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Abstract: To reduce the impacts of drought, developing an integrated drought monitoring tool and
early warning system is crucial and more effective than the crisis management approach that is
commonly used in developing countries like Ethiopia. The overarching goal of this study was to
develop a higher-spatial-resolution vegetation outlook (VegOut-UBN) model that integrates multiple
satellite, climatic, and biophysical input variables for the Upper Blue Nile (UBN) basin. VegOut-UBN
uses current and historical observations in predicting the vegetation condition at multiple leading
time steps of 1, 3, 6, and 9 dekades. VegOut-UBN was developed to predict the vegetation condition
during the main crop-growing season locally called “Kiremt” (June to September) using historical
input data from 2001 to 2016. The rule-based regression tree approach was used to develop the
relationship between the predictand and predictor variables. The results for the recent historic
drought (2009 and 2015) and non-drought (2007) years are presented to evaluate the model accuracy
during extreme weather conditions. The result, in general, shows that the predictive accuracy of the
model decreases as the prediction interval increases for the cross-validation years. The coefficient
of determination (R2) of the predictive and observed vegetation condition shows a higher value
(R2 > 0.8) for one-month prediction and a relatively lower value (R2 ∼= 0.70) for three-month prediction.
The result also reveals strong spatial integrity and similarity of the observed and predicted maps.
VegOut-UBN was evaluated and compared with the Standardized Precipitation Index (SPI) (derived
from independent rainfall datasets from meteorological stations) at different aggregate periods
and with a food security status map. The result was encouraging and indicative of the potential
application of VegOut-UBN for drought monitoring and prediction. The VegOut-UBN model could
be informative in decision-making processes and could contribute to the development of operational
drought monitoring and predictive models for the UBN basin.

Keywords: VegOut-UBN; drought; Upper Blue Nile; regression model

1. Introduction

A vegetation-condition-based drought monitoring and prediction model is vital to enhance
knowledge-based decision-making processes in areas where economic growth is dependent on rain-fed
agriculture. Agriculture, the most drought-vulnerable sector, needs a proactive risk management
approach to mitigate the adverse impacts associated with the occurrence of drought. In Ethiopia,
agriculture is the main income-generating sector, accounting for over half of the total Gross Domestic
Product (GDP) of the country [1,2]. Failure of the annual rainfall is closely associated with failure of
the crop production, which eventually affects the socio-economic sector of the country. The drought
that occurred in 2015 affected the annual crop yield and production, which exacerbated food insecurity
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in most of the farming regions in the country [3]. According to the UN Office for the Coordination of
Humanitarian Affairs (OCHA), more than 4 million people have needed food aid and humanitarian
assistance in Ethiopia since the beginning of 2015 [4]. Hence, crop yield reduction is closely associated
with the failure of the annual rainfall and poor vegetation condition. Other notable historic drought
events (e.g., 1983–1984, 1994–1995, 2003–2004, and 2009–2010) have occurred in the country and
caused devastation in terms of the loss of human lives and reduction in annual crop production [5,6].
This indicates the existence of a strong linkage between crop production and drought in Ethiopia.
Developing a vegetation condition prediction model greatly enhances the potential to estimate the
annual crop yield production that, in turn, supports developing food security and drought early
warning systems [7–9].

Monitoring vegetation condition, referred to in this study as “vegetation greenness”, involves
the use of mainly the remote-sensing-based Normalized Difference Vegetation Index (NDVI), which is
computed using the spectral reflectance acquired in the near-infrared (NIR) and red band regions [10].
NDVI reflects the greenness of the vegetation and/or the vegetation health. Low NDVI values indicate
drought conditions whereas high NDVI values show healthy vegetation conditions [11]. The response
of the vegetation condition reflects the cumulative effects of climatic, oceanic, topographic, and other
biophysical variables, indicating the complexity and integral challenges in predicting the vegetation
condition. Nevertheless, an integral approach enhances understanding of the complex natural phenomena
and interconnections among the different components of the hydrologic cycle. The availability of good-
quality long-term remote sensing and ground-based observations in environmental datasets allows for
the development of advanced data mining and other techniques that could help in extracting useful
information in support of informative decision-making processes [12,13]. Many previous studies indicated
strong teleconnections between drought occurrence and El Niño southern oscillation (ENSO), sea surface
temperature (SST) anomalies in the southern Atlantic and Indian oceans, and other anthropogenic
activities that exacerbate land use change in Ethiopia [14]. Thus, an integral approach that includes the
potential use of oceanic indices contributes to the development of a robust drought prediction model
for Ethiopia.

The advancement of remote sensing technology enhanced the capability of prediction of
vegetation condition, particularly in data-scarce regions [15]. The availability of spatially continuous
and high-temporal-resolution measurements from remote sensing products leverages an increasing
demand for knowledge-based decision-making processes for drought planning [16,17]. Extracting
valuable information from the data helps to support strong decision-making processes. Data mining
techniques play a great role in terms of handling Big Data and identifying the pattern and relationships
among the input parameters, and they generate new knowledge about the dataset [18]. There are
several predictive and descriptive data mining techniques. The regression tree data mining technique
is the most commonly and widely used approach in drought studies [19,20]. The decision trees are
represented in the form of a tree structure with different nodes. Even though drought is a complex
atmospheric phenomenon, the data mining technique is able to capture its spatial and temporal
patterns through knowledge developed from the huge dataset.

Many studies have noted the potential usefulness of VegOut in drought monitoring and
preparedness activities across the world. Most of the studies supported the integral approach of using
several environmental datasets to monitor and predict vegetation conditions in different agro-climatic
zones. For example, Tadesse et al. [20] developed a VegOut model for Nebraska and South Dakota
in the USA, and they reported the applicability of VegOut in predicting the vegetation condition
to a certain leading time. A similar approach was presented by expanding the study area over the
central United States to support the usefulness of VegOut for drought monitoring by Tadesse et al. [21].
Tadesse et al. [22] studied the predictive capability of VegOut to monitor vegetation stress during
the crop-growing season in Ethiopia. The model performed well in indicating vegetation stress
across the drought-prone parts of the country when evaluated for the selected historic drought years.
Several other studies also indicated a strong link between vegetation vigor and oceanic indices [23],
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soil moisture condition [10], and other parameters [24]. Most VegOut-related studies are of a large
scale—for example, continental [13,25] and country level [22]. However, only very limited efforts have
been made to develop and test VegOut at relatively finer spatial resolutions (250 m × 250 m) and at
a catchment and basin level in rugged topography where the orographic effects of rainfall and local
climatic conditions significantly affect the climate condition [26]. The development of the VegOut
model in the Ethiopian highlands is crucial for water resource management. Most of the transboundary
rivers originating from the highlands require integrated water resource management to maximize
benefits and equitable share of water among the riparian countries.

In this paper, the vegetation outlook (VegOut-UBN) model was developed using several sets of
climatic, oceanic, and biophysical data at a finer spatial resolution (250 m × 250 m) for the Upper Blue
Nile Basin in Ethiopia. The rule-based regression tree approach was followed to model the relationship
that exists between the input variables. This study contributes to developing a knowledge-based
approach that could assist decision-makers in mitigating drought and its resulting impacts.

2. Materials and Methods

2.1. Study Area

The UBN Basin is located at the geographic coordinates of 7◦40′ and 12◦51′N latitudes and 34◦06′

and 40◦00′E longitudes in the northwestern part of Ethiopia (Figure 1). The basin covers a total area
of ~200,000 km2 upstream from the Ethiopia–Sudan border [27]. Its altitude ranges from ~490 m in
the lowlands at the Ethiopia–Sudan border to ~4260 m in the highlands of Mount Guna. The annual
rainfall ranges from 780 mm to 2200 mm, with the highlands having the highest rainfall (ranging from
1500 to 2200 mm) and the lowlands receiving less than 1500 mm [27–29]. The main rainfall season
(locally called “Kiremt”) in the basin spans from June to September, and 82% of the annual flow occurs
during this season [30]. More than 85% of the annual crop is produced during the Kiremt season [31].
The mean annual temperature ranges from 13 ◦C in southeastern parts to 26 ◦C in the southwestern
part near the Ethiopia–Sudan border [32].Remote Sens. 2019, 10, x FOR PEER REVIEW  4 of 18 
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Figure 1. The location, elevation, and boundary of the Upper Blue Nile (UBN) Basin (bold dark
violet color). The red circles indicate the locations of the meteorological stations used to validate the
VegOut-UBN model.
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The land cover in the basin is dominated by dry-land, cropland, pastures, savannah, grassland,
woodland, water bodies, and sparsely vegetated plants. Cropland is the dominant land use and land
cover type, covering 44% of the total area of the basin [33]. Rain-fed agriculture is the dominant
practice in the basin, and a variety of crops are grown under rain-fed condition. A large area of bamboo
is available in the lowland toward the western part of the basin. Open to dense woodland is abundant
in the south, southwest, and southeast parts of the basin, and open shrubland is dominant in the
highlands of the basin. Volcanic rock and Precambrian basement rock are the most widely available
geological formations in the basin, and small areas are covered by sedimentary rock [27]. The dominant
soil types are Leptosols and Alisols (21%), Nitosols (16%), Vertisols (15%), and Cambisols (9%) [34].

2.2. Data Used

Several environmental datasets containing climate, satellite, oceanic, and other static biophysical
parameters were used in developing the VegOut-UBN model for the basin. The summaries of the
input variables are described in the subsections below and in Table 1. The data have different spatial
resolutions and were resampled to 250 m spatial resolution using the Inverse Distance Weighted (IDW)
technique. Because of its consideration of the inverse proportionality with distance, the IDW gives
a better representation of a variable over heterogeneous topographic terrain, and it is a widely used
technique [6].

Table 1. Summary of the attributes used to develop the VegOut-UBN model.

No. Attributes
Resolutions

Source
Spatial Temporal

1 NDVI-based standardized seasonal greenness (SSG) 250 m dekadal eMODIS
2 CHIRPS rainfall 5 km dekadal CHG
3 Atlantic Meridional Mode (AMM) - monthly CPC/NOAA
4 Multivariate ENSO index (MEI) - monthly CPC/NOAA
5 Oceanic Niño Index (ONI) - monthly CPC/NOAA
6 Pacific Decadal Oscillation (PDO) - monthly CPC/NOAA
7 Tropical Northern Atlantic Index (TNA) - monthly CPC/NOAA
8 Trans- Niño Index (TNI) - monthly CPC/NOAA
9 Dipole Mode Index (DMI) - monthly CPC/NOAA
10 Digital Elevation Model (DEM) 90 m - SRTM
11 Land use/Land cover (LULC) 300 m - ESA
12 Available Water Holding Capacity (AWC) 1 km - ISRIC-WISE
13 Ecosystem type (eco) 1 km - Ecodiv.org
14 Soil moisture 10 km monthly FEWS NET

2.2.1. Climate Data

Satellite-based Climate Hazards Group InfraRed Precipitation with Station (CHIRPS) data
were used in this study [9]. The time series of the data (1981–2016) was downloaded from the
Climate Hazards Group (CHG) (http://chg.geog.ucsb.edu/data/chirps/) at a spatial resolution
of 5 km × 5 km. The main reason for the use of CHIRPS in this study is because of its accuracy
and applications for meteorological drought study in the UBN basin [15]. A recent comparative
study of five satellite-based rainfall products supported the best performance of CHIRPS rainfall
for the UBN basin [15]. Moreover, a CHIRPS-based Z-score was applied to assess spatiotemporal
patterns of meteorological drought in the basin [15]. The Z-score calculation involves an approach
similar to that for the common and widely used Standardized Precipitation Index (SPI) [35], except
for its assumption of normal distribution of rainfall. Bayissa et al. [6] investigated the best-fitting
probability density function (PDF) for the basin using weather-station-based rainfall data. They
reported that a normal distribution fits the rainfall in some of the weather stations even though
Gamma and other PDFs dominated in the other stations. In this study, the Z-score represents the

http://chg.geog.ucsb.edu/data/chirps/
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climatic component in developing the VegOut-UBN model. Besides CHIRPS, the rainfall data for the
selected 14 weather stations (Figure 1) were collected from the National Meteorological Agency (NMA)
of Ethiopia for 1981–2016.

2.2.2. Satellite Data

MODIS-based dekadal NDVI (eMODIS) data of relatively higher spatial resolutions (250 m × 250 m)
were used in this study for the period 2001–2016. These eMODIS time-series data were obtained from
the U.S. Geological Survey (USGS) Earth Resources Observation and Science (EROS) Center. The satellite
component of the VegOut-UBN model was represented by NDVI-based standardized seasonal greenness
(SSG), which provides useful information about the vegetation condition. SSG (Equation (2)) was
calculated using Seasonal Greenness (SG), which represents the accumulated NDVI within the starting
and ending dekades of the growing season (Equation (1))

SG = ∑Pn
P1 (NDVIp −NDVIb) (1)

In Equation (1),

SG is the seasonal greenness,
P1, P2, . . . , Pn are dekades within the growing season,
NDVIp is the observed dekadal value, and
NDVIb is the baseline NDVI value at the beginning of the growing season.

SSGi =
SGi − SGi

σi
(2)

In Equation (2),

SSGi is the standardized seasonal greenness for each dekade within the growing season or Z-score
of seasonal greenness (SG),

SGi is the current SG,
SGi is the average SG observed in the historic record up to time period i, and
σi is the standard deviation of the historical SGi values.

The SSG values range from−4.0 to +4.0, which represent stressed to healthy vegetation conditions,
respectively. This range was determined based on the values of the SSG in this study. Since SSG is
standardized, it is comparable in both space and time.

2.2.3. Oceanic Indices

Several studies have indicated the strong teleconnection between oceanic indices and the climate
in Ethiopia [36–38]. A recent study by Degefu et al. [39] supported the strong association of the
sea surface temperature (SST) and rainfall in Ethiopia. Thus, integrating oceanic indices into the
VegOut-UBN model improves the accuracy of the model’s predictive capability for vegetation condition
and drought. Seven oceanic indices—Atlantic Meridional Mode (AMM), Multivariate ENSO index
(MEI), Oceanic Niño Index (ONI), Pacific Decadal Oscillation (PDO), Tropical Northern Atlantic
Index (TNA), Trans-Niño Index (TNI), and Dipole Mode Index (DMI)—were considered in this study.
The time series of the oceanic indices (2001–2016) were obtained from the National Oceanic and
Atmospheric Administration (NOAA) Earth System Research Laboratory [40].

2.2.4. Environmental Data

The other environmental datasets considered in this study were the Digital Elevation Model
(DEM), Land Use/Land Cover (LULC) type, Available Water Holding Capacity (AWC), and ecosystem
type (eco). DEM accounts for the effects of altitude on vegetation condition; the data were obtained
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from the Shuttle Radar Topography Mission (SRTM) at 90 m × 90 m spatial resolutions. LULC is the
other biophysical parameter considered in this study. LULC accounts for the different land cover/land
use types in response to the vegetation condition. The LULC map was obtained from the European
Space Agency (ESA) at 300 m × 300 m spatial resolution. The water holding capacity (AWC) of the soil
represents the amount of water a given soil can hold for plant use. AWC data was obtained from the
International Soil Reference and Information Centre - World Inventory of Soil Emission (ISRIC-WISE)
reanalyzed soil database [41].

2.2.5. Soil Moisture

Soil moisture data based on the monthly Noah land surface model were obtained from the Famine
Early Warning Systems Network (FEWS NET) Land Data Assimilation System (FLDAS) for 2001–2016.
Simulation run “C” forced by a combination of Modern Era Retrospective analysis for Research and
Applications Version 2 (MERRA-2) and Climate Hazards Group InfraRed Precipitation with Stations
(CHIRPS) data was used in this study. The spatial resolution of the soil moisture data was ~10 km and
the data were available for different layers of the soil. The average soil moisture at the depth of 40 cm
was considered to represent the readily available water at the root depth. Further information about
Noah soil moisture can be found in Xia et al. [42].

2.3. VegOut-UBN Model Development

Figure 2 summarizes the method followed in this research. Developing a VegOut-UBN model
involves the use of several dynamic and static input variables. The dynamic variables vary in space
and time while static variables are assumed to be constant for each dekade across the study period.
Both sets of the input data were extracted first at the corresponding locations of about 40,000 artificially
generated points covering the UBN basin. Each point was located at the center of a ~5 km× ~5 km grid
and resulted in 23,040,000 sample values for each input dataset to train in Cubist. We used a one-year
data holding approach (“jackknife” test) to train (model construction) and to test the models for each
year within the historical records. For example, the 2001 dataset was taken out from the historical
records and used to test the model while the remaining datasets (2002–2016) were used to construct
(train) the models. This process of the data holding approach was repeated for each year iteratively to
evaluate the models.

In this study, the static input variables were assumed to be constant across the study period, and
those input variables with monthly temporal scales were assumed to be constant for each dekade
of that specific month. Cubist is data mining software [43,44] used to develop the rule-based linear
regression trees that represent linear expression to compute the target variable (SSG). SSG is assumed
to be a dependent variable that has to be predicted using other input datasets. Equation (3) shows the
general form of the rule-based linear regression model defined by Cubist that is used to explain the
predictand variable (SSG) using a set of other predictor variables:

VegOut−UBN(i) = ƒ1,i (SSG)t=0 + ƒ2,i(Z-score, SM)t=0 + ƒ3,i(DEM, LULC, eco, AWC)t=0

+ ƒ4,i(AMM, MEI, ONI, PDO, TNA, TNI, DMI)t=0,
(3)

where VegOut-UBN(i) is the predicted SSG at different dekadal leading time i as a function of the
current (t = 0) values of the input variables. The equation shows that the predicted SSG is a function of
the current SSG and other dynamic and static variables.

Thus, 36 rule-based models, one for each dekade in a year, were developed and used to predict
the target variable (SSG). The rule developed for each dekade comprises several multivariate linear
regression equations in the form of “if conditions” as shown below. This example rule shows the
“if condition” and the multivariate regression equation used to quantify VegOut-UBN. If the threshold
criteria for the set of variables in the “if conditions” are satisfied, then the regression equation is used
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to determine VegOut-UBN values for all the pixels under similar conditions. The SSG value of the
previous dekade was used as an initial condition of the current prediction of the vegetation condition.

Rule 1 (Example):
if
DEM > 1558
AMM > −4.13
DMI > −3.85
SM ≤ 3.39
SSG > −0.13
then

VegOut-UBN = 43.709 + 0.74 SSG − 0.064 AMM − 0.0025 DMI − 0.19 PNA + 0.09 Z-score − 0.08
SM − 0.007 DEM
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2.4. VegOut-UBN Map Generation

The VegOut-UBN map was generated for each dekade within the growing season (June to
September). The first dekade of June was selected as a current vegetation condition to predict the
vegetation condition for every future dekade within the growing season. However, VegOut-UBN
maps generated for leading times of 1 (2nd dekade of June), 3 (1st dekade of July), 6 (1st dekade of
August), and 9 dekades (1st dekade of September) are presented to illustrate the VegOut-UBN model
result. These leading dekades represent the different stages of plant growth (from germination to
maturity) in the UBN basin. VegOut-UBN maps were generated at a spatial resolution of 250 m using
the MapCubist software developed at the USGS Center for Earth Resources Observation and Science
(EROS). MapCubist used the regression tree rules and the current gridded images of the input data to
produce VegOut-UBN for several dekades of certain leading times. For example, the VegOut-UBN
map for the 2nd dekade of June (one dekade leading time) was generated using all the gridded input
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data of the current dekade (1st dekade of June) and regression tree rules developed for the 1st dekade.
In this study, the SPI drought categories (Table 2) were adapted to classify the drought categories of
VegOut-UBN maps.

Table 2. Drought categories of the VegOut-UBN model based on Standardized Precipitation Index (SPI)
drought categories (McKee et al. [45]).

VegOut-UBN Values Drought Category

−2.00 and less Extreme Stress
−1.50 to −1.99 Severe Stress
−1.00 to −1.49 Moderate Stress
−0.5 to −0.99 Poor Vegetation
−0.5 to 0.5 Near Normal
0.5 to 0.99 Fair Vegetation
1.0 to 1.49 Good Vegetation
1.5 to 1.99 Very Good Vegetation

>2.0 Excellent Vegetation

2.5. Comparison of VegOut-UBN Model with SPI and Food Security Maps

The VegOut-UBN model was compared with independently measured rainfall data for selected
meteorological stations, as shown in Figure 1. The SPI values at 1-, 3-, 6-, 9-, 12-, 24-, and 60-month
aggregate periods were calculated for those stations using 20+ years of rainfall data. The values of
VegOut-UBN maps at the locations corresponding to the meteorological stations were extracted and
compared with the SPI for different aggregate periods. The correlation coefficient statistical technique
was used to compare VegOut-UBN with the corresponding SPI values for different aggregate periods.
In addition to SPI (2001–2015), the food security status maps of 2009 and 2015 were compared with
the average VegOut-UBN of a similar period. The visual comparison was adapted to analyze the
similarities and differences between VegOut-UBN and food security maps for 2009 and 2015. The food
security maps were obtained from Famine Early Warning Systems (FEWS) and provide objective,
evidence-based analysis in an informative decision-making process responding to humanitarian
crises. The classification of the food security is based on a convergence of the available data and
evidence, including indicators related to food consumption, livelihoods, malnutrition, and mortality.
The thresholds of the different classification phases of the food status illustrated based on the Integrated
Phase Classification (IPC) are shown in Table 3. In comparing the VegOut-UBN model with the
food security map, there is an assumption of a direct relationship between food insecurity and
drought occurrence.

Table 3. Integrated Phase Classification (IPC) acute food insecurity phase classification. The colors in
the first column show the different food security status and having the same meaning as the legend
color in Figure 8b,d.

PHASE 1 Minimal More than four in five households (HHs) are able to meet essential food and nonfood needs
without engaging in atypical, unsustainable strategies to access food and income.

PHASE 2 Stressed
Even with any humanitarian assistance at least one in five HHs in the area have the

following or worse: minimally adequate food consumption but are unable to afford some
essential nonfood expenditures without engaging in irreversible coping strategies.

PHASE 3 Crises

Even with any humanitarian assistance at least one in five HHs in the area have the
following or worse:

Food consumption gaps with high or above usual acute malnutrition
OR

Are marginally able to meet minimum food needs only with accelerated depletion of
livelihood assets that will lead to food consumption gaps.
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Table 3. Cont.

PHASE 4 Emergency

Even with any humanitarian assistance at least one in five HHs in the area have the
following or worse:

Large food consumption gaps resulting in very high acute malnutrition and excess mortality
OR

Extreme loss of livelihood assets that will lead to food consumption gaps in the short term.

PHASE 5 Famine

Even with any humanitarian assistance at least one in five HHs in the area have an extreme
lack of food and other basic needs where starvation, death, and destitution are evident.
Evidence for all three criteria (food consumption, acute malnutrition, and mortality) is

required to classify Famine.

(Source: IPC 2.0 Technical manual).

The crop yield data were not used to evaluate the VegOut-UBN model in this study because of its
poor quality and coarser spatial resolution as reported in our previous studies [46,47].

3. Results and Discussions

3.1. VegOut-UBN Model Prediction Accuracy

Figure 3 shows the prediction accuracy of the VegOut-UBN model measured in terms of the
coefficient of determination (R2) and relative error (RE) of the observed and predicted SSG. The one-
year data holding approach (Section 2.5) was used to train and to test the VegOut-UBN model.
The models were developed for all dekades; however, the resulting graphs obtained for the last
dekades of June, July, August, and September are presented for demonstration and further discussion
(Figure 3). In general, the performance of the VegOut-UBN model is reasonably accurate (R2 > 0.65,
RE < 0.5) in predicting the vegetation outlook up to the end of the growing season during the model
construction period (Figure 3a). The model performance during the test period (Figure 3a’) is relatively
lower than that of the training models. A possible explanation for the lower accuracy of the test cases
could be the shorter data length (only one year of test data for the holdout year) as compared to the
training data length (15 years) used for the models’ construction. The model prediction accuracy
decreases as the prediction length increases during both the model construction and test periods.
A minimum relative error (RE < 0.6) was obtained during model construction and test cases (RE close
to 0.6), which shows the good performance of the model in predicting VegOut-UBN. Similarly, the
relative error shows increasing magnitude with increases in the prediction length during both the
model construction and test cases.

Figure 4 shows the scatter plot of the observed and predicted SSG during model construction
(training period) for the selected third dekades of June, July, August, and September. These dekades
were selected to evaluate the model accuracy at the end of each month across the growing seasons
of 2007, 2009, and 2015. The figure shows that the points cluster closely toward the imaginary line
(45◦ trend line) for shorter prediction length (June 3rd dekade) and scatter out of the imaginary line
when the prediction length increases. For example, a maximum R2 value (0.97) and least spread of the
scatter point were observed for the June 3rd dekade model whereas the minimum R2 value (0.68) and
relatively dispersed scatter points were observed for the September 3rd dekade model. The minimum
R2 value of the September 3rd dekade model satisfies the good model performance criterion (R2 > 0.6).
This depicts a strong agreement between the observed and predicted SSG, which proves the best
performance of the VegOut-UBN model.
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Figure 3. The prediction accuracy of the VegOut-UBN model using the coefficient of determination
(R2) and relative error (RE) for the selected dekades across the growing season. We used a one-year
data holding approach during model construction (graphs on the left) and to test the model (graphs on
the right).
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3.2. Spatial Pattern Correlation

The spatial pattern recognition of the observed SSG against the model-estimated outlook map
was developed for each year, as shown in Figure 5. The resulting correlation coefficient (r) shows
a decreasing trend for an increase in the outlook leading time. For example, the average correlation
coefficient value for the one-dekade outlook is ~0.84; the values showed a decreasing trend for the
one-month outlook (~0.73), two-month outlook (~0.62), and three-month outlook (~0.54). This shows
that the best performance of the model is often observed in predicting the vegetation outlook at a
shorter leading time. Moreover, the model displayed relatively better performance during drought
years compared to normal or wet years. The year 2015 is known for a severe drought that covered
most of the country. The dryness of this year is shown in this study and a maximum spatial correlation
value is observed for all the outlooks. A similar result was observed for other historic drought events
in the basin (2003, 2008, and 2009). The model shows a less satisfactory performance in predicting the
vegetation condition during the normal years (2006, 2007, and 2014).
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Figure 5. The spatial correlation coefficient values between the VegOut-UBN and observed SSG for
different outlooks for 2001–2016.

3.3. Spatial Patterns of VegOut-UBN Across the Region

The spatial patterns of one-dekade, one-month, two-month, and three-month vegetation outlooks
as forecast on June 1st dekade (1–10 June) for the selected wet year (2007) and drought years (2009
and 2015) are shown in Figure 6. The droughts of 2009 and 2015 were selected to demonstrate the
VegOut-UBN model performance using retrospective analysis of the vegetation conditions with the
observed satellite-derived vegetation (SSG) for the same dekade in the growing season. These years
were reported as some of the worst drought years in Ethiopia, when more than 10.1 million people
were in need of food aid (OCHA 2016). In general, the VegOut-UBN model showed strong prediction
capability of the vegetation condition at lower prediction periods (e.g., one dekade, one month) for
both drought and wet conditions. The prediction accuracy decreased as the prediction period increased
(e.g., two months, three months). In Figure 6, three categories (“overpredicted” for values greater than
1, “similar” for values between 1 and−1 inclusive, and “underpredicted” for values less than−1) were
used to indicate the significant difference between the predicted and observed SSG in the difference
map. Underprediction of the SSG values was observed in the eastern part and overprediction was
observed in most of the central and southern areas of the basin during the wet year (2007). Similarly,
underprediction of the vegetation stress (drought condition) in 2009 was observed in the eastern
part and some pockets of the southern and central parts of the basin, whereas overprediction of the
vegetation condition was observed in in the majority of the basin. The vegetation stress in 2015 in the
eastern part and some pockets of the southeastern and southern parts of the basin was captured by the
VegOut-UBN model for two- and three-month predictions in the majority of the basin, except in some
pockets in the northwestern and eastern parts that showed good vegetation condition contrary to the
observed SSG. Although overestimation and underestimation of the VegOut model were observed for
the wet and drought years, respectively, the model could be used in supporting the decision-making
process for mitigating and preparing for future drought events.



Remote Sens. 2019, 11, 371 13 of 18

Remote Sens. 2019, 10, x FOR PEER REVIEW  13 of 18 

 

 
(A) Year 2007 

 
(B) Year 2009 

 
(C) Year 2015 

Figure 6. VegOut-UBN outlook, observed SSG, and difference maps for the selected normal year (2007,
Figure 6A) and historic droughts (2009, Figure 6B, and 2015, Figure 6C) In the legend of the difference
map, “Underpredicted” represents SSG values less than −1, “Similar” represents SSG values between
1 and −1 inclusive, and “Overpredicted” represents SSG values greater than 1.
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3.4. Comparison Result of VegOut-UBN Model with SPI and Food Security Maps

The VegOut-UBN model was compared with measured rainfall data for the selected 14
meteorological stations that are uniformly distributed across the UBN basin (Figure 1). The time
series of the SPI values for the aggregate periods of 1, 3, 6, 9, 12, 24, and 60 months were used to
compare with the VegOut-UBN model. Figure 7 shows the correlation coefficient results between
VegOut-UBN and SPI for several aggregate periods. The result shows good agreement between
VegOut-UBN and SPI with a correlation coefficient value of greater than 0.5 in most of the stations.
Good correlation coefficient values (>0.5) were observed in Ghimbi and Gidayana stations for all
the aggregate periods. Relatively good agreement was observed between VegOut-UBN and SPI at
the 9-month aggregate period in most of the stations. The SPI for the 24- and 60-month aggregate
periods also showed a good correlation in some of the stations. Therefore, a thorough study should be
undertaken to identify the SPI aggregate period that would correlate best with the VegOut-UBN model.
The lack of strong correlation coefficient values in most of the stations indicates that the VegOut-UBN
model is influenced by several variables, including rainfall.
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Figure 7. The correlation coefficient graph of the VegOut-UBN and SPI (different aggregate periods)
for the selected meteorological stations.

Another effort was also made to evaluate and compare the VegOut-UBN model with the food
security situation map for July to September of 2009 and 2015. The years 2009 and 2015 were selected
for this evaluation because of the availability of the food security status data. The average VegOut-UBN
map for July to September (Figure 8a,c) was considered and compared with the food security status
map (Figure 8b,d) of the same period. The result shows that the eastern part of the basin is often
associated with poor vegetation condition (Figure 8a,c) and less food-secure regions (Figure 8b,d).
Extended food-insecure areas were observed in 2009 compared to 2015. Similarly, VegOut-UBN also
showed larger areas of poor vegetation condition in 2009 compared to 2015, reflecting the severity
of the drought condition in 2009. In the central and northwestern parts of the basin, VegOut-UBN
showed poor vegetation conditions, whereas the food security map showed “None or Minimal” in
2009. To the contrary, the food security map showed “stressed to critical” in the south central part
while VegOut showed good vegetation condition. In 2015, VegOut-UBN showed good vegetation
condition (no drought condition) in most parts of the basin that was supported by a “None or Minimal”
food security situation. However, the southern parts and some pockets in the northwestern parts of the
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basin showed vegetation stress (drought condition), whereas “None or Minimal” food security status
was observed. The reason for the opposite result observed in these parts of the basin needs further
investigation in our future studies. The comparison result of VegOut-UBN with the food security
status highlights the potential application of VegOut-UBN for indicating the food security situation for
certain lead times.
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for July to September 2009 (b) and 2015 (d) according to United States Agency for International
Development (USAID) and the Famine Early Warning Systems Network (FEWSNET, 2015).

The average values of the VegOut-UBN for the reference food security status regions of FEWSNET
were extracted to qualitatively assess the drought severity ranges in these regions. Table 4 shows
the average VegOut-UBN values for “none or minimal”, “stresses”, and “crisis” food security status
for 2009 and 2015. The results show that relatively minimal negative VegOut-UBN values (reflecting
drought conditions) were observed during “crisis” compared to “stress” and “minimal” food security
status regions for 2009 and 2015. This indicates a strong linkage between drought and food security in
Ethiopia. Hence, the VegOut-UBN can potentially be used to monitor and provide early warning in
identifying food-insecure regions for the basin.
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Table 4. Average VegOut-UBN values for different categories of food security status in 2009 and 2015.

Food Security Status
Average VegOut-UBN Values

2009 2015

None or Minimal −0.23 0.14
Stressed −0.41 −0.31

Crisis −0.54 −0.39

4. Conclusions

In this study, a VegOut-UBN model was developed for the UBN basin through integrating several
input variables representing the different components of the hydrological cycle. The rule-based
regression tree data mining approach was adapted to develop a VegOut-UBN prediction model that
could potentially be used to monitor and mitigate the adverse impacts of drought. Such a drought
model is still lacking for the UBN basin, which is commonly regarded as the main source of water for the
main Nile River; the drainage basin of the Nile River covers eleven riparian countries. VegOut-UBN
characterizes the level of drought stress on the vegetation condition and predicts the level of the
vegetation condition for several leading times at relatively finer spatial and temporal resolutions. After
analyzing the results, the following main conclusions were drawn.

The VegOut-UBN model has shown its capability in predicting the vegetation condition for
certain leading times; therefore, the model can potentially be used as a good drought monitoring
and early warning system for the basin. The comparison results of the VegOut-UBN model with
the food security status map highlighted the potential application of the VegOut-UBN model for
developing the food security outlook for the basin. VegOut-UBN can be used as a potential tool
in supporting informative decision-making processes by different stakeholders, governmental and
non-governmental organizations and institutions, in order to combat and prepare for future drought.
The evaluation of VegOut-UBN with the SPI showed a lack of strong correlation coefficient values for
most of the stations, which indicates that the VegOut-UBN model is influenced not only by rainfall but
also by several other input variables.
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