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A strong teleconnection exists between the sea surface temperature (SST) over the tropical Pacific and the winter precipitation in
the southeastern United States (SE US). This feature is adopted to validate the fidelity of Coupled Model Intercomparison Project
Phase 5 (CMIP5) in this study. In addition, the authors examine whether the teleconnection pattern persists in the future under
a global warming scenario. Generally, most of the eight selected models show a positive correlation between November SST over
Niño 3 region and December–February (DJF) mean daily precipitation anomalies over the SE US, consistent with the observation.
However, the models with poor realization of skewness of Niño indices fail to simulate the realistic teleconnection pattern in the
historical simulation. In the Representative Concentration Pathways 8.5 (RCP8.5) run, all of the models maintain positive and
slightly increased correlation patterns. It is noteworthy that the region with strong teleconnection pattern shifts northward in the
future. Increased variance of winter precipitation due to the SST teleconnection is shown over Alabama and Georgia rather than
over Florida under the RCP8.5 scenario inmost of themodels, differing from the historical run in which the precipitation in Florida
is the most attributable to the eastern Pacific SST.

1. Introduction

In 2008, many climate-modeling groups in the world agreed
to build a new set of coordinated climate model experi-
ments. The Coupled Model Intercomparison Project Phase 5
(CMIP5) was planned to produce a standard set of simula-
tions from state-of-the-art models to assess the fidelity of the
models in simulating the recent past, to provide projections
of future climate change, and to promote our understanding
of mechanisms responsible for model differences [1].

Although numerous studies have been conducted to
validate the credibility of the newly launched CMIP5 data
globally [2–5], regional assessments of the CMIP5 have
rarely been carried out. Therefore, it is crucial to narrow
our viewpoint to a regional scale. We restrict our study to
the southeastern United States (SE US) including Alabama,
Georgia, and Florida during wintertime in this study. The SE

US has been studied less frequently than other regions
in the United States despite its unprecedented population
growth during recent decades [6]. Furthermore, agriculture
vulnerable to climate conditions is a major industry over
the SE US, which is a large contributor to total annual US
agricultural production. According to theU.S. Department of
Agriculture (USDA) National Agricultural Statistics Service
[7], the estimated total value of principal crops in 2012 for
Alabama, Florida, and Georgia was 1.33, 4.75, and 3.94 billon
US dollars, respectively. As the risk related to floods and
droughts causes significant financial losses from agricultural
businesses, a better understanding of climate variability and
climate change in SE US is essential to build appropriate risk
management and adaptation strategies in agriculture.

It is well known that the SEUShas a strong teleconnection
to tropical Pacific sea surface temperature (SST). Previous
studies demonstrated that warmer (colder) SSTs lead to
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wetter (drier) winters in the coastal southeastern states and
to the opposite signal more inland [8–10]. El Niño-Southern
Oscillation (ENSO), the most significant tropical signal,
influences the interannual variability in the midlatitudes,
including the SE US. El Niño (La Niña) events are recognized
by anomalous warming (cooling) in the eastern-to-central
equatorial Pacific. Previous research has documented that
changes in the SST and atmospheric circulation in the
equatorial Pacific during El Niño and La Niña give rise to
a shift of the subtropical and polar jet positions [11]. During
El Niño phase, the shift interacts with cyclone development
over the Gulf of Mexico, resulting in increased cloudiness
in the SE US. On the other hand, during La Niña phase,
because of the northward-shifted jet, the storm tracks tend
to stay north of the SE US [11].This prevents the cold air from
reaching the region, resulting in a warmer and drier winter
in the SE US. The strong ENSO teleconnection in this region
has been used in the last decade to advise farmers about
seasonal climate conditions to improve their climate-related
discussion and decision-making [12]. Even though the high-
est correlations between ENSO and precipitation in the SEUS
region are during wintertime in the Northern Hemisphere
(DJF), precipitation in this season affects seed germination
and plant emergence by conditioning the available soil
moisture necessary for establishing a crop. Low levels of soil
moisture and late rainfall onsets affect the initial plant vigor,
as well as the viability of the crop on following phenological
stages and yields. By being able to predict the ENSO-based
seasonal climate in the region, farmers can change planting
dates and/or crop varieties to tailor water requirements to
the seasonal forecast as well as buy the appropriate crop
insurance to avoid losses [13]. Nevertheless, it is less clear if
the global climate model (GCM) can adequately reproduce
the precipitation teleconnection associated with the ENSO
[14–16].

Furthermore, several studies have examined the change of
teleconnection with time. For instance, Diaz et al. [17] found
that the correlation between ENSO and precipitation over the
SE US is higher after the 1980s. Kug et al. [18] also demon-
strated a strong possibility that the local climate impact of
ENSO will be different in the future. The climate change is
now widely accepted as a global issue. Under the influence
of global warming, the mean climate of the Pacific region
will presumably undergo a significant change. Jones et al. [19]
emphasized the importance of the predictability of climate
and its influence on crop production.With better predictions
of climate, it is possible to cope with natural hazards and to
take advantage of expected favorable conditions. Although
the physical mechanisms behind this temporal change have
not been understood, it will be helpful for stakeholders’
preparation for possible impacts of climate change over the
SE US to investigate the teleconnection pattern change in
the future using the CMIP5 experiments. We hypothesized
that a model, which simulates realistic atmospheric response
to the SST related to ENSO in the present climate, could
have higher reliability than the other models with unrealistic
present simulation in terms of future projections under global
warming scenarios.

In this study, the fidelity of CMIP5 models in terms
of simulation of regional scale climate variability and trend
is assessed by comparing modeled teleconnection patterns
with the observed pattern. We also investigate whether this
current teleconnection will persist in the future under the
global warming scenario. This paper is structured as follows.
Data and method used for the analysis are described in
Section 2. In Section 3, teleconnection patterns in the past
and future are investigated. In addition, further validation
of models by comparing skewness of model SST anomalies
with observation is conducted. A summary and discussion
are presented in Section 4.

2. Data and Methods

2.1. Data. We analyze historical and Representative Con-
centration Pathways 8.5 (RCP8.5) simulations produced by
8 CMIP5 models. Eight CMIP5 models are chosen for this
study on the basis of their availability of key variables for
cropmodel including precipitation,maximumandminimum
surface temperature, and solar radiation so that our results
can be applied to forthcoming study focusing on crop yield
change under the climate scenario using the crop model.
Models with too sparse resolution (both the longitude and
latitude are larger than 2.5∘) are not selected for this study
because our domain of interest is confined to the SE US
region. The model resolution, the number of ensemble
members, and the total simulated years are given in Table 1.
More detailed information of CMIP5 models can be found at
http://cmip-pcmdi.llnl.gov/cmip5/index.html. The historical
run is carried out by imposing changing solar forcing,
volcanic, and anthropogenic influences from 1850 to 2005
(Geophysical Fluid Dynamics Laboratory (GFDL) models
spanning from 1861 to 2005). RCP8.5 is the pathway with
the highest greenhouse gas emission: the radiative forcing
increases throughout the 21st century before reaching a level
of about 8.5W/m2 at the end of the century. The integration
for the RCP8.5 experiment spans the period of 2006–2100.

The extended reconstruction of historical sea surface
temperature (ERSST) version 3 data are used to provide
SST observations for the period of 1854–2010. The data are
acquired from the web site http://www.esrl.noaa.gov/psd/da-
ta/gridded/data.noaa.ersst.html. Cooperative station daily
precipitation data provided by the National Climate Data
Center (NCDC; http://www.ncdc.noaa.gov/data-access/land
-based-station-data/land-based-datasets/cooperative-ob-
server-network-coop) are also utilized for validation of the
model simulations in this study. This is the “Data Set 3200,”
or “Surface Land Daily Cooperative Summary of the Day,”
coming from thousands of volunteers that took observation
in US and the extensive quality controlled data are available
at NCDC’s web site: http://cdo.ncdc.noaa.gov.

2.2. Methods. Through application of a bilinear interpolation
method [20], which is a simplified statistical downscaling
method [21], daily precipitation datasets from the CMIP5
models and station data are interpolated to 20 km spatial
resolution for easy comparison between the observed station
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Table 1: CMIP5 model names and specifications.

Model Institution ID AM resolution
Integration period

(years) Number of
ensembles

Historical RCP8.5

CCSM4 National Center for
Atmospheric Research 1 0.9∘Lat × 1.25∘Lon 156 95 2

CSIRO-Mk3-6-0

CSIRO (Commonwealth
Scientific and Industrial
Research Organisation,
Australia) and BOM
(Bureau of Meteorology,
Australia)

2 T63 145 95 10

GFDL-CM3 Geophysical Fluid
Dynamics Laboratory 3 144 × 90: 2.0∘Lat × 2.5∘Lon 145 95 1

GFDL-ESM2G Geophysical Fluid
Dynamics Laboratory 4 144 × 90: 2.0∘Lat × 2.5∘Lon 145 95 1

GFDL-ESM2M Geophysical Fluid
Dynamics Laboratory 5 144 × 90: 2.0∘Lat × 2.5∘Lon 156 95 1

MIROC5

Atmosphere and Ocean
Research Institute (The
University of Tokyo),
National Institute
for Environmental Studies,
and Japan Agency for
Marine-Earth Science and
Technology

6 T85 156 95 3

MPI-ESM-LR Max Planck Institute for
Meteorology (MPI-M) 7 T63 156 95 3

NorESM1-M Norwegian Climate Centre 8 0.9∘Lat × 1.25∘Lon 156 95 1

and model precipitation data. This enables us to conduct
more intensive analysis on our domain of interest.

To examine the strength of the teleconnection between
the SST over the tropical Pacific and the winter precipitation
in the southeastern United States, we compute correlation
coefficient (𝑟) between Niño 3 index in November and
December–February (DJF) mean daily precipitation anoma-
lies as follows:

𝑟 =

∑ (𝑥
𝑖
− 𝑥) (𝑦

𝑖
− 𝑦)

√[∑ (𝑥
𝑖
− 𝑥)
2

] [∑ (𝑦
𝑖
− 𝑦)
2

]

, (1)

where 𝑥 is Niño 3 index in November and 𝑦 is DJF mean
daily precipitation anomalies. Here, monthly SST anomalies
averaged over the Niño 3 region (5∘N–5∘S, 150∘W–90∘W)
are referred to as the Niño 3 index. Monthly climatology by
averaging over each calendarmonth in the time series and the
trend for the analysis period are removed from SST data.

Although various different methods have been used to
specify when El Niño or La Niña events have occurred, Japan
Meteorological Agency (JMA) index is utilized to classify
ENSO events into El Niño, neutral, and La Niña phases
following Hanley et al. [22]. The index is based on the
monthly SST anomalies in the region 4∘S to 4∘N, 150∘W
to 90∘W, which is nearly similar to the Niño 3 region. The
anomalies are filtered via a five-month running mean. The
JMA definition for an El Niño (La Niña) event requires SST

in the JMA region to be greater (less) than a threshold for six
consecutive months and the months must include October-
November-December (OND). In this study, the thresholds
are determined using the SST of each CMIP5 model. The
monthly anomalies are sorted; the value corresponding to the
75th percentile is selected for El Niño year’s threshold, and
the value corresponding to the 25th percentile is chosen for
La Niña year’s threshold.

Burgers and Stephenson [23] suggested that skewness
could be a useful tool for validating models. The skewness
represents the asymmetry of a probability density function
(PDF), which is zero for a normal distribution. It is defined
as

skewness =
(1/𝑛)∑

𝑛

𝑖=1

(𝑥
𝑖
− 𝑥)
3

((1/𝑛)∑
𝑛

𝑖=1

(𝑥
𝑖
− 𝑥)
2

)

2/3

, (2)

where 𝑥
𝑖
is 𝑖th data value, 𝑥 is the mean, and 𝑛 is number

of data points. A PDF with positive (negative) skewness has
heavier tails on the positive (negative) anomaly side of the
mean. Positive (negative) skewness has greater (less) mean
and median than mode. In addition to Niño 3, Niño 3.4
(SST anomalies averaged over 5∘N–5∘S, 170∘W–120∘W) and
Niño 4 (SST anomalies averaged over 5∘N–5∘S, 160∘E–150∘W)
indices are also utilized for this study to investigate the skew-
ness of SST over each Niño region regarding CMIP5 models’
performance of simulating the SST over the equatorial Pacific
Ocean.
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Figure 1: Temporal correlation between November Niño 3 index
and the observed rainfall (DJF mean) for 1970–2010: a correlation
with the absolute value greater than 0.3 is statistically significant at
the 95% confidence level.

3. Results

3.1. Teleconnection Patterns over the SE US: Historical and
RCP8.5 Simulations. The SE US has a robust interannual
predictability of the precipitation because of the strong
teleconnection to the tropical Pacific SST.This distinct feature
is applied to the assessment of the CMIP5 models in this
study. Figure 1 shows the correlations between the observed
DJF mean daily precipitation anomalies and the November
Niño 3 index based on ERSST for the period of 1970 to 2010.
Figure 1 illustrates that warmer (colder) SSTs in November
lead to wetter (drier) winters in SE US, which demonstrates
the strong teleconnection between tropical Pacific SST and
winter precipitation over Florida and southeastern Georgia
in particular. Florida shows the highest value of correlation
coefficient, whereas Alabama displays the lowest value (less
than critical value 0.3 at 95% confidence level) among the
three states of the SE US.

Comparing this prominent feature in the observation
to that in the CMIP5 simulations, we are able to assess the
credibility of CMIP5 models implicitly. Figure 2 shows the
modeled teleconnection of DJF mean daily precipitation
anomalies over the SE US to the November Niño 3 index
derived from each model. On the basis of the results from
the historical run (Figures 2(a)–2(h)), we further examine
teleconnection patterns under the future climate scenario,
RCP8.5 (Figures 2(i)–2(p)). For the model having ensemble
members, the ensemble mean of the correlations is adopted.
Looking at the correlations of the historical experiment, we
find that most of the models show a positive correlation
between the Niño 3 SST in November and the DJF mean
daily precipitation anomalies over the SE US, consistent with
the observation. It is of particular interest to note that the
GFDL Climate Model version 3 (GFDL-CM3; Figure 2(c))
model shows the strongest teleconnection with the largest

value of 0.7 in northern Florida, whereas the GFDL Earth
System Model (GFDL-ESM2G; Figure 2(d)) displays the
weakest teleconnection, with 0.3 for the smallest value among
GFDL models. CM3 is designed to address emerging issues
in climate change, including aerosol-cloud interactions,
chemistry-climate interactions, and coupling between the
troposphere and stratosphere [24]. ESM is a coupled global
carbon-climate Earth System Model developed to advance
understanding of how the earth’s biogeochemical cycles,
including human actions, interact with the climate system
[24]. On the other hand, ESM2G and ESM2M differ in
the physical ocean component. In ESM2M, pressure-based
vertical coordinates are used along the developmental path
of GFDL’s Modular Ocean Model version 4.1. In ESM2G,
an independently developed isopycnal model using the
generalized ocean layer dynamics (GOLD) code base
is used (http://www.gfdl.noaa.gov/earth-system-model).
Dunne et al. [24] documented that ESM2M has an overly
strong El Niño-Southern Oscillation, whereas weak ENSO
is represented in ESM2G. The weaker correlation of GFDL-
ESM2G than that of GFDL-ESM2M (Figure 2(e)) seems to
be attributable to the capability of the model in representing
ENSO. This demonstrates that one partial change in the
model could contribute to different teleconnection patterns.
Although the value of correlation coefficient slightly differs
among the models, the winter precipitation in Florida tends
to have closer relationship with the Pacific SST than the
precipitation in Georgia and Alabama in most of the models.
However, GFDL-ESM2G (Figure 2(d)) and MPI-ESM-LR
(Figure 2(g)) have slightly reduced correlation over Florida
compared to the other two states, which is also inconsistent
with the observation.The fact that modeled correlationmaps
are compatible with the observed map shown in Figure 1
implies that the global models in the CMIP5 are capable
of simulating the regional response of the teleconnection.
We expect that the models that simulate more realistic
teleconnection patterns in the historical run may project
more possible features of teleconnection patterns under the
global climate change scenario.

On the basis of the results from the historical run, we
further examine teleconnection patterns under the future
climate scenario, RCP8.5.The right column in Figure 2 shows
correlation maps of the RCP8.5 experiment. In the RCP8.5
run, all of the models maintain the positive correlation
patterns.This denotes that the current teleconnection pattern
will persist under the global warming scenario. However,
changes in the value of correlation coefficient exist over the
domain compared to the pattern in the historical simulation.
While CSIRO-Mk3-6-0 (Figures 2(b), 2(j)) shows a decrease
in the correlation over the analysis domain in the future run,
GFDL-CM3 (Figures 2(c), 2(k)) displays a striking increase
in the correlation, especially over Alabama and Georgia.

Figure 3 shows explained variances averaged separately
over Alabama, Georgia, and Florida. The left figure shows
the result from the historical run, and the right figure shows
the result from the RCP8.5 run.The percentage of variance is
defined by the square of correlation coefficient (𝑟) shown in
Figures 1 and 2 multiplied by 100. For example, the observed
coefficient 0.7 over Florida in Figure 1 implies that the SST
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Figure 2: Continued.
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Figure 2: Temporal correlations between November Niño 3 index and the DJF mean daily precipitation anomalies for historical (a–h) and
RCP8.5 (i–p) experiments from CMIP5 models. Each model is identified by ID number as in Table 1.
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Figure 3: Stacked explained variances (%) for historical (a) andRCP8.5 (b) experiments fromCMIP5models, respectively. Explained variance
is averaged over the States of Florida, Alabama, and Georgia, separately. All ensemble members are presented in the diagram. Observed value
is included in (a) at the rightmost column.
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Figure 4: Percentage of the explained variance of Florida, Alabama, and Georgia contributes to a total explained variance of southeastern
US spanning 3 states for historical (a) and RCP8.5 (b) experiments from CMIP5 models.

over the Niño 3 region accounts for 49% of the variance of
winter precipitation over the region. The explained variance
of each state is stacked as a column in Figure 3. By comparing
the height of the columns, we can deduce the degree to
which SST over Niño 3 region accounts for the variance
of total DJF mean daily precipitation over each state in the
observation andmodels. As a benchmark, the observed result
is shown in a rightmost column of Figure 3(a). Whereas the
SST over the Niño 3 region accounts for the largest portion
of variance of the rainfall in Florida (more than 20%) in
the observation, it shows the least percentage of variance
in Alabama. Most of the CMIP5 models analyzed in this
study show this feature despite different column heights.
Among the eight CMIP5models in the historical experiment,
GFDL-CM3 shows the tallest column, indicating three times
larger explained variance than the observation. In contrast,
GFDL-ESM2G shows the shortest column. GFDL-ESM2G
and MPI-ESM-LR rarely show the largest proportion in

Florida, which is different from the observation.The features
are consistent with the spatial teleconnection pattern shown
in Figure 2.

In the RCP8.5 run (Figure 3(b)), the stronger relationship
between the SST over the Niño 3 region and the DJF mean
daily precipitation is projected by all of themodels, except for
CSIRO-Mk3-6-0. Red circles in the right figure of Figure 3
indicate the increase in the total explained variance of the
RCP8.5 experiment, compared to the historical run. It is
noteworthy that the total increase in the explained variance
of most of the models is attributed to the increase in the
explained variance over Alabama and Georgia. Figure 4
further clarifies this feature.The sum of the percentages from
each state over the SE US shown in Figure 3 is converted
to 100% to determine which state accounts for the largest
percentage of variance of precipitation in the entire SE US.
As a result, Florida accounts for more than 60% of SE US
rainfall variance, which is associated with the SST over Niño
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3 region in the observation (Figure 4(a)). In the historical
simulation, Florida also has the largest portion, around 40%,
except for the results from GFDL-ESM2G and MPI-ESM-
LR. However, the models that show the largest portion
of rainfall in Florida in the historical run (NorESM1-M,
MIROC5, GFDL-ESM2M, GFDL-CM3, and CCSM4) have
an increased portion of variance in Alabama and Georgia
under the RCP8.5 scenario.

To analyze the impact of ENSO on the high percentile
of rainfall over the SE US during winter, we focus on the
75th percentile from the right tail of DJF daily rainfall
anomalies distribution in terms of ENSO phases (i.e., El
Niño, neutral, and La Niña phases) classified by the JMA
index. Model-generated DJF daily precipitation is displayed
on the rightmost column of Figures 5 and 6, while the spatial
patterns of the 75th percentile of precipitation anomaly for El
Niño, neutral, and LaNiña years are in the left three columns.
The area of maximum DJF mean daily rainfall amount is
mostly located over the northern SE US, spanning Alabama
and Georgia. Consistent with the previous correlation map,
during El Niño years we have heavier 75th percentile of
rainfall over the SE US; however, the magnitude of rainfall
anomalies is likely to be reduced during La Niña years.
Florida has greater value of the 75th percentile of rainfall
anomaly for El Niño years than the other two states, differing
from the DJF mean daily precipitation pattern. In the same
way, smaller value of the 75th percentile of rainfall anomaly
during La Niña years is mostly located over Florida. The
75th percentile of rainfall in GFDL-ESM2G (Figures 5(d),
5(h), and 5(l)) is rarely dependent on the ENSO phase,
in agreement with the small correlation pattern shown in
Figure 2(d).

Figure 7 shows the difference of the rainfall amount at the
75th percentile between RCP8.5 and historical experiments
by ENSOphase.Themodels, which showa greater correlation
coefficient in the RCP8.5 than in the historical run, have
larger positive value in the difference of the 75th percentile
of rainfall amount during El Niño events. Interestingly, the
increase of extreme rainfall amount due to the El Niño events
tends to be dominant over the northern regions of the SE US,
including Alabama and Georgia, as discussed earlier (Figures
2–4). In contrast, during La Niña events these models show
negative value in the difference of rainfall amount due to the
teleconnection. However, the decrease in the rainfall amount
is not solely concentrated over the northern domain, which
supports the hypothesis that the teleconnection associated
with El Niño is not a mirror image of La Niña [25].

3.2. Relationship between SE US Winter Precipitation and
Pacific SST. We have examined the teleconnection between
the SST over the eastern Pacific in November and the
following wintertime precipitation over the SE US. Figures 8
and 9 display the correlation between theNovember SST over
the entire Pacific and the following DJF mean daily rainfall
anomalies averaged over the SE US in the CMIP5 models.
The figures depict the SST inNovember fromwhich region of
the Pacific Ocean has a closer relationship with the following
winter precipitation over the SE US in each CMIP5 model.
In addition, the figures enable us to deduce the shift of the

region where the strong relationship exists in the historical
run under the global warming scenario, RCP8.5. In general,
the positive correlation in the tropical central and eastern
Pacific is flanked by negative correlation to the northwest
and southwest in both the historical and RCP8.5 runs of all
CMIP5 models. Interestingly, the reverse correlation pattern
in CSIRO-Mk3-6-0 (Figure 8(b)), the closest relationship of
the SST over the western Pacific with the SE US precipitation
during wintertime, is evident. Higher correlation regions are
shifted westward, mainly covering the Niño 4 and Niño 3.4
regions in the RCP8.5 run of GFDL-ESM2G.

3.3. SST Simulation in Past and Future Climate. The possible
reason that many coupled climate models have exhibited
unrealistic teleconnections between ENSO and extratropical
circulation patterns is attributed to having poorly represented
physical processes in the ENSO region in themodels [26, 27].

Therefore, the CMIP5models’ performance of simulating
the SST over the equatorial Pacific Ocean can also result in
different climate impacts on the remote regions, especially
the SE US. There have been numerous studies that examined
the ability of CMIP5models to simulate ENSO by comparing
equatorial SST mean, standard deviation of Nino indices,
ENSO spectral characteristics, and occurrence of ENSO
events [28–32].

In this section, the SST over the equatorial Pacific Ocean
in the CMIP5 models is further examined by comparing
skewness of the SST from the historical run of CMIP5models
to that of the observed SST to reveal the reason for themodels
simulating different teleconnection patterns.

Figure 10 shows the skewness of November Niño indices,
such as Niño 3, Niño 3.4, and Niño 4, derived from the
observed ERSST from 1984 to 2010. ERSST displays decrease
in skewness when moving from east to west across the
equatorial Pacific.There exists the strongest positive skewness
exceeding 0.6 over the Niño 3 region, indicating the warm
SST anomalies are more probable than cold SST anomalies.
It also shows the weakest positive skewness over the western
Pacific. Although skewness of Niño indices is sensitive to the
period selected, the feature of decreasing skewness from east
to west across the Pacific is consistent with previous studies
[23, 33].

By comparing the skewness of Niño indices obtained
from the CMIP5 models to the observation shown in
Figure 10, we can investigate which model has the highest
credibility. Looking at the left panel in Figure 11, we can
see that only the MIROC5 shows a pattern of decreasing
skewness in positive sign when going from east to west across
the equatorial Pacific consistent with the observation. The
CCSM4 and GFDL-ESM2M have smaller positive skewness
of SST over Niño 3.4 region than over Niño 3 region, but
negative skewness over Niño 4 region. The NorESM1-M also
has smaller positive skewness of SST over Niño 3.4 region
than over Niño 3 region; however, it has relatively large
negative skewness of SST over Niño 4 region, indicating
that cold SST anomaly is dominant. On the other hand, the
CSIRO-Mk3-6-0 and MPI-ESM-LR show a reverse pattern:
skewness of SST in positive sign increases from east to
west across the Pacific. Consequently, the reverse correlation
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Figure 5: The 75th percentile of DJF mean daily precipitation anomalies (mm/day) distribution of El Niño ((a)–(d)), neutral ((e)–(h)), and
La Niña ((i)–(l)) years in historical run of CMIP5 models 1–4. DJF mean daily precipitation is shown in the right column.
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Figure 6: Same as Figure 5 but for CMIP5 models 5–8.

pattern in CSIRO-Mk3-6-0 shown in Figure 8(b), the closest
relationship of the SST over the western Pacific with the SE
US precipitation, seems to be related to the reversed pattern
of skewness. MPI-ESM-LR shows a small portion of rainfall
from Florida in terms of the total portion of precipitation
over the SE US (Figure 4(a)), which is inconsistent with the

observation. It is noteworthy that degree of positive skewness
of SST over all three Niño regions is similar in the GFDL-
ESM2G reported as the model with weak ENSO realization
[24]. GFDL-ESM2G shows not only the weakest relationship
between the SST over Niño 3 and the winter precipitation
over the SE US but also reduced explained variance over the
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Figure 7: Difference of 75th percentile of DJF mean daily precipitation anomalies (mm/day) between RCP8.5 and historical run for El Niño
((a)–(d) and (i)–(l)) and La Niña ((e)–(h) and (m)–(p)).
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Figure 8: Ensemble member averaged correlation between the November SST and the DJF mean daily rainfall anomaly averaged over the
SE US for CMIP5 models 1–4 (historical run: (a)–(d), RCP8.5 run: (e)–(h)). Locations of the Niño 3, 3.4, and 4 regions are marked with
rectangular box from left, middle, and right, respectively. The 0.4 contour is thickened for better comparison.
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Figure 9: Same as Figure 8, but for CMIP5 models 5–8.
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Figure 11: Ensemble member averaged skewness of November ENSO indices for historical (a) and RCP8.5 (b) experiments, respectively.

Florida peninsula, differing from the observation (Figures 2
and 3).

Although the SST from the historical run of CMIP5
models in this study shows different characteristics of skew-
ness from those observed in Figure 10, the models tend to
maintain the overall feature of skewness from the historical
run in the future simulation. Five of the eight models show
a decrease in the skewness of SST over the Niño 3 region in
the RCP8.5. Moreover, the positive skewness over the Niño
3 region in the historical runs changes to negative in the
RCP8.5.

4. Conclusion and Discussion

In this study, we inquire whether the current teleconnection
characteristics between winter precipitation over the SE
US and the tropical Pacific SST will persist in the future
under the global warming scenario simulated by current

state-of-the-art climate models. The credibility of CMIP5
models regarding the simulation of the regional scale climate
variability is validated by applying the robust teleconnection
feature to the assessment in order to obtain confidence in
future climate prediction. We find out that most of the 8
models selected in this study show a positive correlation
between the November Niño 3 SST and the DJF mean
daily precipitation anomalies over the SE US, consistent
with the observation. Although the global models in the
CMIP5 are capable of simulating the regional response of the
teleconnection, it is of interest to note that one partial change
in the model could contribute to different teleconnection
patterns.

In the RCP8.5 run, all of the models maintain the positive
and slightly increased correlation patterns. However, the
degree of change in the relationship differs from domains
under the climate change scenario, RCP8.5. Whereas the SST
overNiño 3 region accounts for the largest portion of variance
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of rainfall in Florida in the observation as well as in the
historical run of the models (NorESM1-M, MIROC5, GFDL-
ESM2M, GFDL-CM3, and CCSM4), the models have an
increased portion of variance in Alabama and Georgia in the
RCP8.5 regarding the winter precipitation that is attributed
to the SST over Niño 3 region.

To analyze the impact of ENSO on the wintertime
extreme rainfall over the SE US, we focus on the 75th
percentile from the right tail of DJF daily rainfall anomaly
distribution in terms of ENSO phases. The greater value of
the 75th percentile of rainfall for El Niño is mostly found
over Florida, differing from the DJF mean daily precipitation
pattern in which maximum DJF mean daily rainfall area is
mostly located over the northern SE US, spanning Alabama
and Georgia. In the same way, the smaller value of the 75th
percentile of rainfall for La Niña is mostly located over
Florida.Themodels that show a greater correlation coefficient
in the RCP8.5 than in the historical run have heavier rainfall
during El Niño events in the future run. It is noteworthy that
the increase in extreme rainfall amount during ElNiño events
tends to be dominant over the northern regions of the SE US,
including Alabama and Georgia under the climate change.

We have found that the CMIP5 models’ performance
of simulating the SST over the equatorial Pacific Ocean
affects the climate impact on the SE US. By comparing the
skewness of Niño indices obtained from the historical run of
CMIP5 models to that of the observation, we assessed which
model has the highest credibility. It turns out that the models
with poor realization of skewness, such as CSIRO-Mk3-6-
0, GFDL-ESM2G, and MPI-ESM-LR, fail to simulate the
realistic teleconnection pattern and have lower confidence in
future climate prediction.

We also have shown the northward shift of the ENSO
teleconnection pattern over the SE US. This finding refines
the results of previous studies on the change of the tele-
connections over the North Pacific and North America
associated with El Niño events in a future warmer climate
[16, 34, 35]. The change could be attributed not only to
changes in the amplitude and the location of the convection
center of the El Niño events themselves but also to an
altered base-state, midlatitude atmospheric circulation due
to the increase of greenhouse gases. Furthermore, rainfall
is the economically important climate variable for the SE
US, a region of major agricultural production. The projected
RCP8.5 teleconnections between ENSO and precipitation
patterns found in this study will provide farmers in the SE
US northern regions (Alabama and Georgia) with additional
knowledge about the projected seasonal climate in the region.
According to the RCP8.5 projections regarding the strength
of the studied teleconnection, yield predictability of corn [35],
cotton [36], peanuts [37], and citrus [38], among the main
crops in the regions, will increase and allow farmers in the
region to make better climate based decisions.
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