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Genomic Analysis and Prediction within a US Public 
Collaborative Winter Wheat Regional Testing Nursery
Trevor W. Rife, Robert A. Graybosch, and Jesse A. Poland*

Abstract  The development of inexpensive, whole-genome 
profiling enables a transition to allele-based breeding using 
genomic prediction models. These models consider alleles 
shared between lines to predict phenotypes and select new 
lines based on estimated breeding values. This approach 
can leverage highly unbalanced datasets that are common to 
breeding programs. The Southern Regional Performance Nursery 
(SRPN) is a public nursery established by the USDA–ARS in 1931 
to characterize performance and quality of near-release wheat 
(Triticum aestivum L.) varieties from breeding programs in the US 
Central Plains. New entries are submitted annually and can be 
re-entered only once. The trial is grown at >30 locations each 
year and lines are evaluated for grain yield, disease resistance, 
and agronomic traits. Overall genetic gain is measured across 
years by including common check cultivars for comparison. 
We have generated whole-genome profiles via genotyping-by-
sequencing (GBS) for 939 SPRN entries dating back to 1992 to 
explore the potential use of the nursery as a genomic selection 
(GS) training population (TP). The GS prediction models across 
years (average r = 0.33) outperformed year-to-year phenotypic 
correlation for yield (r = 0.27) for a majority of the years 
evaluated, suggesting that genomic selection has the potential 
to outperform low heritability selection on yield in these highly 
variable environments. We also examined the predictability 
of programs using both program-specific and whole-set TPs. 
Generally, the predictability of a program was similar with both 
approaches. These results suggest that wheat breeding programs 
can collaboratively leverage the immense datasets that are 
generated from regional testing networks.

Plant breeding programs exert considerable effort 
evaluating new breeding lines across many locations 

to identify superior-performing candidates for release as 
new varieties. For this evaluation in wheat, collaborative 
regional testing networks have been developed in the 
United States to provide additional information to breed-
ers on the broad performance of their lines.

The US cooperative regional performance testing 
program was established in 1931 by the USDA–ARS in 
partnership with university agricultural experiment sta-
tions to characterize performance, quality, disease resis-
tance, and other agronomic traits of near-release wheat 
varieties from breeding programs in the US Central 
Plains (Graybosch, 2017a). In this network, the SRPN and 
the Northern Regional Performance Nursery for winter 
wheat were established and allow breeders to submit 
entries that are distributed for evaluation at >30 locations 
along with multiple, common, long-term check varieties 
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(Fig. 1). Phenotypic data collected from the nurseries 
includes grain yield, test weight, plant height, lodging, 
and resistance to a variety of diseases. The regional per-
formance nurseries have been used to regularly measure 
genetic gain over time (Schmidt and Worrall, 1983; 
Graybosch and Peterson, 2010, 2012), evaluate long-term 
wheat diversity (Cox and Worrall, 1987), and cluster 
experimental locations into production zones based on 
performance data (Peterson, 1992; Graybosch, 2017b).

Previous investigation of broad genotypic charac-
teristics of the Regional Performance Nurseries (RPNs) 
has been limited because of the overall number of lines 
that have been tested, difficulty in obtaining a complete 
set of evaluated entries, and an inherent challenge in 
generating a sufficient amount of genotypic data for each 
entry. With the recent development of inexpensive, high-
density genetic markers, whole-genome marker profiles 
can now be obtained for every experimental line, mak-
ing possible new analyses that rely on large amounts of 
genomic data including diversity studies and genomic 
selection (Poland and Rife, 2012).

Genomic selection is a statistical approach that is used 
to predict phenotypes and select new lines in breeding pro-
grams based on the total allelic effects across the genome 
(Meuwissen et al., 2001). Breeding programs are investigat-
ing and using GS as a tool to shorten the breeding cycle 
(Heffner et al., 2009, 2010) and increase selection intensity 
(Cros et al., 2015; Battenfield et al., 2016). Genomic selection 
has two fundamental components: (i) a population that has 
been both phenotyped and genotyped that is used to train 
the prediction model and (ii) a population that has been 
only genotyped to which the model is then applied and the 

predictions used to select superior breeding lines (Heffner 
et al., 2009, 2010). Previous literature has assigned each of 
these two populations various designations (Rincent et al., 
2012; Rutkoski et al., 2015; Isidro et al., 2015). Here we will 
refer to the two populations as the TP and the breeding 
population (BP), respectively.

Optimal design of the TP is a research topic of high 
interest to the breeding community as the phenotypic 
evaluation of the TP remains a time-consuming and 
expensive endeavor (Akdemir et al., 2015; Spindel et 
al., 2015; Isidro et al., 2015). There is still limited under-
standing of the characteristics that make up an ideal TP. 
However, two features have been promoted as compelling 
factors: size and degree of relatedness. As the number 
of lines used in the TP increase, there is a concurrent 
increase in the accuracy of the predictions (Zhong et al., 
2009). However, there are generally diminishing returns, 
with reduced gains in accuracy as more lines are added to 
the TP (Asoro et al., 2011). Similarly, a TP and BP must be 
interrelated with common alleles and markers for suitable 
predictive ability. A TP that is more closely related to the 
BP often results in better prediction accuracy (Hayes et al., 
2009; Long et al., 2011; Pszczola et al., 2012; Rutkoski et al., 
2015). An inherent feature of plant breeding programs is 
the shifting of allele frequencies at each stage of breeding, 
ultimately limiting allelic diversity present in elite material 
to a subset of the total diversity present in the BP. While 
the most elite material is less representative of the entire 
allelic diversity of the program, it is the most extensively 
phenotyped. Elite testing nurseries, therefore, are often 
included in the TP and serve to give good estimates of the 
most favorable haplotypes.

Fig. 1. A map of Southern Regional Performance Nursery (SRPN) locations in the central United States from 1992 through 2015. The size of 
each circle indicates how many years the location was included in the nursery with a minimum of 1 and a maximum of 23.



rife et al.	 3 of 7

The broad scope and design of the RPN makes it 
an ideal collection to investigate both factors affecting 
the TP since thousands of lines from different regional 
programs have been evaluated in this nursery, and it 
is extensively phenotyped across many locations. The 
simultaneous interrelation and stratification of alleles 
between the regional breeding programs makes it pos-
sible to examine how relatedness factors into accuracy 
both across and within programs. A successful imple-
mentation of GS using the lines that have been evaluated 
in the RPN would allow plant breeders in the region to 
leverage this data to transition to allele-based breeding 
and to predict stable, broad adaptation. Prediction mod-
els that account for alleles shared between lines would 
make it possible to use the vast quantities of phenotypic 
data available from this nursery. To this end, we have 
generated whole-genome profiles via GBS for SRPN 
entries dating back to 1992. This genetic data was used 
to characterize the potential for the SRPN to serve as a 
TP for GS and evaluate prediction differences between 
breeding programs.

MATERIALS AND METHODS
Plant Material
A collection of 939 entries (691 unique lines) that were 
submitted to the SRPN from 1992 through 2015 was 
assembled and DNA was extracted from seedling leaf 
tissue using a BioSprint 96 DNA Plant Kit (Qiagen). The 
DNA was quantified in plates using PicoGreen and nor-
malized to 20 ng mL−1.

Library Construction and Data Processing
Fourteen GBS libraries were prepared following the 
protocol detailed by Poland et al. (2012a). Briefly, DNA 
was digested with PstI and MspI and barcoded adapters 
were ligated to the ends of the fragments. Samples were 
then pooled at 192-plex, amplified, and sequenced on an 
Illumina HiSeq 2000. Single nucleotide polymorphisms 
(SNPs) were called using the approach of Poland et al. 
(2012b) using a population-based filter. The SNPs were 
filtered to have >5% minor allele frequency and at least 
20% of the data present across samples. For subsequent 
genomic prediction, genotype data from missing SRPN 
entries for which seed was unavailable were imputed when 
the same breeding line had been evaluated in a different 
year (as a different entry). All sequence data is available 
from the NCBI Sequence Read Archive under SRP149777.

Phenotypic Data
Historical phenotypic data from 82,546 plots was com-
piled and a mixed linear model was used to calculate 
best linear unbiased predictors (BLUPs) for lines with 
random effects for entry, location, year, location-by-year 
interactions, and replication within location-by-year 
interactions using the lmer command from the lme4 
package in R (Bates et al., 2014) (Supplemental Table 
S1). While the SRPN allows experimental varieties to be 

evaluated in the nursery for up to 2 yr, re-entries were 
treated separately within the individual year in which 
they were evaluated. In other words, a single experimen-
tal variety submitted by a breeder over two consecutive 
years was treated as two different entries in this study for 
calculating BLUPs. During the years evaluated in this 
study, 207 entries were submitted to the nursery for two 
consecutive years. These entries were used to calculate a 
phenotypic correlation for yield across years via a Pear-
son correlation of the performance of Year 1 with the 
performance of Year 2 for all entries. All historical entry 
and phenotypic data are available from the Dryad Digital 
Repository (https://doi.org/10.5061/dryad.q968v83).

Genomic Prediction
A realized additive relationship matrix (A) was con-
structed using the A.mat function in the rrBLUP package 
in R (Endelman, 2011). Markers were imputed using the 
EM algorithm and a maximum missing threshold of 0.8 
was used. The kin.blup function in the rrBLUP package 
was then used to perform genomic prediction with K set 
to A (Endelman, 2011). Two separate TP schemes were 
evaluated. The first was a temporal-based TP constructed 
such that all lines tested in previous years were used as 
the TP for a given year resulting in a TP that increased in 
size by ~40 new lines each year. After running the pre-
dictions for all years, predictions were recalculated after 
excluding 2001 from the TPs due to nonrepresentative 
conditions caused by a stripe rust epidemic (Line, 2002).

The second approach examined the prediction accu-
racy of lines from a given breeding program using a TP 
consisting of either (i) all lines from all the programs or 
(ii) only lines from the same program. Both methods 
used a leave-one-out approach wherein a single line was 
removed from the group and the remaining lines were 
used as the TP to predict the performance of the missing 
line (Efron and Gong, 1983). Method 1 was performed 
across all entries by subsetting the predicted values by 
breeding program and then calculating a Pearson corre-
lation between the predicted values and BLUPs. Method 
2 was performed using only entries from within each 
breeding program as the TP.

RESULTS AND DISCUSSION
Genotyping
To move from line-based breeding to allele-based breed-
ing methods, whole-genome profiles were generated for 
all available entries from the SRPN and subsequently 
used to calculate a realized relationship matrix. In this 
study, we used GBS with an internal alignment-based 
pipeline to discover and genotype 53,672 SNPs with 2463 
of these SNPs having >80% data present.

Phenotypic Data Analysis
Yield data from 82,546 plots, representing 670 unique 
location–year nurseries, was used in a mixed linear 
model to calculate a BLUP for each of 1003 SRPN entries, 

https://doi.org/10.5061/dryad.q968v83
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after removing nonrepresentative, historical check cul-
tivars. Most of the entries submitted to the SRPN are 
only tested for a single year, making absolute yield com-
parisons across all years impossible. However, 207 of the 
experimental lines submitted to the SRPN were evalu-
ated twice in subsequent years, it was possible to use the 
performances (i.e., BLUP) of these lines from their first 
year and second year in the nursery to obtain an estimate 
of the year-to-year phenotypic accuracy in the nursery. 
The Pearson correlation for plot yield across years in 
these lines was moderately low at 0.27 (p < 0.01, 95% CI 
[0.143, 0.395]), likely due to large genotype ´ environ-
ment interactions. This is to be expected because of the 
wide range and diversity of environments from which 
data is being generated and the high year-to-year varia-
tion common to the US Central Plains.

Genomic Prediction Across Years
A temporal-based TP was created that used data from all 
previous years to make predictions on the next year. Genomic 
prediction using this approach resulted in an average Pearson 
correlation between the calculated BLUPs and predicted val-
ues of 0.33 (Fig. 2). The correlations for 11 of the 23 predicted 
years were significant at p < 0.05. This approach created a TP 
that increased in size with each subsequent prediction cycle. 
However, there was not an observed positive trend in predic-
tion accuracy with the increased TP size likely caused by the 
large influence that the year of evaluation has on the yield of 
entries within the nursery and the low heritability of yield 
common to the region (Dawson et al., 2013; Rutkoski et al., 
2015; Lado et al., 2016).

For GS to be implemented into breeding programs, 
it needs to have similar accuracy to or surpass the selec-
tion methods being used by breeders, namely, phenotypic 
selection. To benchmark these GS predictions against 
phenotypic selection, we compared the genomic predic-
tion accuracies with the phenotypic correlation of lines 
that were evaluated multiple times in the SRPN. Predic-
tions were superior to the phenotypic correlation in 12 of 
the 23 predicted years and within or better than the 95% 
confidence interval of the phenotypic correlation in all 
but two of the predicted years (Fig. 2). Notably, genomic 
predictions significantly outperformed the phenotypic 
correlation estimate in seven of the years evaluated. Fur-
ther investigation into why the entries within these years 
were predicted so well relative to others is needed, as there 
was not a readily apparent explanation. We observed very 
poor (e.g., negative) prediction accuracy for the 2001 nurs-
ery. One potential explanation for the drastic decrease in 
predictive accuracy in 2001 was an epidemic of stripe rust 
resulting from a mild winter (Line, 2002).

Genomic Prediction Across Breeding Programs
To determine if data from other breeding programs can 
be used for genomic prediction within a given breeding 
program, separate TPs consisting of all experimental lines 
(excluding the line being predicted) and lines specific to 
a given breeding program (excluding the line being pre-
dicted) were used to predict lines one at a time within a 
breeding program (Fig. 3). There is a trend in prediction 
accuracy that is independent of the approach used. Breed-
ing programs that are relatively predictable with one 

Fig. 2. The prediction accuracy when using all prior years to predict a given year. The dashed line indicates the calculated phenotypic correla-
tion (r = 0.27) of lines that were tested across multiple years. The shaded area indicates the 95% confidence interval of the phenotypic cor-
relation. The dotted line indicates the average genomic prediction correlation (r = 0.33). Filled circles indicate years that were included in the 
training population; open circles indicate years that were excluded from the training population.



rife et al.	 5 of 7

method are also relatively predictable with the other. This 
implies that the potential for a breeding program to imple-
ment GS is likely to be founded on characteristics intrin-
sic to a given program and that, as tested here, GS may 
perform better in some breeding programs because of the 
diversity, effective population size, or pedigree relation-
ships (Lorenz et al., 2011). One potential hypothesis for the 
differences in predictability between breeding programs 
may be the frequency or fixation of certain major-effect 
adaptation loci within each breeding program. However, 
we did not identify significant population structure to 
offer support for this claim (Supplemental Fig. S1).

CONCLUSIONS
Maintaining long-term, regional testing networks, as well 
as their seed stocks, can provide additional information for 
genetic improvement and ensure future crop production 
and food security. The potential to use existing historical 
datasets for new breeding approaches, like GS, is attractive 

since generating new phenotypes is both cost- and time-
prohibitive and the sampling of many past years of environ-
ments has immense value. In this study, we examined and 
considered multiple approaches to implement GS using 
historical data from the US SRPN. Genomic predictions 
across the entire collection outperformed a year-to-year 
phenotypic correlation (i.e., phenotypic selection accuracy). 
However, these results were not consistent across breed-
ing programs, with several programs showing reduced or 
no predictive ability. Our results indicate that there may 
be inherent characteristics of breeding programs such as 
germplasm base or target region that prohibit or constrain 
the use of information from other breeding programs and 
regional testing networks for genomic prediction as a tool 
for selection. With the increasing need to maximize genetic 
gain and accelerate delivery of improved high-yielding vari-
eties, the use of historical data from coordinated testing net-
works can be a valuable addition to the genomic prediction 
models used by plant breeders.

Fig. 3. The prediction accuracies for individual breeding programs. Each row contains the name of the breeding program, the number of lines 
used in the analysis, the correlation (r) when using a training program comprised of all lines (left), and the correlation when using only lines 
originating from the same breeding program (right). Boxes are shaded based on correlations. Significance is indicated at the 0.05 (*), 0.01 
(**), and 0.001 (***) levels
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Supplemental Information
Supplemental Fig. S1. Plot of the first and second Eigen 
vectors derived from the A matrix using the eigen func-
tion in R (R Development Core Team, 2017).
Supplemental Fig. S2. Dendrogram showing relationship 
of the wheat lines used in this study created using the 
gbs.dendro function in the gbs-r package in R (https://
github.com/trife/gbs). Lines were grouped and colored 
based on originating breeding program.
Supplemental Table S1. Calculated BLUPs for each of the 
lines used in the analysis.
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