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Modeling irrigation behavior in groundwater systems

Timothy Foster1, Nicholas Brozović2,3, and Adrian P. Butler1

1Department of Civil and Environmental Engineering, Imperial College London, London, UK, 2Department of Agricultural
and Consumer Economics, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA, 3Robert B. Daugherty Water
for Food Institute, University of Nebraska, Lincoln, Nebraska, USA

Abstract Integrated hydro-economic models have been widely applied to water management problems
in regions of intensive groundwater-fed irrigation. However, policy interpretations may be limited as most
existing models do not explicitly consider two important aspects of observed irrigation decision making,
namely the limits on instantaneous irrigation rates imposed by well yield and the intraseasonal structure of
irrigation planning. We develop a new modeling approach for determining irrigation demand that is based
on observed farmer behavior and captures the impacts on production and water use of both well yield and
climate. Through a case study of irrigated corn production in the Texas High Plains region of the United
States we predict optimal irrigation strategies under variable levels of groundwater supply, and assess the
limits of existing models for predicting land and groundwater use decisions by farmers. Our results show
that irrigation behavior exhibits complex nonlinear responses to changes in groundwater availability.
Declining well yields induce large reductions in the optimal size of irrigated area and irrigation use as con-
straints on instantaneous application rates limit the ability to maintain sufficient soil moisture to avoid nega-
tive impacts on crop yield. We demonstrate that this important behavioral response to limited groundwater
availability is not captured by existing modeling approaches, which therefore may be unreliable predictors
of irrigation demand, agricultural profitability, and resilience to climate change and aquifer depletion.

1. Introduction

In many semiarid and arid regions groundwater plays a critical role in maintaining agricultural productivity
and food security, buffering farmers against climate change and variability. However, the intensive levels of
abstraction for irrigation have severely depleted many of the world’s major aquifers leading to concerns
about the long-term sustainability of groundwater-fed irrigated agriculture [Rodell et al., 2009; Gleeson et al.,
2012; Scanlon et al., 2012; Wada et al., 2012; Steward et al., 2013]. In addition, future climate change and
population growth are expected to exacerbate existing depletion through increases in water demand [Sauer
et al., 2010; Brown et al., 2013] and shifts in the spatial and temporal availability of water [Elliott et al., 2013;
Schewe et al., 2013].

Integrated hydro-economic analyses are valuable tools for policy development in coupled human-water sys-
tems. These models have been applied to a diverse range of water management issues [Harou et al., 2009],
including the assessment of policy solutions to groundwater depletion problems in regions of intensive irri-
gation [Schoups et al., 2006; Harou and Lund, 2008; Maneta et al., 2009; Brozović et al., 2010; Bulatewicz et al.,
2010; Varela-Ortega et al., 2011; Steward et al., 2013]. The reliability of integrated modeling as a tool for
improving water management is, however, dependent on the ability of models to capture the structure and
variables which govern observed water user decisions. In this paper we seek to advance current representa-
tions of optimal water use decision making for use in integrated models, focusing on methods used to pre-
dict agricultural water demand. The major contribution of this study is the development of a model of
irrigation decision making that incorporates explicitly the biophysical and hydrogeological parameters that
control farmers’ actual field-level groundwater use choices, but which are often neglected in existing repre-
sentations of agricultural water demand in integrated hydro-economic models.

The link between the agricultural production and hydrological systems in integrated hydro-economic mod-
els is the crop-water production function. Crop-water production functions used in hydro-economic models
commonly describe crop yield returns to total seasonal irrigation inputs. These functions may be derived
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from evapotranspiration models [Doorenbos and Kassam, 1979], through the fitting of nonlinear functions
to field-level observation data [Cai and Wang, 2006], or from biophysical crop simulation models. As data on
crop yield response to irrigation are often sparse, crop simulation models are increasingly being employed
as state-of-the art tools to model the crop-water production function. Notably, the ability of crop models to
generate large quantities of high quality water-limited yield data has enabled researchers to extend the sea-
sonal crop-water production function to account for the production uncertainty introduced by interannual
weather variability [Brumbelow and Georgakakos, 2007; Geerts et al., 2009; Sch€utze and Schmitz, 2010; Garc�ıa-
Vila and Fereres, 2012; Kloss et al., 2012]. Resulting stochastic crop-water production functions offer advan-
tages over traditional aggregate empirical models, for example when seeking to model the impact of risk
preferences on irrigation demand.

However, despite modeling advances, the value of existing production functions in modeling coupled
human-water systems remains limited due to the mismatch between the variables used to define the pro-
duction function and those which govern actual irrigation decision making. First, irrigation scheduling is an
intraseasonal decision problem. The choices of when to irrigate and how much water to apply are com-
monly driven by target soil moisture levels during the growing season designed to minimize crop yield
losses [Jones, 2004]. This assertion is supported by evidence indicating the adoption of soil moisture mea-
surement technologies in agricultural production [National Agricultural Statistics Service, 2008], along with
the use of soil moisture content as a key decision variable in computational models used to inform farm
water management and irrigation scheduling [Smith, 1992; Clark and Rogers, 2002; Steduto et al., 2009]. Con-
trastingly, predictions of agricultural water demand in integrated hydro-economic models are based on
crop-water production functions formulated in terms of total seasonal applied irrigation. These functions
therefore have limited relevance to actual irrigation planning, and as a result may potentially provide unreli-
able predictions of agricultural production and water use decisions. In this study we develop an alternate
intraseasonal formulation of the crop-water production function. Specifically, we generate predictions of
the functional relationships between the level of soil moisture depletion, daily irrigation decisions, and crop
yield in order to model appropriately the irrigation decisions made by farmers. The basis for our behavioral
model is the biophysical crop simulation model, AquaCrop [Steduto et al., 2009].

In addition, groundwater-fed systems impose unique constraints on irrigation decision making that are also
not accounted for by existing crop-water production functions. Well yield, for example, places an upper
limit on the rate at which water may be pumped out of an aquifer and applied to a cropped field as irriga-
tion. Consequently, declines in well yield have been shown anecdotally and empirically to affect farmer irri-
gation behavior and to reduce crop production returns due to the constraints that low well yields impose
on instantaneous irrigation application rates [O’Brien et al., 2001; Peterson and Ding, 2005; Lamm et al., 2007;
Colaizzi et al., 2009; Wines, 2013]. Aquifer depletion reduces the available depth of saturated thickness caus-
ing a nonlinear reduction in well yield to avoid well dewatering during pumping. Limited well yields may
also be caused by other factors such as geological constraints that naturally cap the abstraction potential
from certain aquifers or due to poor maintenance of pumping equipment. However, despite the apparent
importance of well yield as a constraint on groundwater-fed irrigation, current frameworks for simulation
modeling of the crop-water production function do not consider the impact of limited instantaneous appli-
cation rates on crop production. As a result, in situations where well yield is restricted, existing models that
do not explicitly account for such constraints may be poor predictors of the irrigation decision making by
farmers. Therefore, in this study we model the variability in intraseasonal crop-water production functions
induced not only by weather variability, but also by changes in instantaneous application rates dependent
on well yield and the area over which irrigation water is applied.

We couple the developed stochastic intraseasonal crop-water production function to a field-level economic
model that represents a farmer’s decision making in terms of land and water use choices. The farmer is
assumed to maximize utility with respect to the choice of irrigated area, reflecting the fact that irrigated
area must generally be fixed preseason given available well pumping capacity and subject to uncertainty
about future conditions during the growing season. This contrasts with many existing studies [English, 1990;
English et al., 2002; Evans and Sadler, 2008; Geerts and Raes, 2009; Wang and Nair, 2013], which solely focus
on the importance of optimization of per-area irrigation intensity (e.g., deficit irrigation) as an adaptation to
reduced water supply. One approach that has considered the trade-offs between deficit irrigation and
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irrigated area adjustment is the approach proposed by Rosegrant et al. [2002]. The authors propose that a
farmer will switch from deficit irrigation to adjusting irrigated area once water supply drops below the level
necessary to meet a specified proportional threshold of total seasonal crop evapotranspiration demands.
Furthermore, their model also considers crop yield to be negatively affected by monthly water deficits that
occur within growing season. However despite this, the ability of the model of Rosegrant et al. [2002] to
evaluate the impacts of intraseasonal groundwater supply restrictions imposed specifically by well yield
may be limited for two reasons. First, well yield restricts irrigation supply at a daily time scale potentially
leading to different predictions of final crop yield than those obtained when considering the effects of
lumped monthly water deficits. Second, intraseasonal water supply restrictions may affect not only crop
yield but also irrigated area as the maximum irrigation depth that can be applied each day is a function of
both well yield and the area the farmer chooses to irrigate. As a result, we hypothesize that by matching
the structure of modeled and observed decision making in terms of irrigated area and by fully accounting
for the daily supply constraints imposed by well yield, our model, building on the approach of Rosegrant
et al. [2002], will enable more complex trade-offs between intensive (i.e., per-area irrigation intensity) and
extensive (i.e., irrigated area) margin adjustments to emerge.

The coupled model is applied to an example of irrigated corn production in the Texas High Plains region of
the United States, where irrigated agriculture is both a key part of the rural economy and a major driver of
declining groundwater resources [Colaizzi et al., 2009]. The aims of the analysis are to assess changes in
farm-level irrigation behavior, profitability, and production risk in response to groundwater supply restric-
tions. We compare the results given by our model with those obtained when using existing formulations of
the crop-water production function in order to examine the limitations of current production functions for
predicting optimal agricultural land and groundwater use decisions. Subsequently, we outline potential
areas for model improvement and how future work could upscale our field-level modeling framework to
inform the development of robust aquifer-scale policy solutions to tackle competing goals of groundwater
and food security.

2. Methodology

This section discusses the methodological steps used to predict optimal irrigation decision making under
groundwater supply constraints. In section 2.1 the crop simulation model used in this study is introduced.
Section 2.2 then details how this simulation model is applied to generate stochastic intraseasonal crop-
water production functions, and contrasts these with existing production functions used to model irrigation
decision making. Finally, section 2.3 describes the methodology to apply the developed stochastic intrasea-
sonal production functions within an economic model of field-level irrigation decision making in order to
predict optimal land and water use choices under groundwater supply constraints.

2.1. Crop Model
In this study the crop simulation model AquaCrop is used to simulate crop growth, crop yield and total
seasonal irrigation in response to different intraseasonal irrigation strategies formulated in terms of soil
moisture management. AquaCrop is a water-limited yield model developed by the Food and Agriculture
Organization of the United Nations (FAO) [Raes et al., 2012]. The model was designed for use by a
diverse range of practitioners and is therefore executable through a user interface system, reducing the
ability to apply the model in integrated hydro-economic analyses. To aid integration, we chose to
recode AquaCrop into the Matlab programming language [Mathworks Inc., 2013]. Test simulations were
conducted for a range of crops and environmental conditions, verifying the accuracy of the recoding
process.

AquaCrop simulates above and below-ground processes across the soil-vegetation-atmosphere contin-
uum on a daily time step at the field-scale. Model inputs include soil and crop characteristics, daily
weather data (maximum and minimum temperature, precipitation, and computed reference evapotrans-
piration), and irrigation management practices. The model uses a water-driven growth equation to
translate simulated transpiration into accumulated above-ground biomass using a crop-specific water
productivity parameter [Steduto et al., 2007]. Crop yield is then calculated as the product of simulated
above-ground biomass and crop harvest index. Crop growth processes are affected by water stress,
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dependent on both the level of soil water depletion and the sensitivity of the specific biological process
to water stress.

For the purposes of this study, AquaCrop offers a number of advantages over alternative crop simulation
models. The grounding of AquaCrop in biophysical crop-water relations and its ability to consider a variety
of irrigation management strategies make the model ideally suited for analyzing crop-water production
relationships. Furthermore, the model is substantially less complex and requires fewer parameters than
most crop simulation models. This is beneficial when seeking to apply the model within an integrated
framework for the purposes of water resources management. AquaCrop has also been successfully applied
to a wide variety of crops in a diverse range of geographic locations, including corn production in the
United States [Heng et al., 2009; Hsiao et al., 2009; Mebane et al., 2013] and elsewhere [Stricevic et al., 2011;
Abedinpour et al., 2012; Garc�ıa-Vila and Fereres, 2012].

2.2. Production Function Development
The simplest formulation of the crop-water production relates the mean crop yield return, Y , to total sea-
sonal irrigation, X , as in equation (1).

Y5f Xð Þ (1)

However, actual production returns to irrigation are not constant and will be affected by climatic condi-
tions and management choices. Weather variability is a particularly significant driver of variability in irri-
gation water demand. Equation (1) can therefore be extended to account for the impact of interannual
weather variability on crop yield return to seasonal irrigation. Crop simulation models are valuable tools
for this purpose, and, as previously noted, can be used to derive stochastic crop-water production func-
tions by iteratively generating multiple functions using weather time series given the functional relation-
ship in equation (2).

Yt5f X; htð Þ (2)

Where Yt is yield in year t, and ht are weather variables in year t. The weather variables considered com-
monly include temperature and precipitation, although the exact variables used and their temporal resolu-
tion will vary according to the requirements of the selected crop simulation model. Note that in equation
(2), X still denotes the total seasonal irrigation.

In this study we build on the formulation of the crop-water production function given in equation (2) by
developing stochastic intraseasonal crop-water production functions that are more consistent with
observed irrigation behavior. The developed production functions introduce two key innovations over
equation (2): (1) the irrigation decision is represented by the selection of an intraseasonal soil moisture tar-
get as opposed to the choice of a total seasonal irrigation depth; (2) the production function varies in
response to both weather variability and differences in instantaneous application rates imposed by well
yield. The mathematical formulation of the production function is detailed in equation (3), and the calcula-
tion framework and basis for each model innovation are described below.

Yt5f xi:::n
t ; ht

� �

Xt5
Xn

i51

xi
t5f S; htð Þ

s:t:

0 � xi
t � xmax 8x

xmax 5f W;Að Þ

(3)

Where xt is a vector of daily irrigation applications in year t of length n where n is the number of days in the
growing season, Xt is the total irrigation use in year t, S is the intraseasonal soil moisture target equal to a
specified proportion of potential plant available water (defined as the water held between field capacity
and permanent wilting point integrated across the crop root zone) at which irrigation is initiated during the
growing season, xmax is the maximum daily irrigation rate, W is the well yield, and A is the irrigated area.

In the first step of the simulation framework AquaCrop is applied to predict crop yield and total seasonal
irrigation demand in response to a range of intraseasonal soil moisture targets, given specific weather
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inputs, using the relationship as in equation (3). Nonparametric functions are fitted to the generated data
points using a Piecewise Cubic Hermite Interpolating Polynomial (PCHIP) function in MATLAB [Mathworks
Inc., 2013]. Crop growth and crop yield production are both fundamentally dependent on the maintenance
of adequate soil moisture during the growing season [Steduto et al., 2009]. Consequently, an extensive body
of literature has examined the important role that management of soil moisture plays in the planning and
optimization of irrigation decisions [Shani et al., 2004; Wang and Cai, 2007; Vico and Porporato, 2011; Aliza-
deh and Mousavi, 2013]. However as stated earlier, existing crop-water production functions employed in
integrated hydro-economic models use total seasonal irrigation as the model decision variable and do not
explicitly consider the role of soil moisture in irrigation decision making. A number of approaches have
been used to address the temporal mismatch between the intraseasonal time step of irrigation decision
making and crop/hydrological model simulation, and the seasonal resolution of the crop-water production
function. Nair et al. [2013] suggest assuming a fixed number of days between individual irrigation events.
Contrastingly, Sch€utze and Schmitz [2010] optimize the daily scheduling of irrigation within the growing sea-
son according to daily variation in crop water demands to obtain the highest potential crop yield for a given
total seasonal depth of irrigation. Similarly, Cai [2008] introduce a penalty function to ensure that the distri-
bution of total seasonal irrigation throughout the growing season is optimized according to the monthly
variability in crop-water requirements and yield sensitivity to water stress. The latter two approaches, in par-
ticular, are advantageous as they capture the fact that farmers actual irrigation scheduling will be depend-
ent on the variation in crop water requirements during the growing season. However, by optimizing
intraseasonal irrigation scheduling these models are implicitly conditioned on the farmer having perfect
foresight of crop water requirements throughout the growing season. As crop water requirements vary
according to weather conditions, this therefore creates an unrealistic assumption that the farmer knows in
advance weather conditions exactly for the entire growing season. Contrastingly, by describing the produc-
tion decision in terms of the intraseasonal management of soil moisture, equation (3) is able to provide a
more realistic and flexible representation of the farmer’s actual irrigation decision-making process. Specifi-
cally, equation (3) reflects that the decision on when to irrigate and how much water to apply are made
solely on the basis of the current state of soil moisture without any assumptions about conditions in the
future growing period.

The calculations of crop yield and irrigation requirements described in step one are conditioned on weather
inputs for a single growing season and assume a biophysically unrestricted maximum daily irrigation rate,
defined by the specified upper bounds of well yield and irrigated area, that allows the farmer to always
meet full crop water requirements on the maximum available irrigated area. To account for production dif-
ferences introduced by interannual weather variability, in step two the procedure described above is
repeated for multiple growing seasons of weather data for the site or region of interest. Weather time series
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Figure 1. Stochastic relationship, due to interannual weather variability, between the soil moisture target and per-area corn yield (bu/ac).
Each line represents the individual relationship for a simulation by AquaCrop using one of 55 years of daily weather data recorded at Ama-
rillo, Texas, obtained from the National Oceanic and Atmospheric Association Global Summary of the Day data set. Note: 1 bu/ac is equal
to 0.063 tonne/ha.
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may be obtained from historic weather records or, alternatively, may be synthetically generated using a
numerical weather generator. The resulting output captures the potential distribution of crop yields (Figure
1) and total irrigation requirements (Figure 2) for each soil moisture target. Significantly, Figures 1 and 2
illustrate that soil moisture management decisions will be based upon expectations not only about final
crop yield (as is the case in equations (1) and (2)), but also about the total amount of irrigation water that
will be required over the season to maintain soil moisture above a target threshold. Accounting for this
uncertainty in expected irrigation requirements will be important in situations of limited water availability,
where the inability to maintain adequate soil moisture levels in dry years may lead to changes in irrigation
behavior to mitigate potential production losses and risks.

The intraseasonal structure of the production function in equation (3) also provides a valuable means of
considering the impact of groundwater supply constraints on the crop-water production function. Varia-
tions in well yield place an upper bound on the instantaneous rate at which irrigated can be applied to a
specific area in a given time period. This in turn will affect the ability to maintain sufficient soil moisture in
the root zone with resultant negative impacts on crop yield, net returns, and production risk [O’Brien et al.,
2001; Peterson and Ding, 2005; Lamm et al., 2007; Colaizzi et al., 2009; Wines, 2013]. However as previously
noted, instantaneous application constraints have been neglected in existing simulation modeling
approaches to generate crop-water production functions. In the third step of our calculation framework we
repeat the simulations in steps one and two to generate stochastic intraseasonal production functions for
each unique possible combination of irrigated area size and well yield, which together define the maximum
depth of water that can be applied to the field in a given time period (equation (3) and Figure 3). In this
study the time period is defined as a calendar day, consistent with the temporal resolution of both Aqua-
Crop and real-world irrigation planning. Consequently, the complete stochastic intraseasonal crop-water
production function describes the relationship between soil moisture target and crop yield, and between
soil moisture target and total irrigation demand, accounting for the variability in these functions induced by
both weather and instantaneous application rate constraints.

2.3. Economic Producer Decision-Making Model
The farmer’s decision-making process with regard to irrigation has two components, namely the intensive
and extensive margin decisions. The intensive margin refers to the per-area irrigation intensity, and is repre-
sented by the choice of an intraseasonal soil moisture target which determines expectations of per-area
crop yields (Figure 1) and irrigation requirements (Figure 2). The extensive margin refers to the size of irri-
gated area, and reflects the preseason planting decision made by the farmer. As irrigation is used by farm-
ers to mitigate production variability, attitude to production risk may have an impact on optimal irrigation
behavior. In order to consider a range of risk preferences in our analyses, the optimal choice of irrigated
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area and per-area irrigation intensity are therefore formulated as a certainty equivalent (CE) maximization
procedure. The CE represents the certain level of payoff which the farmer considers equally desirable in
terms of utility to some uncertain payoff [Chavas, 2004], and is calculated as the difference between the
expected profit, EðpÞ, and the risk premium, RP, as in equation (4).

CE5EðpÞ2RP (4)

Commonly, CE maximization requires the moments of the crop-water production to be statistically defined
in order to predict the moments of yield or profits [Antle, 1983; Just and Pope, 1978]. To do this, assumptions
must be made about the specific functional form of the moments of the production relationship. Given the
complex variation in the relationships between the soil moisture target and crop yield (Figure 1), and
between the soil moisture target and total irrigation demand (Figure 2), specification of a fixed functional
form has the potential to induce errors in subsequent analyses [Finger, 2012]. In this study, we therefore
choose not to specify a particular functional form for the moments of the production relationship. Instead,
we maximize the CE using a procedure designed to represent realistically the temporal structure of actual
optimal decision making.

The CE maximization procedure begins by calculating the profit-maximizing soil moisture target and associ-
ated profit for each possible size of irrigated area, given a specific well yield, as in equation (5). Profit for a
given irrigation strategy is calculated as the difference between the income generated from crop yield and
the fixed and variable costs of production. Fixed costs are incurred for seeds, fertilizers, herbicides, insecti-
cides, crop insurance, farm equipment and machinery, labor, and repairs and maintenance. Variable costs
include the costs of applying each unit of water in terms of fuel and labor, along with the costs incurred for
harvesting each unit of yield.

p�j;t; S�j;t
h i

5max
S

Yj;t xi:::n
t S; htð ÞjAj;W

� �
� Aj � pc2phð Þ

2Aj � cf 2Xj;t S; htjAj;W
� �

� cv

2
4

3
5

s:t:

Xj;t � Aj � Q

(5)

Where p�j;t and S�j;t are the maximized profit and profit-maximizing soil moisture target, respectively, in year
t on irrigated area j, Aj is the irrigated area, pc is the crop price, ph is the price of harvesting the crop, cf are
the fixed costs of production, cv are the variable costs of irrigation, and Q is the total seasonal water supply.

Equation (5) uses a single intraseasonal crop-water production function, generated for a specific growing
season. The feasible set of irrigation strategies is restricted by a constraint on total seasonal water supply, Q,
which may limit the range of soil moisture targets that are attainable on a given size of irrigated area.
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Figure 4 illustrates this concept showing how, in a particular year, total volumetric water requirements vary
for different possible combinations of extensive and intensive margin decisions. Importantly, this constraint
ensures that predictions of expected profitability explicitly account for potentially reduced production due
to regulatory restrictions on total annual abstraction. Indeed, regulatory restrictions are likely to be a key
factor influencing optimal irrigator behavior in areas where they are used to tackle problems of ground-
water depletion.

The calculations in equation (5) are repeated using the intraseasonal crop-water production functions for all
individual growing seasons in turn to produce profit distributions for each possible size of irrigated area.
Using these distributions expected maximized profit, Eðp�Þ, and maximized profit variance, r2

p� , are then cal-
culated for each possible discrete choice of irrigated area. Following Antle [1987], these values are used to
calculate the risk premium for each potential irrigated area (equation (6)), assuming constant relative risk
aversion, where r is the Arrow-Pratt coefficient of relative risk aversion. Note that when r50 then the pro-
ducer is assumed to be risk neutral and the CE is simply equal to expected profits. Contrastingly, values of r
> 0 reflect increasingly risk-averse behavior.

RP AjW; S�ð Þ50:5 � r
2
p� Að jW; S�Þ � r

E p� AjW; S�ð Þð Þ (6)

Finally, given values of expected maximized profit and risk premium for all possible choices of irrigated
area, it is then straightforward to compute the optimal irrigation strategy by maximizing the CE with respect
to the choice of irrigated area (equation (7)), given the previously specified well yield. It is important to note
that for computational simplicity, the model setup assumes that the nonirrigated portion of the field has no
economic value. In reality, the farmer may be able to extract value through rainfed production or other
strategies, such as environmental stewardship. Predictions of optimal irrigated area should therefore be
seen as upper bounds, as if nonirrigated production has a positive marginal value then this will increase the
potential optimality of extensive margin adjustments.

max
A

CE5E p� AjW; S�ð Þð Þ20:5 � r � r2
p� AjW; S�ð Þ

E p� AjW; S�ð Þð Þ (7)

Maximizing CE in terms of the choice of irrigated area instead of per-area irrigation intensity provides a
behaviorally realistic representation of the temporal structure of optimal irrigation decision making. Specifi-
cally, it captures the fact that farmers make planting decisions preseason based upon uncertain expecta-
tions of growing season weather and guidance about required well pumping capacities to ensure sufficient
irrigation supply [e.g., New and Fipps, 2002; Kranz et al., 2008]. Farmers subsequently are unlikely to abandon
irrigation on the planted area due to the losses this would incur as a result of the significant fixed costs that
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must be invested early in the growing season. Contrastingly, intensive margin decisions are made intrasea-
sonally on the basis of soil moisture changes and may be adjusted as the growing season evolves and addi-
tional knowledge is gained about weather conditions and other variables. In this regard the CE calculation
implicitly assumes that the farmer will manage to the derived profit-maximizing soil moisture target in each
growing season, and we do not model the impacts of deviations from this optimal strategy which may
reduce actual profits.

3. Case Study Application

We apply the developed methodology to a case study of irrigated corn production in the Texas High Plains
region of the United States in order to understand the impact of limited groundwater supply on irrigation
behavior and to assess the ability of existing crop-water production functions to provide robust predictions
of irrigation decision making and agricultural groundwater demand. Corn is a major irrigated crop in the
Texas High Plains region (data obtained from: http://www.nass.usda.gov/Quick_Stats), with irrigation pro-
viding a crucial buffer against variable precipitation patterns and high levels of evaporative demand. Typi-
cally irrigation is managed using a center-pivot sprinkler system which can effectively irrigate 130 acres of a
160 acre quarter section plot (52.6 ha of a 64.7 ha plot). Irrigation water is sourced almost entirely from
groundwater stored in the underlying Ogallala Aquifer. However, abstraction for irrigation over past deca-
des has far exceeded rates of natural recharge, resulting in substantial water table declines [McGuire et al.,
2012; Scanlon et al., 2012] and reductions in well yield [Colaizzi et al., 2009]. Declines in well yield have had
large impacts on farmer behavior in the Texas High Plains region, leading to significant reductions in irri-
gated area and production per well over recent decades [Texas Water Development Board, 2001; Klocke
et al., 2004; Colaizzi et al., 2009]. These declines are predicted to be exacerbated in the years to come given
rates of depletion that are expected to further lower water levels and reduce well yields [Scanlon et al.,
2012; Texas Water Development Board, 2012]. The long-term sustainability of irrigated agriculture in the
Texas High Plains therefore is a key concern for farmers and water managers [Marek et al., 2013]. Hence,
tools are needed to predict how agricultural producers may respond to increasingly constrained levels of
groundwater supply. In turn, these local-level predictions will provide valuable information to help guide
the development of aquifer-scale policies to balance competing demands for increased agricultural produc-
tion and sustainable groundwater management.

3.1. Production Function Generation
We focus our numerical analysis on a specific location in the Texas High Plains, Moore County, which
accounts for a substantial proportion of the total irrigated corn area in the region (data obtained from:
http://www.nass.usda.gov/Quick_Stats). No weather station with a sufficient record length exists in Moore
County. Weather data recorded at Amarillo in neighboring Potter County, obtained from the National Oce-
anic and Atmospheric Association Global Summary of the Day data set (available at: ftp://ftp.ncdc.noaa.gov/
pub/data/gsod), are therefore used as the basis for generating the stochastic intraseasonal crop-water pro-
duction functions. The weather station at Amarillo provides daily values of maximum and minimum temper-
ature, dew point temperature, total precipitation, and average wind speed over the period 1943–2013.
Global Summary of the Day data undergoes a range of quality control measures [Durre et al., 2010]. How-
ever despite these, 16 of the 71 record years (1943–1946, 1965–1973, 1981, and 1992–1993) are not used in
the generation of production functions as in these years greater than 10% of days contain missing data in
one or more variable. For the 55 years that are retained, the final weather input variable required by Aqua-
Crop, reference evapotranspiration, is computed using the standardized ASCE Penman-Monteith equation
[Allen et al., 2005]. At a daily time step the ASCE Penman-Monteith formula is identical to the FAO-56 Pen-
man-Monteith equation, and as such is the recommended method for estimating reference evapotranspira-
tion [Allen et al., 1998; Allen et al., 2005]. The ASCE Penman-Monteith equation has also been shown to
perform better than alternative equations (e.g., Hargreaves, Penman, and Kimberley-Penman) in the High
Plains region of the United States where high winds and vapor pressure deficits have large impacts on refer-
ence evapotranspiration [Itenfisu et al., 2003]. Furthermore, the ASCE Penman-Monteith equation was used
as the basis for estimating reference evapotranspiration in the calibration of AquaCrop for corn at Bushland
in Texas [Heng et al., 2009] thus providing consistency with the methods used to develop the crop parame-
ters applied in this paper.
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It is assumed in the calculation of the production functions that the corn crop was planted on May 1 each
year with a planting density of 30,000 plants/ac (74,132 plants/ha) characteristic of typical agronomic prac-
tices in the region [National Agricultural Statistics Service, 2010]. Following Lamm et al. [2007], soil moisture
levels at the start of the growing season are set at 85% of field capacity throughout the soil profile indica-
tive of some degree of rainfall or preseason irrigation before planting. Soil type in AquaCrop is defined to
represent a Sherm silty clay loam soil. This soil is the most commonly cropped soil type for corn production
in Moore County, as identified by a comparison of the spatial distribution of soils in the county given in the
SSURGO data set (available at: http://websoilsurvey.nrcs.usda.gov) with the historic (2009–2013) distribution
of corn production areas (data obtained from: http://nassgeodata.gmu.edu/CropScape). Based on these soil
data, we assume textural properties of 23% sand, 46% clay, 31% silt, and an organic matter content of
0.66%. Soil textural properties are subsequently used to calculate soil hydraulic properties for AquaCrop
using a pedotransfer function approach [Saxton et al., 1986]. Crop growth parameters in AquaCrop are
defined according to a previous calibration of AquaCrop in the Texas High Plains at Bushland, Potter County
[Heng et al., 2009], which demonstrated that AquaCrop was able to reproduce corn growth and yield under
a range of irrigation conditions.

Using the parameters and weather inputs described above, AquaCrop is applied to simulate crop yield and
total irrigation requirements for a range of soil moisture targets using the procedure described in section
2.2. The soil moisture target is varied from 0, representing permanent wilting point, to 1, indicative of field
capacity, in increments of 0.05 to capture the complete range of potential soil moisture management strat-
egies that are available to the farmer. When irrigation is triggered water is considered to be applied uni-
formly over the full irrigated area during a single day in order to bring the soil water content back to field
capacity. The maximum daily irrigation rate is, however, limited by the instantaneous application constraint
imposed by well yield and irrigated area. It is also assumed that 10% of the irrigation water applied does
not reach the root zone, which is typical of application losses from a center-pivot system in the region [Wag-
ner, 2012]. Well yield is discretized from 0 to 1600 gallons per minute (gpm) (0–101 l/s) in increments of 20
gpm (1.3 l/s) to represent a broad range of possible well yields. Irrigated area size is varied from 0 to 130 ac
(0–52.6 ha) in increments of 1 ac (0.4 ha). This range in potential irrigated area is characteristic of the size of
a typical center-pivot irrigation system operating on a quarter section field. Additionally, the fine level of
discretization reflects the fact that the size of irrigated area can be relatively easily adjusted by altering the
extent of pivot rotation or length of the sprinkler arm.

3.2. Model Simulations
Using the generated stochastic intraseasonal crop-water production function we evaluate the impact of sea-
sonal and intraseasonal groundwater supply constraints on optimal irrigator behavior. Different intraseaso-
nal groundwater supply restrictions, which limit the instantaneous rate at which groundwater can be

Table 1. Parameter Values for Economic Producer Decision-Making Model

Parameter Value

Corn price ($/bu) 5.5
Coefficient of risk aversion 0–4
Fixed Costs ($/ac)
Seeds 119
Insecticide 25
Herbicide 36
Fertilizer 161.25
Crop insurance 20
Labor 12.02
Fuel 16.41
Repair and maintenance 41.25
Nonirrigation machinery and equipment 23.5
Center-pivot 50
Interest on operating capital 15.62
Variable Costs
Irrigation fuel ($/ac-in) 1.80
Irrigation labor ($/ac-in) 0.67
Crop drying and harvesting ($/bu) 0.40
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abstracted, are represented by the discretized values of well yield, ranging from 0 to 1600 gpm (0–101 l/s).
The seasonal groundwater supply constraint reflects regulatory restrictions that are increasingly being
applied in the High Plains region of the USA to limit the volume of groundwater that farmers can abstract
per growing season [Kuwayama and Brozović, 2013; Brozović and Young, 2014], and is varied from 0 to 500
ac ft (0–617 Ml) in 10 ac ft (12.3 Ml) increments. The range of both seasonal and intraseasonal supply con-
straints is designed to cover a spectrum of conditions from no supply to effectively unrestricted pumping.
We apply each possible combination of seasonal and intraseasonal groundwater supply restrictions in turn
within the CE maximization procedure detailed in section 2.3 to determine optimal irrigation strategies and
expected farm-level profitability. Economic values needed to parameterize equation (5) are taken from
Texas AgriLife Extension Service [2013] and are summarized in Table 1. To account for the relative role of risk
preferences in irrigation decision making we repeat the analyses detailed for different levels of risk aversion.
The coefficient of relative risk aversion, r, is varied from 0 (risk neutral) to 4 (highly risk averse) in increments
of 0.5.

3.3. Model Comparison
We seek to compare the results given by the analysis in section 3.2 with those that would be obtained
when using a stochastic seasonal formulation of the crop-water production function (equation (2)) that
commonly has been applied to model irrigation decision making. As noted previously, existing crop-
water production functions differ from our stochastic intraseasonal production function in two ways.
Specifically, they do not consider the impact of instantaneous application constraints imposed by well
yield or the role of soil moisture as a key decision variable. Therefore, we generate stochastic seasonal
production functions by repeating the simulations described in section 2.2 but with no constraint on
instantaneous application rates applied. The simulated relationships between the soil moisture target
and crop yield, and between the soil moisture target and total irrigation demand, are then aggregated
to produce data points of crop yield return to total seasonal irrigation to reflect that existing production
functions do not consider soil moisture as a decision variable. Using these data points we fit a nonpara-
metric relationship for each growing season using the PCHIP function in MATLAB [Mathworks Inc., 2013]
to generate a stochastic seasonal crop-water production function as per equation (2). We apply the sto-
chastic seasonal crop-water production function to predict optimal irrigation decision making in terms
of the preseason choice of irrigated area using the same CE maximization procedure as described in
section 2.3. Optimal decisions are, however, only calculated for constraints on seasonal water supply
due to the inability of seasonal crop-water production functions to capture intraseasonal groundwater
supply constraints induced by well yield. Importantly, by applying the same optimization methodology
as when using our developed stochastic intraseasonal crop-water production functions we are able to
isolate the impact of the choice of production function on simulated irrigation decision making. This
provides useful information about the value obtained from our stochastic intraseasonal crop-water pro-
duction function and highlights the situations where use of existing production functions may lead to
unreliable predictions of irrigation decision making.
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Figure 5. Predicted contours of optimal: (a) Irrigated area (ac); (b) Total irrigation use (ac ft); and (c) Profits (US$1000) for different seasonal
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Water Resources Research 10.1002/2014WR015620

FOSTER ET AL. VC 2014. American Geophysical Union. All Rights Reserved. 6380



4. Model Results and Discussion

4.1. Irrigation Behavior
Our results demonstrate that farmers’ irrigation behavior exhibits complex nonlinear responses to changes
in groundwater availability. In particular, by allowing the crop-water production function to vary as a func-
tion of the constraint on maximum daily application rates, we find that the optimal size of irrigated area
(Figure 5a) and total irrigation demand (Figure 5b) for a risk neutral farmer are variable in response to both
seasonal and intraseasonal groundwater supply constraints. Significantly, we observe three different kinds
of behavior where the optimal size of irrigated area is primarily: (1) unconstrained; (2) seasonally con-
strained; (3) intraseasonally constrained.

Under conditions of extensive seasonal (>400 ac ft /493 Ml) and intraseasonal (>1200 gpm/76 l/s)
groundwater supply it is shown that the optimal decision is to irrigate the full, or close to the full, 130 ac
(52.6 ha) production area (Figure 5a). When irrigated area is at or close to its maximum limit, Figure 5b
demonstrates that total irrigation use may decline slightly as a result of intensive margin adjustments.
Such water savings are primarily motivated by reductions in seasonal groundwater allocation that neces-
sarily limit the attainable soil moisture target and irrigation intensity on the full production area particu-
larly in the driest years.

As seasonal groundwater supply is reduced below 350–400 ac ft (430–490 Ml) irrigation decision making
becomes more limited by seasonal groundwater supply constraints. Irrigated area size (Figure 5a) and
total irrigation demand (Figure 5b) both decline at approximately linear rates. These changes reflect the
increasing use of extensive margin adjustments to provide the water savings necessary to meet restrictive
regulatory constraints, which limit the ability to manage soil moisture levels effectively to avoid signifi-
cant crop yield losses. Importantly, intraseasonal supply constraints become progressively less influential
as shown by the increasingly vertical slope of the contours with respect to seasonal water supply for sea-
sonal groundwater allocations below 350–400 ac ft (432–493 Ml) (Figures 5a and 5b). Intuitively, this
reveals that, for low seasonal groundwater allocations, potential changes in instantaneous application
rates have less impact on optimal irrigation decisions as any additional intraseasonal water supply
capacity obtained from a higher well yield will be unusable due to the binding seasonal water supply
constraint.

Contrastingly, we observe that constraints on instantaneous application rates imposed by well yield have a
significant effect on irrigation behavior for moderate to large seasonal groundwater allocations. As seasonal
supply restrictions are relaxed, irrigation behavior becomes increasingly sensitive to reductions in well yield
below approximately 1000–1200 gpm (63–76 l/s). Intraseasonal impacts are particularly evident for seasonal
water supplies above around 150–200 ac ft (185–247 Ml), where rapid declines occur in the optimal size of
irrigated area (Figure 5a) and total irrigation use (Figure 5b) even as seasonal groundwater allocation is
held constant. Biophysically, these extensive margin adjustments can be explained by the need to maintain
daily application rates at a level that avoids severe perpetual soil moisture deficits and resultant crop water
stress (see Figure 3). By reducing irrigated area and relaxing the constraint on daily irrigation rates, the
farmer is able to maintain higher soil moisture levels and obtain a larger average per-area crop yield. At the
same time reductions in irrigated area also lower the total fixed costs of production, and it is the combina-
tion of these two factors that leads to increased optimality of partial-area irrigation when well yield is
limiting.

4.2. Profits
Our model analyses also provide estimates of the impact of groundwater supply constraints on field-level
profitability. Figure 5c illustrates that expected profits are highly correlated with the patterns of irrigation
behavior observed in Figures 5a and 5b. Expected profits therefore exhibit marked sensitivity to both sea-
sonal and intraseasonal groundwater supply constraints.

Expected profits for the 130 ac (52.6 ha) field are highest, greater than $US 35,000 per cropping season,
where both seasonal and intraseasonal groundwater supply are at a maximum. As seasonal groundwater
supply is reduced, expected profits decline at a slower initial rate due to the initial implementation of inten-
sive margin adjustments and resultant small to moderate reductions in per-area crop yield for seasonal sup-
plies greater than 350–400 ac ft (432–493 Ml). This is followed by a larger, approximately linear decline in
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profits as the farmer switches permanently to extensive margin adjustments for seasonal groundwater allo-
cations below around 350 ac ft (432 Ml) to stabilize crop yields and reduce fixed costs.

Profit reductions due to intraseasonal supply constraints are most noticeable for moderate to high levels of
seasonal groundwater supply (>150–200 ac ft/185–247 Ml). In this region, well yield may become a limiting
factor for profit generation at levels as high as around 1000–1200 gpm (63–76 l/s) depending on the level
of the seasonal groundwater supply. The reduction in expected profitability reflects the fact that binding
intraseasonal supply constraints imposed by well yield limit the range of soil moisture targets that farmers
can effectively manage for a given seasonal groundwater allocation. In order to achieve optimal expected
crop yields and profits farmers must reduce the size of their irrigated operation, both in terms of the size of
irrigated area and total water use, below the level that would be attainable with a higher well yield and the
same seasonal groundwater allocation. Consequently, the farmer forgoes a large proportion of potential
profits for a given seasonal groundwater allocation due to the physical intraseasonal constraints imposed
by the hydrogeological system.
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4.3. Model Comparison
The results shown in section 4.2 can be compared to predictions of optimal irrigation behavior obtained
when using existing models of irrigation decision making. In doing so we are able to examine the ability of
current crop-water production functions to provide reliable predictions of field-level irrigation decisions,
which often are used to inform larger scale groundwater management and policy development.

Given a stochastic seasonal crop-water production function as a benchmark for existing models, Figures 6a
and 6b illustrate how the optimal size of irrigated area and total irrigation use, respectively, vary as a func-
tion of seasonal groundwater supply. For ease of comparison, predictions obtained when using our stochas-
tic intraseasonal crop-water production function are only shown for a selection of well yields. When using
an existing crop-water production function, we predict that water savings are initially achieved through
intensive margin adjustments, followed by a permanent switch to extensive margin adjustments for sea-
sonal groundwater allocations of 350 ac ft (432 Ml) or less. This pattern of deficit irrigation behavior is
almost identical to that predicted when using our stochastic intraseasonal crop-water production function
given a very high well yield (e.g., 1600 gpm/101 l/s). However, as well yield is reduced there is an increasing
divergence in model predictions. Specifically, use of existing crop-water production functions leads to
increasing overprediction of the optimal irrigated area for seasonal water allocations of around 100 ac ft
(123 Ml) or more. This result can be explained by the failure of existing crop-water production functions to
account for constraints on instantaneous application rates due to well yield, which have been shown in sec-
tion 4.1 to be a key driver of changes in the optimal size of irrigated area. In turn, overprediction of the opti-
mal size of irrigated area has a significant effect on predictions of expected field-level profitability. Figure 6c
shows that the inability to capture the large extensive margin adjustments in response to limited well
capacity leads to overprediction of expected profits for moderate to high seasonal water supplies. Indeed,
maximum expected profits derived from a stochastic seasonal crop-water production function are approxi-
mately 36% higher than those given by our stochastic intraseasonal crop-water production function for a
well yield of 900 gpm (57 l/s). This difference expands further to 144% given a well yield of 500 gpm (32 l/s),
and 513% for a well yield of 200 gpm (13 l/s).

4.4. Sensitivity to Risk Aversion
Figure 7 summarizes how optimal irrigated area size varies as a function of the specified degree of risk aver-
sion for seasonal groundwater allocations of: (a) 390 ac ft (481 Ml); (b) 260 ac ft (321 Ml); and (c) 130 ac ft
(160 Ml). The results are reported for the same set of model formulations used in section 4.3.

In general, increasing risk aversion leads to further reductions in the optimal size of irrigated area. This trend
indicates the farmer’s willingness to choose a smaller irrigated production area in order to increase per-area
water supply and reduce variance in profits caused by interannual weather variability and limited water
availability. Declines in irrigated area size are most prominent for larger (260 or 390 ac ft/321 or 480 Ml) sea-
sonal groundwater allocations. Changes for lower (130 ac ft/160 Ml) water supplies are limited as the bind-
ing seasonal water supply constraint dominates any changes in behavior due to risk aversion. Similarly,
responsiveness to risk aversion is also affected by intraseasonal groundwater supply and, therefore, the
choice of model formulation. The greatest reductions in irrigated area are found when using a stochastic
seasonal model or our stochastic intraseasonal model given a high well yield (900 or 1600 gpm/57 or 101 l/
s). As well yield, and thus instantaneous application rates are reduced, the impact of risk aversion on irriga-
tor behavior diminishes.

It should also be noted that in some cases irrigated area is shown to decline more rapidly with increasing
risk aversion when using a stochastic seasonal crop-water production than when applying our stochastic
intraseasonal crop-water production function given a high well yield (e.g., Figure 7a). This result reflects that
simply by imposing a physical limit on daily irrigation rates, irrigation schedules and feedbacks on other
simulated hydrological processes such as deep percolation and surface runoff will be altered. The predicted
certainty equivalents for each irrigated area size obtained when using our stochastic intraseasonal crop-
water production function for a high well yield therefore are not necessarily identical to those obtained
when using an existing production function that ignores well yield entirely. This may lead to slight diver-
gence in predicted irrigated area with increasing risk aversion, such as that observed in Figure 7. Neverthe-
less, it is clear from a comparison of Figure 7 with Figures 5a and 6a that the extensive margin adjustments
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motivated by increasing risk aversion are substantially smaller than those predicted due to decreasing well
yield under the assumption of risk neutrality.

4.5. Implications
This study highlights the importance of accounting for the structure and variables that influence farmers’
real-world irrigation choices when attempting to model irrigation behavior and profitability. Previous
studies have concluded that deficit irrigation will be an optimal adaptation to water supply restrictions in
agriculture [English, 1990; English et al., 2002; Fereres and Soriano, 2007; Evans and Sadler, 2008; Geerts and
Raes, 2009; Wang and Nair, 2013]. However, our analyses show that, in areas where groundwater is the
main water supply source, the optimality of deficit irrigation is only valid for farms with access to high
yielding abstraction wells. We demonstrate that when well yield is incorporated into predictions of field-
level decision making the value of deficit irrigation as an adaptation to limited groundwater availability
and extreme climate is greatly reduced. Specifically, we show that as well yield declines partial-area irriga-
tion becomes increasingly optimal due to the impacts of constraints on instantaneous application rates
on per-area crop yields and profits. This finding is comparable to the results obtained by Baumhardt et al.
[2009] for cotton production in Texas, who show that low instantaneous application rates increase the
optimality of partial-area irrigation. However, their analyses only consider three field partitioning scenar-
ios, limiting the conclusions that can be drawn from the study. In addition, Baumhardt et al. [2009] also
neglect to analyze the impacts of interactions between constraints on instantaneous application rates,
seasonal groundwater supply restrictions and risk aversion, which our results demonstrate can have sig-
nificant effects on the magnitude of well yield impacts on optimal decision making. Similarly, in another
recent study of cotton in Texas, Nair et al. [2013] also show that field partitioning into irrigated and dry-
land portions can be optimal under conditions of limited water availability. However, their results do not
fully account for the impact of well yield on optimal irrigation behavior as they focus on restrictions to
seasonal water supply and do not explicitly impose limits on instantaneous application rates. The analyses
reported here therefore provide the first thorough and robust study of the impacts of groundwater avail-
ability on irrigation decision making.

The results of this study also have implications for the use of integrated modeling for groundwater manage-
ment and policy development. Integrated modeling frameworks currently used to study problems of
irrigation-induced aquifer depletion [Schoups et al., 2006; Harou and Lund, 2008; Maneta et al., 2009; Brozović
et al., 2010; Bulatewicz et al., 2010; Varela-Ortega et al., 2011; Steward et al., 2013] do not adequately account
for the impact of well yield on agricultural production decisions or the dynamic trajectory of well yield with
changes in aquifer saturated thickness. Whilst we do not model the dynamic evolution of the coupled
human-water system in this study, our explicit analyses indicate that the failure of existing crop-water pro-
duction functions, which are used to predict agricultural water demand in hydro-economic models, to
account for the impacts of declining well yields may limit the applicability of existing models to predict
future groundwater system trajectories and the effectiveness of policy options. Specifically, our results sug-
gest that existing model projections will underestimate the negative impacts of reductions in groundwater
availability on both rural economies and food security. Given the complex nonlinear relationships between
groundwater levels, well yield, and irrigation decision making, we also hypothesize that a number of system
thresholds affecting the ability to sustain irrigated agriculture may exist. Our findings suggest that sustain-
ing saturated thicknesses at levels that do not significantly impact well yield and hence instantaneous irriga-
tion application rates may have previously unrecognized economic value. An avenue for future work is thus
to explore the extent to which policies that explicitly target the preservation of saturated thickness are feasi-
ble in regions of intensive groundwater-fed irrigation. In the context of the extensive Ogallala Aquifer sys-
tem, we hypothesize that such policies may be most achievable in the Northern High Plains where, given
that recharge rates are greatest [Scanlon et al., 2012] and substantial saturated thickness remains [McGuire
et al., 2012], caps on groundwater abstraction may be able to stabilize water levels and well yields without
unacceptable economic costs. Contrastingly, in the Southern High Plains recharge is minimal [Scanlon et al.,
2012] and therefore it would most likely be cost prohibitive to reduce abstraction to levels necessary to
avoid continuing well yield declines. In these areas future research should instead explore the economic
value that may be gained by modifying the rate of well yield decline, for example through water restrictions
or changing cropping practices, to sustain irrigated agriculture for longer periods into the future. Further-
more, in all cases analyses of optimal groundwater management must be set in the context of climate
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change and its potential impacts on recharge and crop water requirements [Crosbie et al., 2013] that
undoubtedly will influence the success of policies aimed at managing saturated thickness and well yields.

4.6. Model Limitations
It is important to discuss some limitations of the developed model and the potential implications of these
simplifications. First, we assume that the portion of the field that is not irrigated has no economic value.
Whilst this choice reduces the computational demands of the final model, it is clearly an unrealistic repre-
sentation of true practices. In reality, the farmer may be able to extract value from this additional area
through either rainfed production or through other payments (e.g., for environmental services). Future
modeling work should seek to model separately production decisions and expected outputs from both irri-
gated and nonirrigated portions of the field. However, it is not expected that adding nonirrigated produc-
tion choices in conjunction with irrigated production would qualitatively alter the findings of this study.
Indeed, Nair et al. [2013] show that the positive marginal value of the nonirrigated production area plays a
role in increasing the optimality of partial-area irrigation under conditions of reduced seasonal water supply.
As a result we expect that predicted extensive margin adjustments in response to declining well yields may
be even larger than currently anticipated when the value of the nonirrigated area is considered.

A further simplification of our current modeling framework is the assumption that the intensive margin
decision can be characterized by the choice of a constant soil moisture target for the entire growing season.
Research has shown that the optimal level at which soil moisture should be maintained in fact differs intra-
seasonally [Doorenbos and Kassam, 1979; Geerts and Raes, 2009; Payero et al., 2009] as the degree of crop
sensitivity to water stress varies according to crop phenology. Soil moisture target strategies that vary intra-
seasonally have been developed and modeled for a number of locations, including the High Plains Aquifer
region [Heeren et al., 2011], but these strategies have yet to be incorporated into economic models of irriga-
tion decision making. Whilst there is potential to extend the intensive margin decision of the modeling
framework described in this study to incorporate these variable deficit irrigation strategies, it is not antici-
pated that this modification would significantly alter the optimality of predicted extensive margin adjust-
ments. This assertion is supported by research indicating that the viability of deficit irrigation as an
adaptation to limited water availability is predicated on the ability to supply irrigation to the crop at an
unlimited rate during the most sensitive growth stages [Fereres and Soriano, 2007; Geerts and Raes, 2009].
Low well yields, which limit instantaneous irrigation application rates throughout the entire growing season,
will therefore reduce the ability to manage soil moisture levels optimally during critical growth stages,
resulting in adoption of extensive margin adjustments to increase potential instantaneous application rates
and per-area crop yield and total profits. However, it should be noted that time-varying deficit irrigation
strategies may allow farmers to adapt more effectively to regulatory groundwater supply restrictions. As
regulatory constraints are imposed at an aggregate seasonal scale, deficit irrigation may enable farmers to
prioritize the allocation of limited groundwater abstraction quotas to the most drought-sensitive crop
growth stages while reducing applications and soil moisture levels at other points in the growing season.
Consequently, optimal irrigated area and profits under regulatory groundwater supply restrictions may be
larger than predicted by our model (Figure 5) provided that well yield is nonlimiting.

Finally, while the modeling framework developed is generalizable to different settings it should be noted
that the exact quantitative model results are specific to the chosen case study. For example, the threshold
at which well yield becomes a binding constraint on per-area crop yield and irrigated area size will vary
according to a number of factors including climate, soil texture, crop type, crop price, and production costs.
Sensitivity analyses (not shown here) for our model have demonstrated that the threshold level at which
well yield becomes a binding constraint on irrigated area varies as a function of the difference between
per-area crop price and production costs. When this difference is reduced relative to the values in Table 1,
well yield becomes binding at higher pumping capacities as per-area revenue falls below per-area costs
more rapidly. On the other hand, irrigated area can be maintained at higher levels for well yields below
those predicted in this study when the difference between crop price and production costs is increased as
the additional revenue per unit of crop yield is sufficient to mitigate some of the impacts of reduced crop
yield as well yield declines. Heeren et al. [2011] have also shown in the High Plains region that the well yield
threshold at which reductions in corn yields are expected, and at which irrigation decision making therefore
may be affected, varies between around 600–800 gpm due to spatial variations in climate and soil type. In
addition, farmer response to well yield decline will be influenced by the local context surrounding
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groundwater management. Our model assumes a farmer is unable to improve well yield (e.g., by drilling a
deeper well). For the Ogallala Aquifer this is realistic as drilling of new wells generally is unfeasible due to
well drilling moratoriums or because wells are already sunk at substantial depths. In other areas of the world
farmers may be able to maintain irrigated area by drilling deeper wells to boost pumping capacity, and in
these settings our model may need to be adapted to consider this additional component of economic deci-
sion making. However, it should be noted that drilling deeper wells may quickly become financially prohibi-
tive for smallholder farmers [e.g., Janakarajan and Moench, 2006] and/or well yield gains may be restricted
by geological constraints [e.g., MacDonald et al., 2012]. Furthermore, as exemplified by the historic expan-
sion of well drilling in the Texas High Plains [Colaizzi et al., 2009], drilling increasingly deeper wells is likely
simply to postpone the effects of declining well yields on irrigated area. Importantly, this discussion thus
highlights that local variability in model parameters and institutional contexts will influence when, and not
if, well yield becomes a binding constraint on irrigation decision making. The modeling framework devel-
oped in this paper therefore can be valuable for studying groundwater-fed irrigation across a wide range of
settings.

5. Conclusions

This paper develops a behaviorally robust modeling framework for predicting optimal irrigation decision
making. In contrast to existing approaches for predicting agricultural groundwater demand in integrated
hydro-economic models, our model is consistent with the structure and variables that underlie farmers’
actual field-level groundwater use decisions. Our novel stochastic intraseasonal crop-water production func-
tion explicitly accounts for both the intraseasonal structure of irrigation planning and the variability in this
function induced by climate and well yield. The developed crop-water production function is applied within
a realistic utility maximization framework, which is formulated to reflect the observation that farmers’ must
choose irrigated area preseason under uncertainty about future growing season conditions and water
requirements.

The model is solved for a case study of center-pivot irrigated corn production in the Texas High Plains
region of the United States to assess changes in irrigation behavior in response to groundwater supply
restrictions and to understand the limits of applicability of existing crop-water production functions for pre-
dicting land and water use decisions by farmers. We find that optimal irrigation behavior exhibits complex
nonlinear responses to reductions in groundwater supply. Most notably, instantaneous application rate con-
straints imposed by low well yields are shown to induce large reductions in the optimal size of irrigated
area and, consequently, in expected field-level profitability. Existing model formulations are unable to cap-
ture these behavioral responses as they do not adequately account for the impacts on crop-water produc-
tion decisions of intraseasonal supply constraints introduced by low well yields.

This study indicates that existing model formulations may not be robust predictors of irrigation decision
making under conditions of constrained groundwater supply. Current research commonly suggests that the
impacts of limited water availability on production area and profits can be mitigated largely through the
adoption of deficit irrigation practices. Contrastingly, our results imply that a failure to account for increas-
ing constraints on intraseasonal groundwater supply due to declining well yield will lead existing models to
underestimate the negative impacts of groundwater depletion on potential food production and rural
economies. This has important implications, suggesting that managing saturated thicknesses at levels nec-
essary to preserve well yield may have significant additional economic and societal value that has been
neglected in previous analyses. Finally, our results indicate that the nonlinear relationships between well
yield and irrigated agricultural production may create a number of system thresholds that, once crossed,
will rapidly magnify the potential damages incurred from groundwater depletion.

The analyses reported in this study represent a static, explicit prediction of the impacts of groundwater
supply constraints on field-level irrigation decision making. However, in reality, the coupled human-
water system is regulated at larger spatial scales and its components will dynamically coevolve over
time, affecting the trajectory of changes in both the aquifer and agricultural production. An extension
of our research could, in the spirit of the emerging field of socio-hydrology [Sivapalan et al., 2012], seek
to couple the developed model of field-level irrigation decision making within a catchment scale hydro-
logical model. Model coupling should be spatially explicit, considering diversity in crop, soil, and
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weather characteristics, along with the interactions between individual agents in space and time. Pro-
ducer expectations with regard to crop yield returns and irrigation requirements, which currently are
considered to be constant in our model, should also be allowed to evolve over time to capture the
effects of knowledge accumulation and adaptive learning by farmers during the modeled planning hori-
zon. Similarly, future work could also evaluate the value of information sources that are not currently
accounted for in our model of farmer decision making, such as the role of weather forecasts to help
schedule limited irrigation [Gowing and Ejieji, 2001; Bergez and Garcia, 2010; Cai et al., 2011; Hejazi et al.,
2014], and how their effectiveness will be affected by constraints on groundwater supply related to well
yield. The resultant coupled modeling framework would provide a useful tool for meaningful policy
analysis, and would be especially relevant for efforts to balance future water and food production
demands with long-term goals of hydrological sustainability.
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