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Abstract. Thermal and multispectral remote sensing data

from low-altitude aircraft can provide high spatial resolution

necessary for sub-field (≤ 10 m) and plant canopy (≤ 1 m)

scale evapotranspiration (ET) monitoring. In this study, high-

resolution (sub-meter-scale) thermal infrared and multispec-

tral shortwave data from aircraft are used to map ET over

vineyards in central California with the two-source energy

balance (TSEB) model and with a simple model having op-

erational immediate capabilities called DATTUTDUT (De-

riving Atmosphere Turbulent Transport Useful To Dummies

Using Temperature). The latter uses contextual information

within the image to scale between radiometric land surface

temperature (TR) values representing hydrologic limits of po-

tential ET and a non-evaporative surface. Imagery from 5

days throughout the growing season is used for mapping ET

at the sub-field scale. The performance of the two models is

evaluated using tower-based measurements of sensible (H )

and latent heat (LE) flux or ET. The comparison indicates that

TSEB was able to derive reasonable ET estimates under vary-

ing conditions, likely due to the physically based treatment of

the energy and the surface temperature partitioning between

the soil/cover crop inter-row and vine canopy elements. On

the other hand, DATTUTDUT performance was somewhat

degraded presumably because the simple scaling scheme

does not consider differences in the two sources (vine and

inter-row) of heat and temperature contributions or the ef-

fect of surface roughness on the efficiency of heat exchange.

Maps of the evaporative fraction (EF=LE/(H +LE)) from

the two models had similar spatial patterns but different mag-

nitudes in some areas within the fields on certain days. Large

EF discrepancies between the models were found on 2 of

the 5 days (DOY 162 and 219) when there were significant

differences with the tower-based ET measurements, partic-

ularly using the DATTUTDUT model. These differences in

EF between the models translate to significant variations in

daily water use estimates for these 2 days for the vineyards.

Model sensitivity analysis demonstrated the high degree of

sensitivity of the TSEB model to the accuracy of the TR data,

while the DATTUTDUT model was insensitive to system-

atic errors in TR as is the case with contextual-based models.

However, it is shown that the study domain and spatial reso-

lution will significantly influence the ET estimation from the

DATTUTDUT model. Future work is planned for developing

a hybrid approach that leverages the strengths of both mod-

eling schemes and is simple enough to be used operationally

with high-resolution imagery.

Published by Copernicus Publications on behalf of the European Geosciences Union.
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1 Introduction

As a key component of the land hydrological, energy, and

biogeochemical cycles, evapotranspiration (ET) provides im-

portant information about terrestrial water availability and

consumption (Evett et al., 2012). Detailed knowledge of spa-

tial ET distributions (especially in near-real time) at field

or finer scale is particularly useful in precision agricultural

water management (Anderson et al., 2012a; Sánchez et al.,

2014). This is especially relevant as the need to increase food

production for a growing human population is hindered by

the reduced availability of freshwater in many water limited

regions, which potentially will be exacerbated with a chang-

ing climate. Remote sensing techniques are considered to be

one of the few reliable methods for mapping and monitoring

ET at watershed and regional scales (Su, 2002; Kustas and

Anderson, 2009) since they provide a means for detecting

changes in vegetation and soil moisture conditions at field

scale affecting ET over space and time.

Over the past several decades, numerous satellite products

have been used in ET estimation and monitoring. Among

them, medium to moderate spatial-resolution (100–1000 m)

satellite data, e.g., from Landsat and the MODerate resolu-

tion Imaging Spectrometer (MODIS), have been applied with

models for mapping ET at field to watershed and regional

scales with some success (Anderson et al., 2012b; Cammal-

leri et al., 2013). (In this paper we define satellite imagery

with resolution on the order of ∼ 100 m as “medium reso-

lution” and 1000 m as “moderate resolution” to distinguish

from high-resolution imagery with meter-scale spatial reso-

lution.) However, as water resources become more limited,

there is a greater need for precision agricultural management

at the field/subfield-scale, particularly for high-valued or spe-

cialty crops (Zipper and Loheide II, 2014), and moderate-

resolution data are too coarse to inform variable rate applica-

tion of water or nutrients within a field. In addition, obtaining

both high spatial and temporal resolution data is not feasible

with the current satellite constellation since medium resolu-

tion Earth observations have a long (2 or more weeks) revisit

cycle, particularly when considering cloud cover (Cammal-

leri et al., 2013).

Remote sensing data from low-altitude aircraft, especially

from unmanned aerial vehicles (UAVs), can potentially pro-

vide the needed spatial and temporal frequency for precision

agriculture applications. Despite the fact that development of

airborne scanner-derived thermal imagery for irrigation ap-

plications had begun back in the 1970s (Jackson et al., 1977),

it is not until the last few years that very high-resolution data

are being considered for precision agricultural applications.

This is due to the technological advances that have allowed

rapid integration and processing of high-resolution data from

cameras mounted on aircraft and more recently on-board

UAVs (Zarco-Tejada et al., 2013). Current applications of

high-resolution thermal remote sensing data are mainly fo-

cused on detecting and mapping crop water status (Berni et

al., 2009a; Gonzalez-Dugo et al., 2012; Zarco-Tejada et al.,

2012) since canopy temperature has historically been used as

an indicator of water stress (Jackson et al., 1981; Gardner et

al., 1981; Fuentes et al., 2012). Sub-meter-resolution thermal

imagery is able to retrieve pure canopy temperature, mini-

mizing soil or other background thermal effects (Leinonen

and Jones, 2004; Zarco-Tejada et al., 2013).

Spatially distributed ET can be obtained using remote-

sensing-based models with varying degrees of complexity

and utility (Kalma et al., 2008). In terms of treatment of

the energy exchange with the surface, the thermal remote-

sensing-based ET models can be generally classified as one

source (Bastiaanssen et al., 1998; Su, 2002; Feng and Wang,

2013) and two source (Norman et al., 1995; Kustas and Nor-

man, 1999; Long and Singh, 2012; Yang and Shang, 2013)

parameterizations depending on whether they treat a land-

scape pixel as a composite/lumped surface or explicitly par-

tition energy fluxes and temperatures between soil and vege-

tation. These models are based on solving the surface energy

balance and adopt radiometric surface temperature (TR) as a

key boundary condition (Kustas and Norman, 1996).

A commonly used method in one-source models is the

contextual scaling approach, which uses TR and vegetation

amount (the normalized difference vegetation index, NDVI,

or fractional vegetation cover, fc) as proxy indicators of ET

(Bastiaanssen et al., 1998; Su, 2002; Allen et al., 2007; Carl-

son et al., 1994; Jiang and Islam, 1999). Accurate identifica-

tion of extreme hydrologic limits, i.e., potential ET (cold/wet

limit) and the largest water stress condition (hot/dry limit), is

essential for proper scaling of the surface condition (e.g., the

aerodynamic and air temperature difference, dT , and evap-

orative fraction, EF) of the other pixels between these ex-

tremes. Examples include the surface energy balance algo-

rithm for land (SEBAL) (Bastiaanssen et al., 1998), the map-

ping evapotranspiration with internalized calibration (MET-

RIC) model (Allen et al., 2007), the triangle model (Carl-

son et al., 1994), and the satellite-based energy balance al-

gorithm with reference dry and wet limits (REDRAW) (Feng

and Wang, 2013).

With UAV imagery, the pixel resolution can be very fine

(i.e., 100 cm–100 m) in order to map the variability in crop

condition within a field. This typically restricts the size of

the area or field being monitored and hence reduces the like-

lihood of sampling the extremes in ET rates (i.e., ET∼ 0 and

ET at potential). This issue was raised by Zipper and Lo-

heide II (2014), who indicated that thermal-based ET models

relying on extreme limits are not applicable at field scales

since in agricultural landscapes vegetation cover within a

field is fairly homogeneous and ideal extreme limits may

be difficult to identify, especially during mature crop pe-

riods when the canopy is nearly closed. They developed

a mixed-input approach combining high-resolution airborne

and Landsat imagery with local meteorological forcing in a

surface energy balance model they called High-Resolution

Mapping of EvapoTranspiration (HRMET). HRMET com-

Hydrol. Earth Syst. Sci., 20, 1523–1545, 2016 www.hydrol-earth-syst-sci.net/20/1523/2016/
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bines a two-source modeling approach for estimating avail-

able energy between the soil and vegetation elements but

uses a single-source scheme for estimating the soil+canopy

system H , with latent heat (LE) solved by residual.

On the other hand, the contextual scaling approach can

greatly simplify model computations and input data require-

ments (Carlson, 2007), and can reduce ET retrieval errors

due to bias errors in TR and meteorological inputs such as air

temperature and wind speed (Allen et al., 2007). This facili-

tates near-real-time operational applications for ET monitor-

ing. In the DATTUTDUT (Deriving Atmosphere Turbulent

Transport Useful To Dummies Using Temperature) model-

ing scheme introduced by Timmermans et al. (2015), land

surface temperature is the only input needed for ET esti-

mation. DATTUTDUT solves for ET by scaling the EF be-

tween the extreme values associated with potential (cool/wet

pixel) and zero (hot/dry pixel) ET. The main concept of DAT-

TUTDUT is similar to the S-SEBI (simplified surface en-

ergy balance index) proposed by Roerink et al. (2000); how-

ever, DATTUTDUT has a more simplified scheme to obtain

radiometric temperature end-members and radiation-related

factors. Although these types of contextual scaling methods

have been tested over a variety of landscapes using mainly

moderate resolution remote sensing data, their applicability

and performance in retrieving surface fluxes and ET at the

high-resolution/sub-field scale, and potential problems or be-

havior at the sub-field scale have not been adequately tested.

The two-source energy balance (TSEB) scheme originally

proposed by Norman et al. (1995) and modified by Kustas

and Norman (1996, 1999, 2000), has proven to be fairly ro-

bust for a wide range of landscape and weather conditions

(Li et al., 2005; Kustas and Anderson, 2009; Colaizzi et

al., 2012a). Unlike single-source models based on contex-

tual scaling approaches, the TSEB model contains a more

detailed treatment of the radiative and flux exchange between

soil and vegetation elements without the requirement of ex-

treme hydrological limits existing within the scene. Conse-

quently, TSEB is still effective when applied over homoge-

neous landscapes and environmental conditions.

The performance of TSEB and single-source models us-

ing TR/ET extremes (e.g., SEBAL, METRIC, Trapezoid In-

terpolation Model – TIM) has been compared over a corn

and soybean region in Iowa during The Soil Moisture–

Atmospheric Coupling Experiment (SMACEX) (French et

al., 2005; Choi et al., 2009), sub-humid grassland and semi-

arid rangeland during Southern Great Plains 1997 (SGP97)

and Monsoon90 (Timmermans et al., 2007), as well as a

cotton field in Maricopa, Arizona (French et al., 2015).

These studies demonstrated that both TSEB and the single-

source models can reproduce fluxes with similar agreement

to tower-based observations, yet they did reveal significant

discrepancies in the ET patterns or spatial distributions es-

pecially in areas with bare soil or sparse vegetation. In

general, these model inter-comparisons have mainly used

medium resolution satellite imagery such as Landsat and

Advanced Spaceborne Thermal Emission and Reflection ra-

diometer (ASTER). French et al. (2015) conducted a model

comparison using both Landsat and aircraft data, and con-

cluded that daily ET estimations were similar at high and

medium spatial resolutions.

However, more detailed comparisons between simple one-

source contextual-based schemes versus more complex two-

source models using high-resolution imagery over different

surfaces are still needed to fully understand the strengths

and weaknesses of both modeling schemes. Such inter-

comparisons can facilitate development of hybrid schemes

that leverage the strengths of different methodologies (e.g.,

Cammalleri et al., 2012), while incorporating simplifications

for routine application with airborne imagery. The purpose

of this paper is to conduct an inter-comparison of TSEB

with the very simple contextual-based DATTUTDUT model

that can be easily applied operationally using high-resolution

thermal and multispectral shortwave imagery for sub-field-

scale ET estimation. The inter-comparison is conducted over

two vineyard fields having significantly different biomass in

central California. ET estimates from the TSEB and DAT-

TUTDUT models are compared in detail within the con-

tributing source area of the flux tower in each field, and the

spatial patterns of modeled ET are compared throughout the

whole vineyard field. Additionally, a sensitivity analysis of

key inputs to the two models is conducted, providing insight

into the potential for precision agricultural water resource

management applications using such high-resolution Earth

observations.

2 Model overview

2.1 TSEB model

The TSEB model, developed by Norman et al. (1995), par-

titions surface temperature and fluxes into soil and vegeta-

tion components. Detailed formulations used in TSEB can

be found in Kustas and Norman (1999) and Li et al. (2005,

2008). In the TSEB model, the surface-energy budgets are

balanced for both the soil and canopy components of the

scene:

Rn = Rns+Rnc =H +LE+G, (1)

Rns =Hs+LEs+G, (2)

Rnc =Hc+LEc, (3)

where Rn is net radiation (W m−2), H is sensible heat flux

(W m−2), LE is latent heat flux (W m−2), and G is soil

heat flux (W m−2). Subscripts “s” and “c” represent the soil

and canopy flux components, respectively. Component Rn is

combined with the component temperature (Colaizzi et al.,

2012b; Song et al., 2016):

Rns = τlLd+ (1− τl)εcσT
4

c − εsσT
4

s + τs (1−αs)Sd, (4)

www.hydrol-earth-syst-sci.net/20/1523/2016/ Hydrol. Earth Syst. Sci., 20, 1523–1545, 2016
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Rnc = (1− τl)
(
Ld+ εsσT

4
s − 2εcσT

4
c

)
+ (1− τs)(1−αc)Sd, (5)

where Ld and Sd are incoming longwave and shortwave

radiation (W m−2), τl and τs are the longwave and short-

wave radiation transmittances through the canopy (–). ε, α,

and T are surface emissivity (–), surface albedo (–), and

surface temperature (K) with subscripts “s” and “c” repre-

sent the soil and canopy. σ is the Stefan–Boltzmann constant

(∼ 5.67× 10−8 W m−2 K−4). Sd is either computed using

Sun–Earth astronomical relationships under clear-sky con-

ditions as done by DATTUTDUT (see below) or measured

from a nearby weather station, and Ld is either measured or

often computed using formulas based on weather station ob-

servations of air temperature and vapor pressure (i.e., Brut-

saert, 1975).

TR is partitioned into component soil, Ts, and canopy, Tc,

temperatures based on the fractional vegetation cover (fc):

TR ≈

[
fc(θ)T

4
c + (1− fc(θ))T

4
s

]1/4

, (6)

where fc(θ) is the vegetation cover fraction at the thermal

sensor view angle θ . A clumping factor, �, is adopted in the

fc(θ) calculation to account for the row structure of vine-

yards (i.e., vine biomass concentrated along trellises) using a

formulation from Campbell and Norman (1998):

fc(θ)= 1− exp

[
−0.5�(θ)LAI

cos(θ)

]
, (7)

where LAI is leaf area index, which is often estimated from

NDVI using an empirical LAI–NDVI relation (Anderson et

al., 2004). When calculating the flux component H , “series”

and “parallel” schemes are adopted for the resistance net-

work separately for unstable and stable conditions. Detailed

formulations for the two schemes can be found in Norman

et al. (1995) and Kustas and Norman (1999). LEc is initially

estimated using a Priestley–Taylor formulation:

LEc = αPTfG

1

1+ γ
Rnc, (8)

where αPT is Priestley–Taylor parameter, which may vary

within different vegetation and climate conditions (Norman

et al., 1995; Kustas and Norman, 1999; Kustas and Ander-

son, 2009). In this paper, the initial value of αPT is 1.26. fG is

the LAI fraction that is green with active transpiration. 1 is

the slope of the saturation vapor pressure–temperature curve

(Pa K−1) and γ is the psychrometric constant (Pa K−1). G is

parameterized as a fraction of Rns by

G= cRns, (9)

where c is the empirical coefficient, which tends to be con-

stant during midmorning to midday period.

With the above model formulations, energy fluxes for both

soil and canopy can be solved. Important model inputs for

TSEB include TR, fractional canopy cover condition (often

related to NDVI), and a land use map providing canopy char-

acteristics (mainly vegetation height and leaf width) obtained

using remote sensing imagery. Ancillary meteorological data

required in TSEB include air temperature, vapor pressure, at-

mospheric pressure, and wind speed.

2.2 DATTUTDUT model

The DATTUTDUT model is an energy balance model that

estimates surface energy fluxes solely from radiometric sur-

face temperature observations acquired over the area of inter-

est. This model assumes that TR is an important indicator for

the surface status, and scales key parameters for flux estima-

tion by TR between the extremes of a cool/wet pixel with ET

at the potential rate and hot/dry pixel where there is essen-

tially no ET. Detailed model formulations are described in

Timmermans et al. (2015). Similar to other energy balance

models, Rn is estimated by computing the net shortwave ra-

diation and the net longwave radiation:

Rn = (1−α)Sd+ εεaσT
4
a − εσT

4
R , (10)

where εa is the atmosphere emissivity (–) and ε is the ef-

fective (integrated soil+ canopy emissivity) emissivity. The

value of Sd is obtained from the Sun–Earth astronomical rela-

tionships under clear-sky conditions (Allen et al., 2007; Tim-

mermans et al., 2015). In the DATTUTDUT model, nominal

values are taken for ε and εa for simplicity: εa is set to be 0.7

and ε is taken as 0.96. Air temperature, Ta (K), is assumed

to be equal to the minimum TR identified within the scene of

interest. α is scaled with TR between extreme values of 0.05

and 0.25 based on the assumption that densely vegetated ob-

jects are likely to be darker and cooler while bare objects tend

to appear brighter and hotter:

α = 0.05+

(
TR− Tmin

Tmax− Tmin

)
0.2, (11)

where Tmax is the maximum TR within the image, and Tmin is

the 0.5 % lowest temperature in the scene. Soil heat flux is

calculated from Rn with the coefficient cG scaled between a

minimum value of 0.05 for fully covered condition and max-

imum value of 0.45 for bare soil (Roerink et al., 2000; San-

tanello and Friedl, 2003):

cG =
G

Rn

= 0.05+

(
TR− Tmin

Tmax− Tmin

)
0.4. (12)

Similar to α and cG, EF is assumed to be linearly related to

TR:

EF=
LE

LE+H
=

LE

Rn−G
=

LE

A
=

Tmax− TR

Tmax− Tmin

, (13)

where A is available energy (W m−2), i.e., the difference be-

tween Rn and G. With the above formulations, LE can be

Hydrol. Earth Syst. Sci., 20, 1523–1545, 2016 www.hydrol-earth-syst-sci.net/20/1523/2016/



T. Xia et al.: Mapping evapotranspiration with high-resolution aircraft imagery over vineyards 1527

calculated from A and EF, and H can be estimated as the

residual to the energy balance equation.

2.3 Daily flux calculation

A common approach used to extrapolate ET from instanta-

neous (time of satellite overpass) to daily timescale is to as-

sume the ratio of instantaneous LE to some reference vari-

able remains constant during the day, which is described as

“self-preservation” by Brutsaert and Sugita (1992). The ref-

erence variables typically used include A (Anderson et al.,

2012b), standardized reference ET (Allen et al., 2007), solar

radiation (Zhang and Lemeur, 1995), top-of-atmosphere irra-

diance (Ryu et al., 2012). Cammalleri et al. (2014) compared

the performances of the scale factors derived by these four

reference valuables in ET upscaling at 12 AmeriFlux towers,

drawing a conclusion that solar radiation was the most robust

reference variable for operational applications, particularly

in areas where the modeled G component of A may have

high uncertainties. However, the applicability of the various

reference variables may differ within areas, since the energy

budget is significantly influenced by surface characteristics

such as soil moisture, vegetation condition (Crago, 1996). In

this study, EF (defined as the ratio of LE to A or H +LE) is

assumed constant during the daytime period when solar radi-

ation is larger than 0. The extrapolation to daytime ET using

a constant EF is reasonable to apply during the main growing

season period (Cammalleri et al., 2014).

The ratio of instantaneous to daytime A at the flux tower

site is used to obtain daytime A for each pixel within the

study area by assuming that the A ratio between pixel and

flux tower is constant during the daytime. Therefore, day-

time A for the pixel (Ap,d) can be derived from the pixel-

based instantaneous A (Ap,i), and flux tower site values of

instantaneous and daytime A (As,i and As,d) using the fol-

lowing expression:

Ap,d =
Ap,i

As,i

As,d. (14)

Then daytime ET for each pixel (ETp,d) can be calculated

by tower observed daytime A and the EF retrieved by either

TSEB or DATTUTDUT:

ETp,d = Ap,dEF (15)

and daytimeH is computed as the residual in the energy bal-

ance equation.

In this study, the observed available energy from the two

flux towers during the daytime period for all 5 days was used

to extrapolate instantaneous model estimates to daytime ET

totals. However, in practice tower measurements of A would

not be available, so results using solar radiation to extrapolate

to daytime ET will also be evaluated.

3 Data and site description

3.1 Study site

The model comparison was conducted over two vineyard

sites located near Lodi in central California, using data col-

lected as part of the Grape Remote sensing Atmospheric Pro-

filing and Evapotranspiration eXperiment (GRAPEX) (Kus-

tas et al., 2014). With a Mediterranean climate, this area has

abundant sunshine and large day-and-night temperature dif-

ferences, making it a primary wine grape producing area in

California. This study focuses on two drip irrigated Pinot

Noir vineyards trained on quadrilateral cordons with a 1.5 m

space between vines and 3.3 m distance between rows. Al-

though the drip-irrigation system was designed to apply wa-

ter along the vine row uniformly across the field, it was ev-

ident that variations in soil texture and rates/amounts of wa-

ter applied were not uniform in either field causing a fairly

wide range in vine biomass. The northern field (site 1) has

an area of about 35 ha with the flux tower located approxi-

mately half-way north–south along the eastern border of the

field (38◦17.3′ N, 121◦7.1′W), while the southern vineyard

(site 2) is smaller in size, at about 21 ha with the flux tower

also approximately half-way north–south along the eastern

border of the field (38◦16.8′ N, 121◦7.1′W) (see Fig. 1). The

towers were deployed at these locations to maximize fetch

for the predominant wind direction during the growing sea-

son, which is from the west. The vines in the northern field

(7–8 years old) are more mature than those in the southern

field (4–5 years old), resulting in a greater biomass/leaf area

in the northern field (see the LAI map for IOP2 (intensive

observation periods) in Fig. 4). Vine height is similar in both

fields and reaches ∼ 2.5 m in height. The vines typically leaf

out in late March and grow through late August before the

grapes are harvested in early September. When winter rains

and soil moisture are adequate, a grass cover crop flourishes

early in the growing season in the inter-row until becoming

senescent starting in late May, which is typically the begin-

ning of the dry season. During the growing season in 2013,

the average air temperature was nearly 20 ◦C and the total

precipitation was only about 15 mm.

3.2 Micrometeorological data

Micrometeorological instruments for measuring the meteo-

rological and flux data were installed at both the northern and

southern field flux tower sites in late March 2013. The mete-

orological data needed for running the TSEB model include

air temperature, vapor pressure, atmospheric pressure, wind

speed, and incoming solar radiation. These were all measured

at approximately 5 m above local ground level (a.g.l.) and

recorded as 15 min averages. The eddy covariance (EC) sys-

tem comprised of a Campbell Scientific, Inc.1 EC150 water

1The use of trade, firm, or corporation names in this article is

for the information and convenience of the reader. Such use does
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Figure 1. Location of study area overlaid on a false color composite of near-infrared (NIR), red, and green bands with 0.1 m spatial resolu-

tion (a) and thermal band with 0.66 m spatial resolution (b) obtained by aircraft on 6 August, DOY 218, 2013. In the visible band image (a),

red and gray colors denote the vine and bare soil/senescent cover crop in the inter-row, respectively, while in the thermal band image (b),

blue/green and yellow/red colors represent vine and bare soil/senescent cover crop in the inter-row, respectively. The black line denotes the

boundary of the northern and southern fields, and the blue stars are the locations of the flux tower sites. The two photos of the northern and

southern fields (c, d) were taken on 11 June in 2014 after vines had fully leafed out.

vapor/carbon dioxide sensor and a CSAT3 three-dimensional

sonic anemometer, both collecting data at 20 Hz producing

15 min averages. A Kipp and Zonen CNR1 four-component

radiometer measured net radiation at 6 m a.g.l. Five soil

heat flux plates (HFT-3, Radiation Energy Balance Systems,

Bellevue, Washington) buried cross-row at a depth of 8 cm

recorded soil heat flux. Each heat flux plate had two ther-

mocouples buried at 2 and 6 cm depths and a Stevens Water

Monitoring Systems HydraProbe soil moisture sensor buried

at a depth of 5 cm used to estimate heat storage above each

plate. Both meteorological and fluxes data were measured

through the whole vine growing season (April to October)

in 2013. During this period (including both daytime and

nighttime observations), the slope between A and H +LE

is 0.83 for both two sites with coefficient of determina-

tion (R2) on the order of 0.97. This suggests an average en-

ergy balance closure of nearly 85 %. In this study, the EC

fluxes were closed using both the residual (RE) and Bowen

ratio (BR) methods described in Twine et al. (2000) to ensure

energy conservation.

not constitute an official endorsement or approval by the US De-

partment of Agriculture or the Agricultural Research Service of any

product or service to the exclusion of others that may be suitable.

3.3 Airborne campaigns

Three IOPs were conducted through the 2013 growing sea-

son as part of GRAPEX to capture different vine and inter-

row cover crop phenological stages that may affect ET rates.

During IOP1 (9–11 April 2013; day of year (DOY) 99–101)

the vines were just starting to leaf out and the cover crop

in the inter-row was green and flourishing. By the time of

IOP2 (11–13 June, DOY 162–164), the vines were fully de-

veloped with immature green grapes, while the cover crop

was senescent. Grapes were beginning to ripen and reach

maturity while the vines were still green and growing dur-

ing IOP3 (6–8 August, DOY 218–220).

Airborne campaigns were conducted on 5 days (DOY 100,

162, 163, 218, and 219) over the three IOPs. Multispec-

tral and thermal imagery were acquired over the two vine-

yards with the Utah State University airborne digital sys-

tem installed in a single engine Cessna TU206 aircraft dedi-

cated to research. The system consists of four ImperX Bob-

cat B8430 digital cameras with interference filters forming

spectral bands in the Blue (0.465–0.475 µm), Green (0.545–

0.555 µm), Red (0.645–0.655 µm), and near infrared (NIR)

(0.780–0.820 µm) wavelengths. The thermal infrared (TIR)

images were acquired with a ThermaCAM SC640 by FLIR

Systems Inc. in the 7.5–13 µm range. The aircraft-based TIR

images were provided in degrees Celsius and used in this
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Table 1. Flight and pixel resolution information concerning the images obtained from the airborne campaigns.

IOP Date (DOY) Flight time Original spatial Flight

(UTC) resolution (m) height

Multispectral Thermal (m)

1 10 April (100) 18:29–18:43 0.09 0.64 430

2 11 June (162) 18:20–18:26 0.05 0.38 240

2 12 June (163) 21:11–21:16 0.05 0.38 240

3 6 August (218) 18:34–18:37 0.1 0.66 480

3 7 August (219) 18:46–18:49 0.1 0.65 480

analysis without performing atmospheric correction. Details

of image acquisition and processing can be found in Neale

et al. (2012). In Table 1, overpass time (UTC), multispec-

tral and thermal pixel resolution, information, and aircraft

altitude are listed for the overpass dates. The high spatial

resolution of the visible bands (0.05 or 0.1 m, see Table 1)

made it possible to distinguish vegetation pixels from non-

vegetated pixels to some extent. However, with the coarser

thermal pixel resolutions it was difficult to reliably distin-

guish pure vine canopy temperatures from background soil

and/or inter-row cover crop temperatures (Fig. 1). Since the

imagery for the different overpass dates have different spa-

tial resolutions and the TSEB model resistance and radia-

tion formulations for the turbulent and radiative exchange

for the soil/cover crop–vine system are appropriate at the

plot/micrometeorological scale, both multispectral and ther-

mal bands were aggregated to 5 m resolution for creating

TSEB input fields to compute ET. This spatial resolution

ensured both an inter-row and vine row would be sampled

within the pixel.

The original or native pixel resolution of the thermal im-

agery was also used as input to DATTUTDUT.

3.4 Model input from aircraft data

The key TSEB model input data from the aircraft observa-

tions include maps of NDVI, LAI, fc, and TR. Auxiliary re-

mote sensing data were required to produce multispectral re-

flectance and LAI maps. The original multispectral imagery

from aircraft was in digital numbers (DN) and needed to be

converted into reflectance. Smith and Milton (1999) intro-

duced an empirical line method to calibrate remote-sensing-

derived DN to reflectance with errors of only a few percent

in their case study. Berni et al. (2009b) applied the empir-

ical line method on high-resolution data obtained by UAV

yielding calculated reflectances that agreed well with mea-

surements (root mean square difference (RMSD)= 1.17 %).

Since ground-based reflectance measurements were not col-

lected for some of the airborne acquisition dates, Landsat

multispectral band reflectance in the corresponding spectral

bands were used to derive the empirical DN–reflectance re-

lationships for this analysis.

Three Landsat images were used to match the three IOP

dates: Landsat 7 on DOY 98 from path44–row33, Land-

sat 8 on DOY 163 from path43–row33, and Landsat 8 on

DOY 218 from path44–row33. Reflectances for band 5,

band 4, and band 3 from the Landsat 8 images, and band 4,

band 3, and band 2 from the Landsat 7 image were used to de-

rive the DN-reflectance relationship for NIR, red, and green

bands, separately. All shortwave bands were calibrated and

atmospherically corrected by the Landsat ecosystem distur-

bance adaptive processing system (LEDAPS) proposed by

Masek et al. (2006).

The DN values with the original aircraft pixel resolution

(Table 1) were aggregated up to 30 m resolution to match

the Landsat multispectral bands resolution and the DN–

reflectance relationship was derived. Visible band reflectance

measurements were taken during the IOPs on DOY 162, 218,

and 219 both above the vine row and over cover crop inter-

row for both northern and southern fields. Estimated NIR,

red and green band reflectances at aircraft pixel resolution

are compared with reflectance measurements in Fig. 2. Us-

ing 54 data points, including the three bands for 3 days at

both sites, estimated reflectance from aircraft data agreed

well with observations having a bias (observed–modeled)

of−1.1 % and RMSD of 4.5 %. This accuracy is comparable

with that (a few percent) found by Smith and Milton (1999)

and Berni et al. (2009b).

NDVI was assumed to be correlated with fractional

vegetation cover and related to LAI (Carlson and Rip-

ley, 1997). The MODIS Terra 4-day composite LAI prod-

uct (MCD15A3) was used to derive LAI maps at 30 m reso-

lution using the regression tree approach introduced by Gao

et al. (2012). NDVI maps were generated from NIR (band 5)

and red (band 4) band of Landsat 8 data. This permitted the

derivation of a LAI–NDVI relation at 30 m resolution, which

was used to create a LAI map at aircraft pixel resolution. An

exponential equation was used to fit the LAI–NDVI relation-

ship, which was able to accommodate the effect of NDVI

saturation at high LAI values (Carlson and Ripley, 1997;

Anderson et al., 2004). In Fig. 3, the LAI–NDVI equation

is compared with ground-based LAI measurements using

LiCor LAI-2000 on DOY 163 and DOY 218. The ground-

based LAI measurements were derived from 5 transects run-
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Figure 2. Comparison between observed (O) and modeled (M) vis-

ible band reflectance. The statistics (for the sample size n= 54)

listed in the figure are the bias (6(O −M)/n), mean absolute

error (MAE=6|O −M|/n), and root mean square difference

(RMSD= [6(O −M)2/n]1/2) where the symbol 6 represents a

summation over the sample size n.

ning due west of the tower at 10–15 m intervals and across

4 rows from south to north. The average LAI from five tran-

sects represented a sampling area that was within 75 m due

west of the flux tower sites. Four below vine canopy measure-

ments were made and consisted of a LAI observation directly

underneath vine plants along a row, and one-fourth, one-half,

and three-fourths distance from the vine row. A LAI image

from IOP2 is displayed in Fig. 4 illustrating the significant

spatial variation in LAI particularly for the northern field.

Values of fc were derived by the aircraft-based visible

bands taking advantage of the high spatial resolution (0.05 to

0.1 m, see Table 1 and Fig. 1) which allowed separation of

the vine canopy from the inter-row area. Pixels were clas-

sified into vegetation and non-vegetation categories by EN-

vironment for Visualizing Images (ENVI) image processing

software (Exelis, Boulder, CO), and then the percentage of

vegetation pixels was quantified within each 5 m resolution

pixel.

4 Results and discussion

4.1 Comparison of model estimates and tower data

Fluxes were modeled by both TSEB and DATTUTDUT at

5 m resolution using the spatially aggregated aircraft-based

remotely sensed observations. In addition, DATTUTDUT

used the native pixel resolution of the thermal imagery since

there is no specific spatial scale required by the model param-

eterizations. TSEB additionally estimates soil and canopy

temperatures. A two-dimensional flux footprint model de-

scribed by Li et al. (2008) based on Hsieh et al. (2000)

was used to compute footprint-weighted aggregated model

outputs for comparison with the tower-based measurements.

This footprint model contains a lateral dispersion formula-

tion to obtain a two-dimensional-weighted source area of flux

from the upwind direction.

Average soil and canopy component temperatures from

TSEB were compared to the aircraft-based observations for

the pixels within the flux contributing source area of the

towers (Fig. 5). The aircraft-based temperature observations

were extracted using a classification of vegetation and non-

vegetated areas generated with the high-resolution visible

bands to identify appropriate pixels in the thermal imagery.

The aircraft thermal band had a pixel resolution on the or-

der of 0.5 m (see Table 1), which was often a slightly coarser

scale than the width of the vine canopy and hence frequently

resulted in a mixed pixel, combining both soil and canopy

temperatures. Since obtaining purely vegetated surface tem-

perature observations uncontaminated by background soil or

cover crop temperature was difficult given the resolution of

the thermal imagery, the minimum of the vegetated temper-

atures detected within the 5 m pixel was assumed to be a

pure vegetated pixel temperature. Then within the footprint

source area, the average of the non-vegetated temperatures

(assumed to primarily consist of shaded and sunlit areas in

the inter-row) was taken as the observed Ts, and average

of the minimum vegetated temperatures from all 5 m pix-

els within the source area was estimated to represent the ob-

served Tc. TSEB estimates of Ts and Tc agreed well with

the aircraft thermal observations, yielding a bias of 0.5 ◦C

and RMSD on the order of 2.5 ◦C. This accuracy was com-

parable with similar types of comparisons reported by Li et

al. (2005), Kustas and Norman (1999, 2000), and Colaizzi

et al. (2012a) which had RMSD values ranging from 2.4 to

5.0 ◦C for Ts and 0.83 to 6.4 ◦C for Tc when comparing ob-

served to TSEB-derived component temperatures.

To assess the utility of the TSEB and DATTUTDUT mod-

els in reproducing the observed fluxes from the tower obser-

vations in the northern (site 1) and southern (site 2) vine-

yards, instantaneous modeled fluxes are compared with mea-

surements (adjusted for closure using the RE method) in

Fig. 6. Table 2 lists the statistics of model performance com-

pared with both original and closure-adjusted measurements.

Since the vines were at the very early growth stage during

IOP1, and the inter-row cover crop was the main source of

vegetation cover, the observed G on DOY 100 was signifi-

cantly larger than other IOPs (Fig. 6).

Table 2 clearly shows that the RE closure adjustment

method yields better overall agreement between measured

and modeled fluxes with the average error computed as the

ratio of RMSD and average observed flux value of ∼ 27 %

for H and LE for the two sites, while the BR method has an

error of∼ 37 %; instantaneous fluxes from TSEB (H and LE

adjusted by RE method) agreed well with observations with

RMSD ranging between 20 and 60 W m−2, which is consid-

ered acceptable and similar to prior studies (e.g., Neale et al.,

2012). DATTUTDUT gave estimated fluxes with relatively
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Figure 3. Validation of the LAI–NDVI relation using the ground-based LAI measurements on DOY 163 and 218.

Figure 4. The LAI map generated from the NDVI image for IOP 2

DOY 163.

large errors particularly for Rn (RMSD∼ 65 W m−2) and LE

(RMSD∼ 105 W m−2) for site 1. The larger discrepancies in

Rn from DATTUTDUT might be attributed to the simplifi-

cations in the net radiation computation (see Sect. 2.2). For

DATTUTDUT, the results using 5 m pixel data indicate that

the significant error in LE predominantly results from poor

performance on DOY 162 and 219 (Fig. 6b and e), likely be-

cause the extreme pixels automatically selected on these 2

days failed to represent the driest/wettest conditions within

the image (see discussion below).

Daytime integrated fluxes are compared with the tower

measurements in Fig. 7 and Table 3. Available energy was

slightly overestimated by the models for all the cases, with

biases between −0.5 and −1.7 MJ m−2 day−1. Again, the

RE method yielded better agreement with the model es-

timates of H and LE on a daytime scale. The LE val-

ues from TSEB at site 1 agreed well with the obser-

vations with a bias of 0.5 MJ m−2 day−1 and RMSD of

1.1 MJ m−2 day−1 (Fig. 7a and Table 3). However, LE from

DATTUTDUT had larger differences with the measurements

at site 1 (bias=−1.1–1.0 MJ m−2 day−1 and RMSD= 1.9–

2.0 MJ m−2 day−1) mainly due to the poor agreement in the

instantaneous LE. For 5 m resolution results, the two models

were comparable in their agreement with LE measurements

at site 2, yielding a small bias of −0.5 to ∼ 0 MJ m−2 day−1

and for both a RMSD on the order of 1.7 MJ m−2 day−1.

At both instantaneous and daytime timescales, application

of DATTUTDUT with the native (finer) pixel resolution ther-

mal imagery yielded comparable (at site 1) or significantly

greater (at site 2) discrepancies with the tower measurements

than using the 5 m pixel resolution data (see Tables 2 and 3).

Changes in the agreement with the tower measurements are

mainly attributable to the new hot and cold temperature pix-

els selected by the DATTUTDUT procedure with the finer

resolution TR data.

In practice, we will not have observations of available en-

ergy, A, from a flux tower for extrapolating the instantaneous

ET from a single airborne observation to daytime ET, but in-

stead are more likely to have weather station observations of

incoming solar radiation, Sd. Results using Sd for extrapolat-

ing model estimates instead of flux tower measurements ofA

are listed in Table 4. In general, the differences between mod-

eled and measured daytime ET (using RE method) increase,

although not significantly for TSEB. On the other hand, dis-

crepancies with the ET measurements for DATTUTDUT at

the northern vineyard (site 1) increase dramatically due to
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Figure 5. Comparison between modeled Ts and Tc from TSEB and values extracted from the aircraft imagery on the five acquisition days.

All the statistics (Bias, MAE, and RMSD) have units of ◦C.

Figure 6. Scatter plots of observed and modeled fluxes from (a) TSEB (5 m pixel resolution), (b) DATTUTDUT (5 m pixel resolution) and

(c) DATTUTDUT (native pixel resolution) at the aircraft overpass time for the 5 days in 2013. The observed H and LE use the RE method

for energy balance closure. Note for DOY 162, there were no flux data from site 2 due to an EC sensor malfunction.

the large overestimation of instantaneous LE on DOY 162

and 219 (see Fig. 6b).

In general, the TSEB reproduced the measured fluxes with

higher accuracy than did DATTUTDUT, both at the instanta-

neous and daytime temporal scales. It is hypothesized that

this likely results from a better physical representation of

the energy and radiative exchange within TSEB, since it ex-

plicitly considers differences in soil and vegetation radiation

and turbulent energy exchange and affects on the radiative

temperature source (French et al., 2005; Timmermans et al.,

2007). Flux estimation from single-source models based on

the use of ET extremes will be sensitive to the selection of

extreme end-member TR pixels (Feng and Wang, 2013; Long

and Singh, 2013), and actual extremes might not exist when

applying such models to small vineyards that are uniformly

irrigated and managed as in this study. This may be a key fac-

tor that caused the fluxes from DATTUTDUT using 5 m res-

olution data to agree well with measurements on DOY 100,
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Table 2. Difference statistics describing comparisons between modeled fluxes from TSEB and DATTUTDUT at the overpass time and

observations (original and with adjustments using the RE and BR methods for energy balance closure) (W m−2).

Site Flux DOY Mean TSEB DATTUTDUT DATTUTDUT

no. obs. (5 m pixel res.) (5 m pixel res.) (native pixel res.)

Bias MAE RMSD Bias MAE RMSD Bias MAE RMSD

Site 1

Rn 5 593 0 26 33 −43 64 66 −61 61 65

G 5 85 5 28 33 −18 35 40 −24 35 38

H 5 195 13 37 42 48 53 68 41 57 68

LE 5 268 −63 70 87 −117 117 150 −123 139 157

LERE 5 313 −18 32 37 −73 76 105 −78 100 106

HBR 5 215 33 55 62 68 71 89 61 76 91

LEBR 5 293 −38 50 58 −92 94 125 −98 119 129

Site 2

Rn 5 590 6 15 23 −19 26 27 −40 40 42

G 5 132 41 43 59 6 47 61 12 42 55

H 4 195 −23 43 45 8 31 39 21 53 59

LE 4 186 −90 90 102 −106 106 119 −149 149 163

LERE 4 253 −23 43 51 −38 55 63 −81 90 101

HBR 4 231 13 33 48 44 59 68 57 81 90

LEBR 4 217 −59 61 77 −74 77 93 −117 117 136

Figure 7. Scatter plots of observed and modeled daytime fluxes from (a) TSEB (5 m pixel resolution), (b) DATTUTDUT (5 m pixel resolu-

tion) and (c) DATTUTDUT (native pixel resolution) for the 5 days in 2013. The observed energy components are adjusted for energy balance

using the RE method.
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Table 3. Difference statistics describing comparisons between modeled daytime fluxes from TSEB and DATTUTDUT model and observa-

tions (original and with adjustments using the RE and BR methods) (MJ m−2 day−1).

Site Flux DOY Mean TSEB DATTUTDUT DATTUTDUT

no. obs. (5 m pixel res.) (5 m pixel res.) (native pixel res.)

Bias MAE RMSD Bias MAE RMSD Bias MAE RMSD

Site 1

Rn−G 5 15.0 −0.5 0.7 0.9 −1.2 1.2 1.5 −1.2 1.4 1.6

H 5 4.4 −1.0 1.2 1.4 −0.1 1.0 1.2 −0.1 1.2 1.3

LE 5 8.5 −1.6 1.6 1.8 −3.2 3.2 3.6 −3.1 3.2 3.6

LERE 5 10.6 0.5 1.0 1.1 −1.1 1.4 1.9 −1.0 1.9 2.0

HBR 5 9.9 4.4 4.4 5.1 5.4 5.4 6.1 5.4 5.4 6.0

LEBR 5 5.1 −4.9 4.9 5.4 −6.6 6.6 7.1 −6.5 6.5 6.9

Site 2

Rn−G 5 13.9 −1.4 1.5 1.9 −1.1 1.5 2.3 −1.7 2.0 2.5

H 4 5.2 −1.8 1.8 2.2 −0.8 1.1 1.3 −0.3 1.1 1.3

LE 4 6.2 −2.6 2.6 2.9 −3.1 3.1 3.5 −4.3 4.3 4.6

LERE 4 8.8 0.0 1.7 1.7 −0.5 1.7 1.8 −1.6 2.2 2.3

HBR 4 7.6 0.6 1.9 1.9 1.6 1.6 1.8 2.1 2.1 2.3

LEBR 4 6.4 −2.4 3.0 3.4 −2.9 2.9 3.4 −4.0 4.0 4.2

Figure 8. Locations of hot (red points) and cold (blue points) pixels selected from the TR maps for DATTUTDUT model on the 5 days.

163, and 218, but not on DOY 162 and DOY 219 when the

ET extremes may not have been readily present or captured

in the imagery (see discussion below).

Figure 8 shows the locations of the extreme TR pixels se-

lected according to the DATTUTDUT modeling approach

using 5 m resolution input for the 5 days. The dark green

band in the lower half of the southern field (especially obvi-

ous in Fig. 8b and c) is an old stream bed, which is likely to

have different soil properties than the surrounding field. For

DOY 162 and 219, cold pixels were located at the northern

vineyard (Fig. 8b and e); for DOY 163 and 218 just 1 day

later or earlier than DOY 162 and 219, cold pixels were lo-

cated within this former stream bed or at the tree pixel near

the parking lot to the north (Fig. 8c and d). Hot pixels were

all located in bare soil pixels near the parking lot or in the

northern field without vines.

In addition to the issues related to the selection of the TR

end-members, DATTUTDUT does not consider effects of

aerodynamic resistance (surface roughness) on the heat ex-

change for a given surface–air temperature difference. A sim-

ilar finding was reported by French et al. (2005), where they

found bias forH from TSEB was typically within 35 W m−2,
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Table 4. Difference statistics for daytime ET (MJ m−2 day−1) ex-

trapolated from instantaneous estimates using observed available

energy A (obs. A) from flux towers versus using incoming solar

radiation measurements (Sd).

Site Stat TSEB DATTUTDUT

Obs. A Sd Obs. A Sd

Site 1

Bias 0.5 −1.4 −1.1 −3.4

MAE 1.0 1.4 1.4 3.4

RMSD 1.1 1.6 1.9 4.1

Site 2

Bias 0.0 −0.8 −0.5 −1.3

MAE 1.7 1.5 1.7 1.3

RMSD 1.7 1.8 1.8 1.8

while bias forH from SEBAL could reach up to 150 W m−2.

Nevertheless, the simpler DATTUTDUT modeling scheme is

much easier to apply to an image without a priori knowledge

or skill required. This is a significant benefit in operational,

real-time applications. Moreover, as shown by Timmermans

et al. (2015), output of fluxes from DATTUTDUT often were

in good agreement with flux tower measurements and result-

ing flux fields had patterns consistent with more physically

based models including TSEB and SEBAL.

Using measured Sd from the towers instead of computing

from the Sun–Earth astronomical relationships routinely ap-

plied by DATTUTDUT, there is only a minor reduction in the

differences with the tower fluxes. An overall improvement

in DATTUTDUT estimation of LE is achieved by adopting

TSEB estimates of Rn and G (see Table 5). This is particu-

larly true for the northern vineyard (site 1). However, even

with this better agreement in estimated LE, the discrepan-

cies with observed LE from DATTUTDUT are still larger

than with the output of TSEB. This indicates that the errors

in available energy using the DATTUTDUT formulations are

not the only significant source of error in estimating the LE

flux.

4.2 Comparison of spatial patterns in modeled fluxes

Maps of instantaneous EF (assumed to be constant during

the day) over the two vineyards are displayed in Fig. 9,

along with frequency histograms of daytime ET from the

TSEB and DATTUTDUT models expressed in mass units of

mm day−1. During IOP1 (DOY 100), the vines were leafing

out in early growth stage and the cover crop in the inter-row

was the main source of ET. However, the cover crop in the

interrow for the northern field was mowed shortly before this

aircraft overpass, while the cover crop in the southern field

was unmowed, and was taller and more lush. As a result,

EF and daytime ET distribution histograms showed bimodal

shape on DOY 100. The histograms become more unimodal

in later IOPs as the vine water use begins to dominate to-

tal ET.

While spatial patterns of EF from TSEB and DATTUT-

DUT were quite similar for all the five overpass dates, driven

largely by patterns in TR (see Fig. 8), the magnitudes in EF

differ between the models, some days more significantly than

others (Fig. 9a–e). Use of the finer resolution data had gen-

erally a minor to moderate effect on the EF and ET distri-

butions except for DOY 163 where the high-resolution out-

put indicates a bimodal distribution in EF and ET compared

to the unimodal distributions using the 5 m resolution out-

put from DATTUTDAT and TSEB. Since the DATTUTDUT

model always scales EF between 0 and 1, results from the

DATTUTDUT model generally had a wider distribution in

EF compared to TSEB. An example of a clear difference in

the width of the EF distribution can be seen for DOY 162

in IOP 2 (Fig. 9g), while for daytime ET, differences in the

distributions were quite evident in IOP 2 and IOP 3 (Fig. 9l,

n and o). A similar result was obtained by Choi et al. (2009),

who compared turbulent fluxes estimated by METRIC, TIM,

and TSEB using Landsat imagery over a corn and soybean

production region in central Iowa.

Despite similar model agreement in instantaneous ET with

the tower measurements using the 5 m resolution data on

DOY 100, 163, and 218 for the three IOPs (Fig. 6), there are

some cases where there are significant differences in maps

of EF generated by the two models on these days (Fig. 9).

EF discrepancies were particularly large on DOY 162 dur-

ing IOP2 (Fig. 9b), and on DOY 219 during IOP3 (Fig. 9e).

These discrepancies are due primarily to model differences in

partitioning A between H and LE within these areas, rather

than differences in A itself. In particular, DATTUTDUT has

less sensitivity to dry aerodynamically rough surfaces, which

the model does not account for; therefore, DATTUTDUT

scheme tends to estimate higher EF (Timmermans et al.,

2015). Similar spatial discrepancies in model output were re-

ported by Timmermans et al. (2007) and Choi et al. (2009),

even though there was good agreement when the models

were compared to flux tower measurements. The selection

of improper extreme pixels is another crucial factor causing

the large discrepancies for the DOY 162 and 219, as analyzed

and discussed in Sect. 4.1.

4.3 Sensitivity of TSEB and DATTUTDUT to the key

input, TR

The sensitivity of the TSEB and DATTUTDUT models to

the key input, TR, was analyzed in order to further investi-

gate the strengths and weaknesses of the two modeling ap-

proaches. The aircraft imagery from DOY 163 was selected

as a case study since input data were collected in the after-

noon (see Table 1) with near maximum radiation and air tem-

perature conditions. Since TR is the most important input to

both TSEB and DATTUTDUT, EF and ET values were cal-

culated with a bias in TR (±3 ◦C) to evaluate the sensitivity

of these two models to absolute accuracy of this key input.

The ±3◦ bias in TR was selected based on a comparison be-
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Figure 9. Comparison of TSEB (5 m resolution) and DATTUTDUT model output at 5 m and native pixel resolution: spatial distribution of

instantaneous EF (a–e), frequency histogram of instantaneous EF (f–j) and daytime ET (k–o).

tween ground-based and the airborne TR measurements for

IOP3. For DATTUTDUT, the influence of extreme pixel se-

lection on the computed EF and ET was also investigated.

Values of EF and ET were also calculated with a 1◦ deviation

in the assigned Tmax/Tmin (±1 ◦C). In addition, the values

of Tmax/Tmin were selected using the native pixel resolution

TR imagery. Finally, values of Tmax/Tmin were derived from

imagery encompassing a larger study area/modeling domain

Hydrol. Earth Syst. Sci., 20, 1523–1545, 2016 www.hydrol-earth-syst-sci.net/20/1523/2016/
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Table 5. Difference statistics comparing instantaneous output of LE from TSEB and DATTUTDUT with current DATTUTDUT algorithms

for estimating the available energy versus using the estimates from TSEB.

Site Flux DOY Mean DATTUTDUT using Rn

no. obs. TSEB DATTUTDUT (5 m) and G from TSEB

Bias MAE RMSD Bias MAE RMSD Bias MAE RMSD

Site 1

H 5 195 13 37 42 48 53 68 52 59 75

LE 5 268 −63 70 87 −117 117 150 −101 101 123

LERE 5 313 −18 32 37 −73 76 105 −56 56 77

HBR 5 215 33 55 62 68 71 89 72 77 96

LEBR 5 293 −38 50 58 −92 94 125 −76 76 97

Site 2

H 4 195 −23 43 45 8 31 39 1 30 37

LE 4 186 −90 90 102 −106 106 119 −114 114 123

LERE 4 253 −23 43 51 −38 55 63 −47 47 59

HBR 4 231 13 33 48 44 59 68 37 46 62

LEBR 4 217 −59 61 77 −74 77 93 −83 83 95

Figure 10. Comparison of the ET patterns and frequency distributions generated by TSEB and DATTUTDUT under the sensitivity tests

described in Table 6.

both at the aggregated 5 m pixel resolution and the TR native

(∼ 0.6 m) resolution. Note that for TSEB, using finer resolu-

tion TR would not be consistent with the model formulations

for partitioning between soil and canopy convective energy

and radiation fluxes and kinetic temperatures. A list of sen-

sitivity tests conducted, along with the resulting EF and day-

time ET statistics describing model output over the northern

and southern vineyards, is provided in Table 6.

Results for the various tests of sensitivity of output from

TSEB and DATTUTDUT to biases in TR inputs indicate

that the error/uncertainty in EF and ET estimation can be

fairly significant for TSEB (Fig. 10a–c and l) with an un-

certainty in field average ET of∼ 1 mm day−1, while there is

no real impact on the output from DATTUTDUT (Fig. 10d–

f and m). For TSEB, the shape of the ET distribution re-

mains essentially unchanged, just the mean/centroid of the

distribution and max/min ET are shifted. This result is not

unexpected based on prior sensitivity studies of both mod-

eling approaches (e.g., Timmermans et al., 2007). The ±1◦

change in the max/min TR also does not impact the output of

ET with DATTUTDUT (Fig. 10g–h and n). However, chang-

ing the size of the modeling domain for defining max/min

TR and/or the pixel resolution has a measurable impact on

the spatially distributed output from DATTUTDUT in these

tests (Fig. 10i–k and o). Similar to TSEB, the uncertainty

in field average ET is ∼ 1 mm day−1. With a larger study

domain, the selected hot pixel is likely to have higher TR

while the cold pixel will tend to have lower TR (see Table 6)

since the number of pixels available for selection of the ex-

tremes are increased. This causes the ET estimation from
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larger domain (Case D5 and D7) to have a narrower dis-

tribution compared to ET from a smaller domain (Case D0

and D6) (see Fig. 10o). The finer (native) TR resolution also

results in greater temperature extremes in the hot and cold

pixels (Table 6), since the pixels available for selection of the

end-members were less contaminated containing a mixture

of canopy and soil/substrate surfaces. Owing to the likely dif-

ference in LE rates for the bare soil/senescent cover crop ver-

sus the irrigated vine vegetation the ET estimation from finer

resolution TR data (Case D6 and D7) tended to be more bi-

modal than that from courser resolution TR (Case D0 and D5)

(see Fig. 10o).

These tests confirm that simple scaling schemes like DAT-

TUTDUT benefit from insensitivity to biases in TR, but are

sensitive to pixel size and range of conditions present within

the modeling domain. This is in contrast to results reported

by French et al. (2015), where they concluded that no sig-

nificant difference in daily ET estimation accuracy was ob-

served running the METRIC model at high (aircraft-based)

and medium (Landsat) pixel resolutions. Their study fixed

extreme pixels using an objective criteria based on clustered

means rather than single pixels, which may reduce the likeli-

hood of an error in selecting an outlier as an extreme hot or

cold pixel. Moreover, they conducted the inter-comparison

of model output at the two resolutions focused on field-

averaged ET in comparison to water balance estimates; there-

fore, the effects on ET distributions or variability were not

evaluated in detail. Lastly, the sources of the input data at the

two spatial resolutions were provided by the different plat-

forms - aircraft and Landsat; however, the effects of chang-

ing the pixel resolution of either the aircraft or satellite data

were not evaluated. While more automated approaches are

being developed for determining extreme TR values in ap-

plying contextual-based methods such as METRIC (Morton

et al., 2013), the current study demonstrates that pixel reso-

lution of TR and sampling area will influence the selection of

extreme limits in the approach used by DATTUTDUT, result-

ing in differences in spatial distribution/patterns in ET from

DATTUTDUT within a given study area.

4.4 Water consumption analysis

Water consumption estimates at the field scale provide im-

portant information for water management decision-making.

In this section, estimates of field-scale daytime water con-

sumption for the northern and southern fields were calculated

by aggregating daytime ET totals for all pixels encompassed

within each field and then converting to a volume (in L) by

the area of the corresponding field. When using the observed

ET (from the flux towers), the field-scale water consumption

was computed by simply multiplying the tower measured

daytime ET (forcing closure by residual) by the area (size)

of the vineyard. The volume of water use for each field for

the five overpass dates is illustrated in Fig. 11.
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Figure 11. Water consumption calculated from estimates of ET computed by TSEB and DATTUTDUT models for the 5 aircraft overpass

days (103 L). The numerical values above or in the columns denote the total water consumption from each field as estimated by the two

models. For results from TSEB, the red lines separate the total water consumption into soil evaporation below the lines and vegetation

transpiration above the lines. The blue diamonds denote the water consumption calculated using the EC tower-based daytime ET observed

(obs.) multiplied by the area of the northern and southern vineyards. The yellow squares are the water consumption values from ET obs.

adjusted (adj.) by multiplying ET obs. by the ratio of the tower source area LAI and the whole field average LAI.

The discrepancies between field water consumption from

TSEB and DATTUTDUT were relatively small (3–6 %) on

DOY 100, 163, and 218, since the instantaneous and daytime

ET estimates from the two models were similar. However,

the water use estimated from TSEB was 25 and 33 % less

than that computed by DATTUTDUT on DOY 162 and 219,

respectively. Water consumption calculated by TSEB tended

to agree with observed daytime ET estimated from the tower

observations, but often had slightly lower ET estimates. This

is consistent with the fact that, particularly for the northern

(site 1) vineyard, the flux tower footprint generally came

from the center area of the field with highest EF and ET

(cf. Figs. 1 and 9). On the other hand, DATTUTDUT tended

to estimate higher field-scale ET than TSEB and tower mea-

surements, particularly on DOY 162 and 219. The overall

higher estimated water use for IOP2 and IOP3 by DATTUT-

DUT is likely due to the simplified parameterization of heat

exchange based solely on TR and the pixel selection criteria

for the hydrologic extremes as analyzed in Sect. 4.1 and 4.2.

Water use from TSEB was separated into soil/inter-row

evaporation (E) and vine/vegetation transpiration (T ) for

each day by assuming the E/T ratio estimated at the aircraft

overpass time was constant during the daytime period (see

the red lines in Fig. 11). The variation ofE between days was

smaller than the variability in T , with standard deviations

in E of 95 and 55 kL for the northern and southern fields,

respectively, as compared 197 and 173 kL for T . On aver-

age over the 5 days, the E/ET ratios for sites 1 and 2 were

estimated by TSEB to be ∼ 0.33 and 0.35, respectively. Al-

though observations ofE/ET are not available to validate the

TSEB estimates of partitioning, other studies in drip-irrigated

vineyards report E/ET ratios of ∼ 0.3± 0.12 (Yunusa et al.,

2004; Ferreira et al., 2012; Poblete-Echeverría et al., 2012;

Kerridge et al., 2013), indicating TSEB estimates of E/ET

partitioning are not unreasonable.

While some level of discrepancy is expected between

modeled and measured vineyard water use due to model er-

rors and measurement uncertainties, there are additional fac-

tors that may play a role when there appears to be a fairly

large difference in water consumption estimated from the

tower measurements versus the models, particularly with the

TSEB model, which tends to have better agreement with the

tower measurements. The climate in this region is quite arid

during the growing season with the drip irrigation being the

only water source for the vines. As a result, the water avail-

ability (or soil water content) condition in the vine root zone

plays a crucial role in the vegetation biomass. Therefore,

it is reasonable to assume there would be a strong correla-

tion between ET and vine LAI as representative of the wa-

ter availability in the root zone. The spatial variation in vine

LAI is likely due to variation in the amount of irrigated wa-

ter and/or variability in soil water holding capacity. Specif-

ically, on days like DOY 162 and 163 for the northern field

and DOY 100 for the southern field where there are signifi-

cant differences between tower observations and TSEB esti-

mates, there are also large differences observed between the

LAI within the tower source area and the field average. The

lower (higher) LAI of the flux tower source area is associated

with the lower (higher) daytime ET estimated from the flux

tower observations versus the spatially distributed ET out-

put from the TSEB model. The differences in LAI from the

source area and field average are not large (see Table 7), but

they do support the idea that a single measurement of water

use within a vineyard is not always representative of the total

vineyard water consumption.

In a comparison of ET measurements acquired over irri-

gated cotton eddy covariance, water balance, and lysimeters,

Kustas et al. (2015) showed how variability in LAI within

the different source areas associated with each measurement

device was correlated to discrepancies between the measured
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Figure 12. Histograms of output of spatially distributed daytime ET estimated from the TSEB and DATTUTDUT with the daytime ET values

from the flux towers identified in the distributions by a yellow and green diamond for the northern and southern vineyards, respectively.

Table 7. Average leaf area index (LAI) estimated for the flux tower

source area/flux footprint versus the whole field derived from the

aircraft imagery (NDVI relationship with LAI). The LAI values in

bold are associated with the days where differences in water con-

sumption estimated by TSEB versus using the tower measured ET

are significant for site 1 (northern vineyard) and site 2 (southern

vineyard).

Site DOY LAI

Source Whole

area field

1

100 1.3 1.3

162 2.0 1.5

163 1.8 1.5

218 1.6 1.5

219 1.7 1.5

2

100 1.7 1.9

162 1.5 1.5

163 1.5 1.5

218 1.2 1.2

219 1.3 1.2

values of ET. In the current study, if the ratio of the field ver-

sus flux tower source area average LAI is used to adjust the

water consumption estimates from the ET tower measure-

ments for the two fields, in all cases except one (DOY 100 at

site 2) there will be closer agreement with TSEB estimates

(see Fig. 11). The continued discrepancy for DOY 100 site 2

has more to do with the fact that theG values from the tower

site were significantly higher than modeled (see Fig. 6) and

are suspect since the ratio of G/Rn for much of the daytime

period ranged from 0.3 to 0.45, which are values expected

for bare soil (Santanello and Friedl, 2003). This resulted in

the daytime available energy Rn−G for the tower site to

be ∼ 0.7 of the value estimated by TSEB. Therefore, clo-

sure of the tower-based ET flux did not significantly boost

the observed value for DOY 100.

With the ET distributions from the models illustrated in

Fig. 12, one sees that often the tower measurements fall sig-

nificantly away from the center/mean of the modeled ET dis-

tributions. This is a major advantage with remote-sensing-

based ET approaches using high pixel resolution data which

can capture the actual variation in key surface conditions

(vegetation cover, soil moisture) affecting ET. While in most

cases the LAI adjustment to the ET tower measurements im-

proved the agreement with model estimated field-scale water

consumption, the capability of the remote-sensing-based sur-

face energy balance models in mapping ET provides a unique

tool for identifying areas in the field potentially under water

stress conditions. This is not practical using micrometeoro-

logical methods.

Current operational techniques for estimating water use

of crops primarily rely on the crop coefficient technique

based on the FAO 56 publication (Allen et al., 1998). The

actual ET of the crop is estimated by first computing a

reference ET (ET0), which is then multiplied by the crop

coefficient (Kc). This single crop coefficient is often di-

vided (called the dual crop coefficient) into a basal crop

coefficient (KCb), which is associated with the crop tran-

spiration and has been related to remotely sensed vegeta-

tion indices (Neale et al., 1989) and a soil surface evap-

oration coefficient (Ke). There is also a Ks coefficient in-

cluded to reduce crop transpiration for a deficit in water

availability in the root zone, so the expression has the form

ET= (KCbKs+Ke) ET0. Determining Ke and Ks requires

running a soil water balance model for the surface and root

zone. A recent application of this methodology over corn

and soybean croplands is given by Gonzalez-Dugo and Ma-

teos (2008) where they find this reflectance-based crop co-

efficient technique can significantly overestimate ET dur-
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ing a prolonged dry down period. There also appears to be

no consistent or universal relationship between crop coef-

ficients and vegetation indices and so this approach is not

readily transferable to different crops and climatic conditions

(Gonzalez-Dugo et al., 2009).

As an example, the spatial distribution of Kc was com-

puted using FAO 56 estimated ET0 and the ET map from

TSEB from DOY 163 (Fig. 13). There is a significant spa-

tial variation in Kc due in part to the know effect of leaf

area/fractional cover (Choudhury et al., 1994), which is seen

in the correlation between theKc map and LAI map of Fig. 4,

but there are other factors including the vine variety and the

possibility of some level of stress in areas of the vineyard

that cannot be reliably detected by this approach. Using the

ET measurements from the flux towers and FAO 56 estimated

ET0, for the northern vineyard site 1, the value of Kc ranged

from 0.55 for DOY 100 to 0.76–0.82 for the other days. For

the southern vineyard (site 2), Kc values ranged from 0.59

for DOY 100 to 0.62–0.65 for the other days, indicating little

variation in Kc with vine phenology. In contrast, the FAO 56

manual recommends Kc values for vineyards at early, peak

and end of the growing season of 0.3, 0.7, and 0.45. Clearly, a

calibration with this approach is required, which is dependent

not only on vine variety but also on vine management (i.e.,

row orientation and spacing, pruning, irrigation scheduling).

5 Conclusions

High-resolution multispectral and thermal imagery obtained

by aircraft mounted sensors were used to map evapotran-

spiration (ET) over two vineyards in central California us-

ing both the two-source energy balance (TSEB) and single-

source contextual-based DATTUTDUT (Deriving Atmo-

sphere Turbulent Transport Useful To Dummies Using Tem-

perature) model, which scales evaporative fraction (EF) be-

tween 0 and 1 using only the radiometric surface tempera-

ture (TR) extremes of cold/wet and hot/dry pixels in the re-

motely sensed scene. This study focused on five aircraft over-

pass dates (DOY 100, 162, 163, 218, and 219) over the vine

growing season in 2013.

Component soil and canopy temperatures from TSEB

agreed well with the airborne-based observations derived

within the flux-tower source-area yielding a bias on the or-

der of 0.5 ◦C and a RMSD value∼ 2.5 ◦C for both soil/cover

crop and vine canopy temperatures. Instantaneous and day-

time integrated fluxes from the TSEB and DATTUTDUT

models were validated with flux tower measurements. The

TSEB model was able to derive satisfactory estimates of both

instantaneous and daytime sensible heat flux (H ) and latent

heat flux (LE) for all the five overpass dates, while overall the

DATTUTDUT model output ofH and LE were in less agree-

ment with the tower measurements, particularly for DOY 162

and 219 overpass dates.

Figure 13. Spatial variation in the crop coefficient Kc computed

using TSEB output of ET and ET0 computed from FAO56 for

DOY 163 imagery (a). The frequency distribution in Kc for the im-

age is illustrated (b).

Spatial distributions of EF and daytime ET from the two

models were compared for all the five overpass dates. While

the spatial patterns of relatively high and low values of EF

mapped by TSEB and DATTUTDUT for the two vineyard

fields were similar, the magnitude and range in the EF values

were quite different on certain days. Specifically, the distribu-

tions of EF values from DATTUTDUT often yielded a wider

range due to the requirement that each image contains ET at

the extremes of potential and ET= 0. This resulted in EF and

daytime ET magnitudes and spatial patterns generated by the

two models being fairly similar on DOY 100, 163 and 218,

while having larger discrepancies on DOY 162 and 219.

In general, inter-comparisons between the performance of

TSEB and DATTUTDUT using high resolution (meter-scale)

data tended to yield conclusions consistent with results from

prior studies comparing TSEB with single-source models

based on contextual scaling of maximum and minimum ET

using moderate resolution data (see e.g., French et al., 2005,

2015; Timmermans et al., 2007; Choi et al., 2009). With

a more physically based two-source formulations explicitly

treating soil and vegetation energy and radiation exchanges

and reliable TR data, the TSEB model is fairly robust and able

to derive reliable ET patterns at sub-field scale under a wide

range of environmental conditions. The performance of the

DATTUTDUT model in computing reliable ET and generat-

ing distributions and patterns over the vineyards was similar

to TSEB on some of the overpass dates, but for other times

the DATTUTDUT model performance was less than satis-

factory largely depending on whether there actually existed

pixels in the scene that were representative of the extreme

ET conditions, namely, “maximum” ET (LE=Rn−G) and

no ET (LE= 0).
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Differences in daytime ET estimated from the two models

directly contribute to the discrepancies in field-scale water

use estimates, which on certain days was quite significant.

The discrepancies in field-scale water consumption calcu-

lations from the two models ranged from 3 to 33 %, which

translated to differences in field-scale water use between the

two models ranging from approximately 68 to 899 kL. Field-

scale water consumption estimated from TSEB agreed more

closely with estimates based on tower ET observations, while

DATTUTDUT tended to estimate higher water use. Dis-

agreement between modeled and measurements is partly due

to the difference with LAI of the tower source area and the

whole field average. Larger differences in water use occurred

when source area LAI failed to represent the field average.

A simple adjustment using the ratio of average LAI from

the field and the tower source-area greatly reduced the dis-

crepancy with the TSEB model output. Comparison between

tower measured ET and ET distributions from the models

shows that tower measurements generally do not have a value

that is representative of the center/mean of the modeled ET

distributions.

Compared with water consumption information provided

by flux tower observations, the type of spatially distributed

ET information provided by thermal-based energy balance

models has clear advantages, particularly when imagery is at

fine pixel resolution. ET observed by a flux tower is sampling

a relatively small area of the field, while the ET models with

the TR imagery can provide spatially distributed water use

information over the entire vineyard and consequently iden-

tify the spatial distribution of plant water status, a required

input for precision irrigation systems. Two-source schemes

like TSEB are able to provide reliable ET estimation as well

as the partitioning between E and T , since the model explic-

itly parameterizes the radiative and convective exchanges be-

tween the soil and canopy systems.

However, the sensitivity analysis indicates that high-

quality TR input data are needed for TSEB. The DATTUT-

DUT contextual scaling approach, with automatic pixel se-

lection, is not sensitive to errors in TR and requires only

very basic information as model input, making it relatively

easy to apply operationally. Nevertheless, such one-source

approaches fail to provide estimates of the E and T parti-

tioning, and the ET estimation at least for DATTUTDUT can

be sensitive to domain size and spatial resolution due to the

simple model parameterizations.

With UAV technology rapidly developing to provide re-

mote sensing products in near real time (Berni et al., 2009b),

the DATTUTDUT scheme can provide real-time ET maps

at sub-field scale that will in many cases yield reliable pat-

terns, but not in all cases appropriate magnitudes in ET. In

cases where the landscape is aerodynamically rough and dry,

an adjustment to the end-member selection for the DATTUT-

DUT scheme appears to be necessary (Timmermans et al.,

2015). If routine high-resolution imagery from UAVs be-

come operational, a hybrid methodology integrating a very

simple ET model (DATTUTDUT) with a more robust model-

ing scheme (TSEB) should be developed. Specifically, if the

Tr imagery is at fine enough pixel resolution to distinguish

soil and vegetation temperatures, the DATTUTDUT scheme

could be applied separately for the soil and vegetation, pro-

vidingE and T estimates that could be integrated with TSEB

output computed at coarser resolutions or adapted for very

fine-resolution imagery. Moreover, to ensure continuous and

reliable daily water use and vegetation-stress monitoring in-

corporating the crop coefficient-based technique linked to a

water balance model with the thermal-based ET approach

using data assimilation has shown utility and addresses to a

large extent the shortcomings in estimating/updating the crop

coefficient and the impact of plant stress (Neale et al., 2012).
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