; kon and koff are bond formation 
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and dissociation rate constants, respectively; v  =  
Nb
N  is defined as the closed bond ratio, 

where Nb is the number of closed bonds and N is the total number of integrin receptors59. A 

detailed derivation for the transition equation can be found in Supporting Information (S1).

Dynamic restructuring of an integrin-ECM bond occurs when the bond undergoes a dynamic 

transition between the open and closed states57. Such transition can be influenced by an 

applied load, which reduces the barrier height of bond dissociation energy and increases the 

rate of bond rupture. Thus, the rate constant of dissociation of the ith bond, under the 

influence of its adhesive force, can be determined from the following equation:

koff(i)  =  ko f f
0  exp

FiΔLi
KBT , (5)

where Fi is the adhesive force of the ith bond; ΔLi is the length of extension of the ith bond; 

and KBT is the thermal energy. ko f f
0  is the initial rate constant for bond dissociation59. On 

the other hand, the rate of bond formation depends on the velocity of the sensor disk V as 

follows:

kon  =  
kon

0 V   ≤  Vc

0 V   >  Vc
, (6)

where kon
0  is the initial rate constant of bond formation and Vc is the critical velocity67. The 

bond formation is prohibited when the velocity of the sensor disk V exceeds Vc. The forces 

in relation to distances in a closed bond are illustrated in Figure 1E with Fi representing the 

bond force in the ith adhesion bond, and Fi
x as the peeling force FP in the −x direction and 

FP  =  ∑i = 1: N Fi
x  ⋅  Li is the length of the ith bond and L0 is the natural length of an 

adhesion bond. The geometrical relationship, the force balance and the equation of motion in 

relation to the stress fiber are detailed in Supporting Information (S2 and S3).

The loss of mechanical energy of the sensor disk due to bond rupture can be determined as 

follows: Eb  =  ∑i = 1
N qi(t) 1  −  qi(t  +  Δt) FiΔli

68. This expression describes the loss of the 

mechanical energy of the oscillating QCM-D sensor disk while adhesion bonds undergo 

transition from closed states to open states. Meanwhile, the energy loss due to interfacial 

viscous damping by the liquid medium trapped between the cell membrane and the sensor 

disk can be determined as follows: Ev  =   ∫
0

Δt
ηlẋ

2dt. The coefficient, ηl, was determined 

experimentally with a QCM-D sensor disk submerged in an aqueous medium detailed in 

Supporting Information (S4).
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Intracellular dynamics

In our biomechanical model, we considered the intracellular viscous damping by stress 

fibers including the viscous slip between stress fibers and the cytoplasm and among stress 

fibers themselves as the main intracellular processes that contributes to the dissipation of the 

mechanical energy of the oscillating sensor disk. The stress fibers that are involved in such 

intracellular dissipative processes are physically linked to the sensor disk through the 

integrin-ECM linkage. The tensional force in these stress fibers is therefore balanced by the 

adhesive force (F) in the integrin-ECM bonds generated during the oscillation of the sensor 

disk. Because of the viscoelastic character of stress fibers, we applied a lumped model with 

the viscoelastic Voigt element, i.e., a spring-dashpot combination in parallel, to describe this 

force balance:

∑
i = 1

N
qiFi  =  κs f ΔLs f   +  μs f ΔL̇s f , (7)

where κsf and μsf are the elastic and damping coefficient of the stress fiber; ΔLsf and ΔL̇s f

are the extension and extension rate of the stress fibers, respectively69. Thus, the sum of the 

adhesive forces from all the integrin-ECM bonds is equal to the elastic component κsfΔLsf 

and viscous component μstΔL̇s f  of the stress fibers. Eq. (7) is solved in conjunction with Eq. 

(1) to determine extension of the stress fiber ΔLsf, which was used to determine the loss of 

the mechanical energy of the oscillating QCM-D sensor disk caused by the intracellular 

friction as follows: Es f   =  ∑i = 1
N qiFiΔLs f . All calculations were performed numerically with 

a MATLAB program and the detailed simulation procedures are provided in Supporting 

Information (S5 and S6).

RESULTS

Dynamics of the oscillating sensor disk and kinetics of the adhesion bonds

The QCM-D sensor disk was modeled as a harmonic oscillator that was driven horizontally 

by an anchoring spring65. When a cell adheres to a sensor disk, focal adhesions of the cell 

allow the cell to establish a physical connection extracellularly with the sensor disk through 

integrin-ECM bonds and intracellularly with the cytoskeleton through stress fibers. Such 

physical connection provides the structural basis for a mechanical coupling that causes 

damping to the oscillation of the sensor disk and diminishes the amplitude of oscillation over 

time. Figure 2 shows the dynamics of oscillation of the sensor disk and the kinetics of 

dynamic restructuring (i.e., formation and rupture) of the integrin-ECM bonds at a given 

initial displacement of 1 nm for a simulation time of 5 μs. Both the displacement and 

velocity diminish over time from the respective maxima as indicated by the differential 

displacement and velocity between a damped oscillation and an undamped oscillation 

(Figure 2A). The damping produces a dissipation factor of D =150.8×10−6, calculated by 

dividing the energy loss shown in Figure 2A to the initial energy from Figure 2B with Eq. 

(2). Note that the bond number used for the simulation is N=1010.
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The spontaneous bond formation and rupture of integrin-ECM bonds can be greatly 

influenced by the relative motion between the sensor disk and the cell66,69. The rate of bond 

formation, indicated by the time-dependent change of the closed bond ratio, is modulated by 

the change of the relative velocity (V) between the cell and the oscillating sensor disk 

(Figure 2B, blue line), which shows a biphasic pattern (Figure 2C). In phase P1 where V 
<Vc, the closed bond ratio υ climbs rapidly to its peak value (υmax) of around 0.57, 

indicating an overall increase of bond formation over bond rupture. In phase P2 where V 
>Vc, bond formation comes to a halt and the closed bond ratio υ is dominated by bond-

rupture events as indicated by a gradual decrease in υ from υmax to the minimum (υmin) 

around 0.09. This relationship between the rate of bond formation and the velocity of the 

oscillating sensor disk is governed by the Bell’s model59: ko f f   =  ko f f
0  exp

FiΔLi
kBT .

The dissipative processes of the mechanical energy of the oscillating sensor disk

We attribute the loss of the mechanical energy of the oscillating QCM-D sensor disk to three 

main processes: the interfacial friction through the dynamic restructuring (formation and 

rupture) of the cell-ECM bonds, the interfacial viscous damping by the trapped liquid and 

the intracellular viscous damping through the viscous slip of the stress fibers and the 

cytoplasmic material. Among these processes, the energy dissipated by the interfacial 

viscous damping of the trapped liquid during each oscillation cycle is slightly higher in 

magnitude with a π/2 phase shift than that by the bond rupture. In comparison, the amount 

of energy dissipated by the intracellular viscous damping is two orders of magnitude less 

than that by the interfacial viscous damping of the trapped liquid (note: evaluated at bond 

number N=1010) (Figure 3). Such relationship observed during each oscillation cycle 

remains relatively the same over an extended period of 5 μs (Figure 3). In summary, the 

interfacial friction and interfacial viscous damping are largely responsible for the loss of the 

mechanical energy of the QCM-D sensor. Meanwhile, the intracellular viscous damping 

contributes very little to the loss of the energy and its contribution can therefore be 

considered virtually negligible.

In Figure 3, a stacked-column chart is used to compare the total energy dissipated in these 

three processes to the loss of the mechanical energy of the oscillating sensor disk at a 

randomly selected time point (1 μs). The dissipated energy (Eb and Ev Esf) from each of 

these three processes was determined with the use of the corresponding equations in sections 

2.3 and 2.4; whereas the loss of the mechanical energy of the sensor disk was determined 

based on the difference between the energy input (Ein) and output (Eout) of the sensor disk 

described in section 2.2. The sum of the energies dissipated through these three processes 

equals the loss of the mechanical energy of the oscillating QCM-D sensor disk. This result 

validates these three processes as the main energy dissipative processes in our biomechanical 

model.

Correlation between the dissipated energy and the number of adhesion bonds

In Figure 4A, the simulated data for the loss of the mechanical energy of the oscillating 

sensor disk through each of the three dissipative processes was plotted as a log function of 

the number of adhesion bonds. The result indicates that the energy dissipation caused by the 

Esfahani et al. Page 9

Anal Chem. Author manuscript; available in PMC 2019 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



interfacial viscous damping of the trapped liquid is virtually independent of the bond 

number. Assuming cell-ECM bonds do not possess any volume, the change in the volume of 

the trapped liquid upon the change of bond numbers is therefore negligible. Thus, the energy 

loss through this dissipative process depends exclusively on the velocity profile of each 

oscillation cycle. On the other hand, the energy dissipated through the dynamic restructuring 

(formation and rupture) of cell-ECM bonds shows a clear dependence on the bond number: 

As the bond number increases, the dissipated energy increases exponentially before leveling 

off when the bond number exceeds 1012. Between these two main processes, the interfacial 

viscous damping by the trapped liquid is clearly the primary cause of the energy dissipation 

when the bond number is below 5×1010. However, when the bond number exceeds 1011, the 

interfacial friction by the dynamic restructuring of cell-ECM bonds becomes more prevalent. 

Although the energy dissipation by the intracellular viscous damping also shows a strong 

dependence of the level of cell adhesion, its contribution never appears close to the levels of 

the other two processes at any point. This is consistent with the results described in section 

3.2 that the intracellular viscous damping among stress fibers and between stress fibers and 

the cytoplasm is not a major contributor to the loss of mechanical energy of the oscillating 

QCM-D sensor disk.

In Figure 4B, the simulated energy dissipation (D) responses at both 5 MHz (fundamental 

frequency) and 15 MHz (third harmonics) were plotted as a log function of the bond number 

and each plot displays a three-phase profile. In the first phase (LB) where the bond number 

is below 109, both D-responses remain virtually constant, resulting from the predominant 

dissipative process through the interfacial viscous damping by the trapped liquid, evidenced 

in Figure 4A. It is worth mentioning that the D-response at 5 MHz appears at a higher level 

than that at 15 MHz across the entire range of the bond number. This is due to the fact that 

the D-response is inversely proportional to the oscillation frequency. In the second phase 

(MB) where the bond number is between 109 and 1012, both D-responses exhibit an 

exponential increase with respect to the bond number. This trend can be attributed to the 

rapidly increasing contribution from the interfacial friction through the dynamic 

restructuring of cell-ECM bonds to the overall energy dissipation (Figure 4A). In the third 

phase (HB) where the bond number exceeds1012, both D-responses appear saturated and 

essentially remain leveled.

To further establish the correlation between the D-response and the bond number, the energy 

dissipation data at 15 MHz in Figure 4B was replotted with a linear scale in Figure 4C, 

which shows a quantitative correlation between the D-response and the level of cell adhesion 

quantified with the number of cell-ECM bonds. The correlation was determined by fitting 

the plot with an exponential function: D  =  D0 exp − B
B0

  +  Dm, where D is energy 

dissipation factor and B is the bond number. Dm=5.12×10−4, D0=−3.64×10−4 and 

B0=9.68×1010 are fitting parameters. To verify our previous experimental finding of a linear 

correlation between the ΔD-response and the level of cell adhesion39,40, the range of the D-

response in this plot that can offer a linear correlation was explored: The data points 

corresponding to the leveled D-response at bond numbers of 5×1011 and higher (in Figure 

4C) were removed. The remaining data points were replotted as shown in Figure 4D and 

fitted with a linear regression function: D = tB + D0, where D is the energy dissipation factor 
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and B is the bond number. t=2.09×10−15 is the slope and D0=1.57×10−4 is the initial 

baseline value of energy dissipation. A goodness of fit, R2=0.992, was obtained with this 

linear regression function. Assuming that the cell-ECM bonds are uniformly distributed over 

the basal region of the entire cell layer, the D-response shown in Figure 4D clearly supports 

a linear correlation between the D-response and the level of cell adhesion quantified with the 

number of cell-ECM bonds. This result corroborates our previous experimental finding of a 

linear correlation between the ΔD-response and the level of cell adhesion39,40. Surprisingly, 

this linear correlation remains validate across a wide dynamic range that covers the bond 

number from 1.0×106 up to approximately 1.7×1011, corresponding to a range of the D-

response from 150×10−6 up to approximately 500×10−6. In practice, however, the effective 

working range could be narrower due to the instrumentation limitation.

Comparison between the simulation data and the QCM-D data

We sought to evaluate the effectiveness of our biomechanical model in assessing the EGF-

induced de-adhesion of A431 cells using the QCM-D measurement as a benchmark. 

Previously we used the QCM-D to examine the EGF-induced de-adhesion of MCF10A 

cells39,40,70 with the aid of immunostained vinculin within the focal adhesions. A similar 

approach was employed in this study: We quantified the size/relative fluorescence intensity 

(RFU) of vinculins at various time points based on the areal density of focal adhesions of 

EGF-treated A431 cells shown in Figure 5A (the experimental methods are detailed in S7). 

The quantitation result was summarized in Figure 5B, which reveals a time-dependent 

change of cell adhesion: an initial rapid de-adhesion (0 to 40 min), followed by a transition 

period (40 to 60 min) and then a final re-adhesion. To simulate a D-response plot based on 

the level of cell adhesion, the D-response of 400×10−6 was set as the value at 0 min 

corresponding to a bond number of 1.1×1011 determined from Figure 4D. The bond 

numbers at other time points were then determined accordingly based on their corresponding 

RFU values in relation to the RFU value at 0 min. The resulting bond numbers were used to 

obtain the D-responses at the corresponding time points based on the linear correlation 

established in Figure 4D. To ensure that the values of RFU and D-response could be 

compared, each of the values was normalized, i.e., was divided by the range covered. For 

each quantity, the range was taken as the highest value (at 0 min) minus the lowest value 

(QCM-D data at 60 min, simulation data and FA data at 40 min). A strong correlation 

between the QCM-D measurement (experimental data) and the level of cell adhesion (FA 

data) was shown in Figure 5C. This result with A431 cells is consistent with our previous 

finding with MCF10A cells, suggesting that this linear correlation between the ΔD-response 

and cell adhesion may hold true for various types of adherent cells. Furthermore, a strong 

correlation can be found between the experimental data and the simulated data in the form of 

the ΔD-response (Figure 5C). This correlation demonstrates the effectiveness of our 

biomechanical model in examining cell adhesion and validates the theoretical framework of 

this model. The results described here represent typical experimental and simulation data 

over many repeats.
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DISCUSSION

In cell studies, the ΔD-response has mostly been used to characterize the change of the 

mechanical property of the cells adhered to the QCM-D sensor surface28,71–74. The 

processes that are primarily responsible for the ΔD-response, however, have not been well 

defined. Change of the membrane structure27 and remodeling of actin filaments30, two of the 

major cellular events that can alter the mechanical property of the cell could be two of such 

energy dissipative processes. Frictional slip between integrin and ECM57, viscous slip 

among stress fibers, and viscous slip between stress fiber and cytoplasm are known to 

dissipate mechanical energy52,53 during cell adhesion, contraction, and migration75. The 

liquid medium trapped between the cell and the surface of the QCM-D sensor has also been 

speculated to be responsible for dissipation of the mechanical energy of the QCM-D 

sensor28.

In this work, we have developed a biomechanical model based on the viscoelastic Voigt 

element and Bell’s cell adhesion model, a popular theoretical framework for analysis of the 

kinetics of reversible adhesion of the cell59,60, to quantitatively assess the importance of 

these possible energy dissipative processes to the ΔD-response. We have found that the 

interfacial friction through dynamic restructuring (i.e., formation and rupture) of cell-ECM 

bonds and the interfacial viscous damping by the liquid medium trapped underneath the cell 

layer are the major dissipative processes that are responsible for the loss of mechanical 

energy of the cell-adhered QCM-D sensor. Meanwhile, the intracellular viscous damping 

through the viscous slip between the cytoplasm and the stress fibers as well as among the 

stress fibers themselves has virtually no impact on the loss of the mechanical energy of the 

sensor disk. The previously reported effect of disruption of stress fibers with cytochalasin D 

on the ΔD-response76 can be attributed to the downstream effect of such disruption on the 

cell adhesion since both stress fibers and integrin-ECM bonds are physically linked through 

focal adhesion complexes. In addition, we have shown that the sum of the dissipated energy 

from the three dissipative processes equals the loss of the mechanical energy of the 

oscillating sensor disk during its oscillation. This result validates the key rationale of our 

biomechanical model which attributes the ΔD-response to these three dissipative processes.

Given that approximately 3×105 of A431 cells are needed to constitute a monolayer on a 

QCM-D sensor (unpublished data) with a bond density of 104 to106 per cell77, a total 

number of 109-1011 integrin-ECM bonds would be expected for such cell monolayer. Thus a 

situation with the bond number below 109 often occurs during the early stage of the cell 

adhesion when cells just begin to settle onto the substrate surface without the presence of 

many mature focal adhesions. Under such situation, the interfacial viscous damping by the 

trapped liquid appears to be largely responsible for the ΔD-response (Figure 4B). During the 

later stage of the cell adhesion when the cells adhere strongly to the sensor surface likely 

with mature focal adhesions, the bond number rises up into a range of 109-1011. The 

interfacial friction through the dynamic restructuring of cell-ECM bonds becomes more 

prevalent for causing the ΔD-response (Figure 4B).

We have established a positive linear correlation between the energy dissipation response 

and the number of cell-ECM bonds (Figure 4D). This linear correlation remains validate 
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across a wide dynamic range that covers the bond number from 1.0×106 up to approximately 

1.7×1011. This suggests that this linear correlation can be applied to the study of the cell 

adhesion throughout nearly the entire adhesion process. This linear dynamic range also 

offers a range of ΔD = ±100×10−6 for studies involving adhered cells with an initial D of 

approximately 400×10−6, which is a sufficient range for the ΔD-response induced by many 

of exogenous stimulants. When the bond number falls below 106, the energy dissipation 

response no longer exhibits any dependence on bond number and remains virtually constant 

due to the overwhelming contribution from the viscous damping by the trapped liquid. This 

situation often occurs in the very beginning of the cell adhesion when a small number of 

cells just begin to settle onto the substrate surface.

It has been well-documented that the size of the focal adhesion exhibits positive correlations, 

linear or nonlinear with the cell adhesion strength43–45,78,79. Thus, the ΔD-response which 

correlates with the size of focal adhesions quantified with the areal density of focal adhesion 

bonds can be used as a quantitative measure of the strength of integrin-ECM bonds. 

Currently, most of the available technologies for measuring the mechanical strength of 

adhered cells such as centrifugation, hydrodynamic assays, atomic force microscopy, optical 

tweezers and traction force microscopy80,81 are considered invasive and end-point 

measurements. The ΔD-based measurement can circumvent such limitations because it is 

real time and noninvasive and capable of revealing the kinetic information. Interestingly, the 

in-plane component of the adhesion force is often referred to as the traction force in 2D 

traction force microscopy, and it is balanced by the tensile forces in the stress fibers when 

cells are in homeostasis conditions82–84. Thus the ΔD-response could potentially provide a 

quantitation of the overall cellular traction force which may be closely related to the energy 

loss for the adhered cells during the dynamic restructuring of the adhesion bonds.

Our mechanical model is established based on the physical and biomechanical interaction 

between the QCM-D sensor disk and the cell. Our model emphasizes the importance of 

individual biologically relevant processes as well as their collected impact on the energy 

dissipation measurement. Like the QCM-D, many label-free biosensors are capable of 

generating real-time, measurable signals by capturing time-dependent cellular events, such 

as changes in cellular morphology, adhesion, ion distribution, and mass distribution85–87. 

However, due to the complexity of these cellular changes, individual contributing molecular 

components and their associated cellular processes are often difficult to identify. Thus, the 

readouts of label-free biosensor signals are commonly referred to as a “black box”88. We 

hope our modeling approach will provide the label-free research community with a capable 

tool for uncovering what is inside the “black box”.

Although our biomechanical model does not account for the cell-cell adhesion, we do not 

anticipate this to alter the outcome of this work. We reason that the sensing depth of the 

QCM-D is approximately 100 to 150 nm89, which specifically targets the basal region of the 

cell. In addition, the interplay of cell-cell and cell-ECM interactions can often be revealed 

through the cell-ECM measurement. It is worth mentioning that the energy dissipation 

values and contributions from the three dissipative processes were calculated for a 

simulation time of 5 μs with A0=1 nm, f =15 MHz, κb=0.025 N/m and Vc =0.025 m/s. A 

few other sets of parameters for A0, ω, κb and Vc were also tested (see S8). Apart from 
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some slight variations in the value of energy dissipation from each dissipative process, the 

parameters used in the simulation do not alter the final outcome and conclusion of the study.

CONCLUSION

We have developed a theoretical framework to evaluate the effectiveness of the QCM-D for 

probing cell adhesion. We have found that the dynamic restructuring of cell-ECM adhesion 

bonds and the viscous damping by the liquid trapped between the basal cell membrane and 

the QCMD sensor disk are the two processes that are responsible for the energy dissipation 

response of adhered cells. We have also established a positive linear correlation between the 

energy dissipation response of adhered cells and the level of cell adhesion. With this work, 

we hope to provide a fundamental understanding of the QCM-D measurement of adhered 

cells and offer a theoretical validation of the dissipation monitoring function of the QCM-D 

as a powerful quantitative analytical tool in cell studies.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Biomechanical model of the cell-adhered QCM-D.
(A) A QCM-D sensor disk. (B) The shear motion of the cell-adhered QCM-D sensor disk. 

(C) The cell-adhered QCM-D sensor is modeled as a harmonic oscillator driven horizontally 

by a spring. The trapping of the liquid by the cell and the adhesion of the cell via focal 

adhesions and stress fibers are illustrated. (D) The dynamic restructuring of integrin-ECM 

bonds is modeled as an ensemble of elastic springs with open and closed states. (E) The 

forces in relation to distances in a closed bond are defined: Fi as the bond force in the ith 

adhesion bond, Fi
x as the peeling force Fp in the −x direction, Li as the length of the ith bond, 

and L0 as the natural length of an integrin-ECM bond.
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Figure 2. Dynamics of a damped oscillating sensor disk.
(A) Time-dependent changes of the respective difference of displacement (black) and 

velocity (blue) between a damped oscillation and an undamped oscillation. The oscillation 

amplitude is between −1 nm and 1 nm and the observation time is 5 μs (The initial period of 

0.4 μs is shown). (B) Time-dependent changes of the damped displacement (black) and 

velocity (blue) of one oscillation cycle. (C) Time-dependent change of the closed bond ratio 

during the same time period. The profile shows two distinct phases: the low-velocity V<Vc 

(Vc = 0.025 m/s) in which the bond formation process dominates (P1); the stick-slip regime 

in which the synchronized bond rupture is clearly visible (P2). All calculations were 

performed at bond number N= 1010 at a time step of 10−12 s over an observation time period 

of 5 μs.
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Figure 3. Time-dependent energy dissipation of the three dissipative processes and loss of the 
mechanical energy of the sensor disk.
Among the three processes, stress fiber (SF) related damping dissipates the least amount of 

energy, which is approximately two orders of magnitude less than the amount of energy 

dissipated by the trapped liquid (TL) or ruptured bond (RB) related process. The stacked-

column chart shows that at a randomly selected time point 1 μs, the loss of the mechanical 

energy of the oscillating sensor disk (SD) equals the sum of the energies dissipated from the 

three dissipative processes (SF+RB+TL). All calculations were performed at bond number 

N=1010 at a time step of 10−12 s over an observation time period of 5 μs.

Esfahani et al. Page 21

Anal Chem. Author manuscript; available in PMC 2019 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. Energy dissipation from the three dissipative processes as a function of number of cell-
ECM bonds.
(A) Respective contributions from bond rupture, trapped liquid, and stress fibers related 

damping to the energy dissipation as a log function of the bond number. (B) D-response as a 

log function of bond number at the fundamental frequency (5 MHz) and the third harmonic 

(15 MHz). Three distinct phases of the profile are defined based on the bond number: the 

low bond number region (LB), medium bond number region (MB) and high bond number 

region (HB). (C) D-response at the third harmonic as an exponential function of bond 

number. (D) D-response at the third harmonic as a linear function of bond number.
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Figure 5. The correlation between the ΔD-response and the level of focal adhesions.
(A) Fluorescence images of focal adhesions in a monolayer of A431 cells after various 

lengths of time of exposure to 10 nM EGF. Scale bar: 10 μm. (B) Quantitation of the areal 

density of immunostained vinculin in relative fluorescence unit (RFU) as a measure for the 

level of focal adhesions (mean ± SEM; n = 10). (C) The ΔD-response from the QCM-D 

measurement (Experimental data) shows a strong correlation with the simulated ΔD-

response (Simulation data) as well as the areal density of focal adhesions (FA data).
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