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Weather generators are tools used to downscale monthly to seasonal climate forecasts, from numerical climate models to daily
values for use as inputs for crop and other environmental models. One main limitation of most of weather generators is that they
do not incorporate neither the spatial/temporal correlations between/within sites nor the cross-correlations between variables,
characteristics specially important when aggregating, for example, simulated crop yields, freeze events, or heat waves in a watershed
or region. Three models were developed to generate realization of daily maximum and minimum temperatures for multiple sites.
The first model incorporates only spatial correlation, whereas temporal correlation using a 1-day lag and cross-correlation between
variables were added to model one, respectively, by the other two models. Vectors of correlated random numbers were rescaled to
temperature values by multiplying each element with the standard deviation and adding the mean of the corresponding weather
station. An extension of Crout’s algorithm was developed to enable the factorization of nonpositive definite matrices. Monthly
spatial correlations of generated daily maximum andminimum temperatures between all pairs of weather stations closely matched
their observed counterparts. Performance was analyzed by comparing the root mean squared error, temporal semivariograms,
correlation/cross-correlation matrices, multiannual monthly means, and standard deviations.

1. Introduction

Because of the geospatially homogeneous nature of daily tem-
peratures, few publications have investigated the generation
of daily temperatures while reproducing the observed spatial
variability [1, 2]. Most of these methods [3, 4], including
those presented in the current paper, are based on Wilks’
parametric model [5]. Another common approach found in
the literature is generally based on resampling methods [6–
8]. The applicability of Wilks’ methods is potentially limited
if the correlation matrix cannot be factorized, such as the
case when a matrix is nonpositive definite. The probability
of facing nonpositive definite matrix increases exponentially
for large number of locations or the use of more complex
matrices, which includes lag time and cross-correlations.

Thus, the methodological requirements to factorize matrices
cannot be overlooked.

When regional analysis is required, it is important to
generate geospatially and temporally correlated maximum
and minimum temperatures while taking into account the
covariance between them and between other variables, such
as rainfall [9, 10]. For instance, a water balance for a given
region must be based on multisite estimations of daily
evapotranspiration based on temperatures (among other
variables) following the observed spatial structure and its
relationship with rainfall occurrence [11]. Failing to correctly
generate daily differences between maximum and minimum
temperatures will cause over- or underestimation of water
availability in a region [12]. Inaccuracies can increase even
more, if multisite estimations of daily evapotranspiration use
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temperature-based methods to estimate solar radiation [13,
14].

Over the last decade, there has been increasing use of
weather generators to stochastically downscale the increas-
ingly skilled monthly forecasts/projections from global and
regional circulation models (G/RCMs) to forecast seasonal
climate and to project climate change [15, 16]. Together with
other available methods, such as the delta change method
[17] and bootstrapping [18], weather generators are necessary
to apply because the daily outputs from G/RCMs are mean
values within the geographical domain of a grid cell, and
the direct use of these daily outputs in environmental and
agricultural models has shown large bias and errors in the
final outcomes [19, 20].

The objectives of this study are as follows: (i) to develop a
stochastic daily maximum andminimum temperature gener-
ator capable of reproducing both the daily spatial correlation
between weather stations and the monthly statistics of each
individual weather station, accounting for temporal correla-
tion from a previous day and/or cross-correlation between
maximum and minimum temperatures, characteristics that
current weather generators are not capable to reproduce and
(ii) to extend Crout’s algorithm to transform a non-positive
definite correlationmatrix into a positive definitematrix, thus
allowing its factorization.

Several questions have arisen while considering how
to incorporate spatial correlations in generating maximum
and minimum temperatures. For example, what is the best
way to factorize a nonpositive definite correlation matrix?
Are observed monthly spatial correlation patterns accurately
reproduced by generating daily spatially correlatedmaximum
and minimum temperatures? Is it possible to replicate the
daily spatial covariance between maximum temperatures
and minimum temperatures? The models developed in this
paper generate daily maximum and minimum temperatures
for weather station locations rather than continuous tem-
peratures over space. Weather data generated by a single-
site weather generator or bootstrapping methods should
not be spatially interpolated because of the assumption of
independence among stations; however, data generated by
the algorithms developed in this paper can be spatially inter-
polated. For the same reason, outcomes produced by crop,
hydrological, and environmental models using weather data
generated without taking into account its spatial structure
should not be spatially aggregated.

2. Methods

The present approach is based on the assumption of spatial-
temporal covariance stationarity, which implies that the auto-
covariance functions of the data series, the spatial correlations
between the data series, and the cross-correlation between
variables of the data series do not change during the time
period considered. From a temporal point of view, this
allows one to characterize a time series of a given variable,
like temperatures, as samples from a probability distribution
at each weather station. It also allows one to characterize
spatial relationships between all pairs of weather stations

Table 1: Differences among models according to their properties.

Properties Model
First Second Third

Covariance between maximum temperature
and rainfall occurrence Yes Yes Yes

Temperature generated on previous day No Yes No
Cross-correlation between minimum and
maximum temperatures No No Yes

in a selected area with a correlation and cross-correlation
matrices. This assumption allows one to perturb the main
statistics of the geospatial weather generator for climate
variability and climate change applications. The assumption
of spatial-temporal covariance stationarity applies when the
global and regional atmospheric circulation patterns across
the study area remain unchanged within the range of the
interannual variability. In some cases, extreme events like
ENSO for instance, can significantly change these spatial and
temporal patterns [21, 22]. Under these circumstances, it is
recommended to split the dataset accordingly and to apply
the assumption to each of the new categories (i.e., El Niño,
La Niña, and neutral years). Applying the present approach
to future climate projections must use the same rationale.
Because future climate projections are generated using global
and regional circulation models, these analyses are possible
to perform.

Daily historical records of maximum andminimum tem-
peratures and rainfall are needed for the model described in
this paper because it uses statistics of observed weather data
within and between locations for autocalibration. Generation
of daily rainfall events and amounts used in the present paper
follows the method described by Baigorria and Jones [23].

2.1. Models. Three models for generating spatially and tem-
porally correlated maximum and minimum temperatures
were developed (Table 1). The covariance between maximum
temperature and rainfall occurrences was taken into account
in all three models [24]. To account for this covariance, two
Gaussian distributions were fitted for maximum tempera-
tures for each location: (a) using maximum temperatures
during rainy days only and (b) using maximum temperatures
during nonrainy days.

The first and secondmodels generate dailymaximum and
minimum temperatures independently, whereas the third
model generates both variables at the same time based on
the spatial correlation of the same variable and the cross-
correlation between variables. The first and third models
generate daily temperatures without taking into account the
previous day’s generated values; the second model does take
into account previously generated values.

The rationale of developing, evaluating, and comparing
three models instead of a unified model is to empha-
size the advantages and disadvantages of spatial, temporal,
and cross-correlations approaches alone. This facilitates the
understanding of each step of each model, as well as the
uncertainties and errors of each approach alone. This makes
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Figure 1: Flow diagram detailing the sequence of processes to generate maximum and minimum temperatures following the first model.

it possible for the readers to implement their own methods
through the combination of the proposed models according
to their own necessities.

The proposed models to generate maximum and min-
imum temperatures, together with previously published
methods for generating rainfall [23], were implemented in
a user-friendly software named Geo Spatial and Temporal
weather generator (GiST-wg). The software can be down-
loaded at http://www.agenviromodeling.com.

2.1.1. First Model: Model with Spatial Correlation. The first
model generates maximum temperatures independently of
minimum temperatures (Figure 1).Thismodel only takes into
account the spatial correlations between weather stations; it

does not take into account temperatures generated on the
previous day (Table 1).

Using historical data from all weather stations in the
selected area, Pearson’s correlation coefficients (𝜌

𝑖𝑗
), which

are the elements of the correlation matrix, were calculated
using the following equation (see Table 2 for variable defini-
tions):

𝜌
𝑖𝑗
=
1

𝜂

∑
𝜂

𝑡=1
(𝑇
𝑖
𝑡

− 𝑇
𝑖
) (𝑇
𝑗
𝑡

− 𝑇
𝑗
)

𝜎
𝑖
𝜎
𝑗

. (1)

According to the results of the Filliben 𝑄-𝑄 correlation
test for Gaussian distribution (a computationally simple
variant of the Shapiro-Wilk test [25]) (results not shown),
the daily variability ofmaximumandminimum temperatures
tended to follow a Gaussian distribution ∼ 𝑁[𝑇, 𝜎] in our
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Figure 2: Flow diagram detailing the sequence of processes to generate maximum and minimum temperatures following the second model.

study regions. (Null hypotheses that the observed data were
drawn from a fitted hypothetical Gaussian distribution were
not rejected at levels ranging from 0.5% to 10% depending
on month and weather station.) This is a requirement of
the method [26]. If the data is not normally distributed, a
previous transformation is recommended.

Taking into account the pairwise correlations between
locations, a vector of independent standardGaussian random
numbers (R) is transformed into a vector (RΨ). The elements

of RΨ are correlated random numbers (𝑟𝜓) that follow the
observed correlations between stations [27]. To obtain RΨ,
a vector R, with elements 𝑟 ∼ 𝑁[0, 1] and with length
equal to the number of locations, is matrix-multiplied by the
Toeplitz-Cholesky factorization matrix (F; [28–31]), which is
calculated, according to the case, based on the correlation
matrix of maximum (CX) or minimum (CI) temperatures
(An alternative to the Toeplitz-Cholesky factorization matrix
is the eigendecomposition matrix (E) [32, 33]. According to
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our experience, both methods perform equally well.) (see
Section 2.2).

RF = RΨ. (2)

Afterward, the elements in RΨ are rescaled according
to the Gaussian distributed percentages of the population
being included (e.g., from −1 to 1 for 68% or −1.96 to 1.96
for 95%). Equation (3) is then used to generate correlated

maximum temperatures (𝑋) and minimum temperatures
(𝐼) using previously generated vector of correlated random
numbers from a Gaussian distribution (𝑟𝜓) at each location
(the variables are defined in Table 2):

�̂�
𝑖
𝑡

= 𝑇
𝑖
+ 𝜎
𝑖
𝑟
𝜓

𝑡
. (3)

After the first set of maximum orminimum temperatures
is generated for the first day of the time series, a newR is then
produced for each new generated day. BecauseC is calculated
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Figure 4: Comparison between observed and generated correlations of daily maximum temperatures ((a), (b), (c)) and minimum
temperatures ((d), (e), (f)) among all pairs of weather stations for each month. ((a), (d)) first model, ((b), (e)) second model, and ((c), (f))
third model. (I) December-January-February, (◻) March-April-May, (Δ) June-July-August, and (◊) September-October-November.

for eachmonth,F only needs to be calculated once permonth,
and it is the same for all the generated years.

2.1.2. Second Model: Model with Spatial and Temporal Corre-
lation. As with the previous model, the second model gener-
ates maximum temperatures independently of the minimum
temperatures. The main difference is that this model takes
into account the spatial correlations betweenweather stations
during the day being generated (t) and the previous day (𝑡−1)
(Table 1; Figure 2).

Taking into account for both days: (a) the pairwise
correlations between locations and (b) the pairwise 1-day lag
autocorrelations between locations, a vector of independent
standard Gaussian random numbers (R) with length equal to
twice the number of locations is transformed into a vector
(RΨ) whose elements are correlated random numbers (𝑟𝜓)
that follow the observed correlations and the autocorrelations
between stations. To obtain RΨ, a vector R of random
numbers (𝑟 ∼ 𝑁[0, 1]) is matrix-multiplied by the Toeplitz-
Cholesky factorization matrix (F) calculated based on the
correlation matrix of maximum (CX) or minimum (CI)
temperature. In thismodel, however, the correlationmatrix is
composed of two correlationmatrices: the 0-day lag (C

𝑡,𝑡
) and

the 1-day lag (C
(𝑡−1),(𝑡−1)

), and two autocorrelation matrices:

C
𝑡,(𝑡−1)

and C
(𝑡−1),𝑡

, as shown in (4), where C
𝑡,𝑡
= C
(𝑡−1),(𝑡−1)

and C
𝑡,(𝑡−1)
≈ C
(𝑡−1),𝑡

C =


C
(𝑡−1),(𝑡−1)

C
𝑡,(𝑡−1)

C
(𝑡−1),𝑡

C
𝑡,𝑡



. (4)

Elements in RΨ are then rescaled according to the
Gaussian distributed percentages of the population being
included. Using (3), elements of this vector are used to
finally obtain �̂� for all locations for two consecutive days. By
producing two days at a time, the 1-day lag autocorrelation
is considered in the process. However, if we proceed in the
same manner to produce days 3 and 4 of the time series, an
inconsistency between days 2 and 3will be created.Then, only
one day at a time can be added to the time series. Because
the temperature (maximum or minimum) has already been
generated for day 2, it is impossible to numerically solve
the set of equations because half of the correlated random
numbers resulting from themultiplication are already known
from the initial calculation (days 1 and 2). To solve this set
of equations, an iterative process is performed. Here, a given
number of RΨ are generated, forming an ensemble. Half of
the vector’s elements of each RΨ are used to generate day
2 (𝑟𝜓
1
, . . . , 𝑟

𝜓

𝑛
), and the other half are used to generate day
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Figure 5: Comparison between observed and generated cross-correlations between daily maximum and minimum temperatures for all
weather stations and for each month. (a) First model, (b) second model, and (c) third model. (I) December-January-February, (◻) March-
April-May, (Δ) June-July-August, and (◊) September-October-November.

3 (𝑟𝜓
(𝑛+1)
, . . . , 𝑟

𝜓

2𝑛
). Those elements 𝑟𝜓 corresponding to day 2

are then compared to their counterparts previously calculated
when generating days 1 and 2. For the comparison, the root
mean square error (RMSE) is calculated. After the RMSEs are
calculated for every ensemble member, the one that produces
the lower RMSE is selected.ThisRΨ is then rescaled and used
in (2) to generate the temperatures of day 3 for all locations.
The same procedure is repeated to generate the complete
required time series.

2.1.3. Third Model: Model with Spatial and Cross-Correlation.
The third model generates maximum and minimum temper-
atures simultaneously, taking into account the existing cross-
correlations between these variables (Figure 3). This model
takes into account the spatial correlations between weather

stations, but not temperatures generated the previous day
(Table 1).

Using historical data from all weather stations in the
selected area, Pearson’s correlation coefficients are calculated
using (1). The cross-correlations between maximum and
minimum temperatures (𝜑

𝑖𝑗
), which are the elements of the

cross-correlation matrix, are calculated using:

𝜑
𝑖𝑗
=
1

𝜂

∑
𝜂

𝑡=1
(𝑋
𝑖
𝑡

− 𝑋
𝑖
) (𝐼
𝑗
𝑡

− 𝐼
𝑗
)

𝜎
𝑋
𝑖

𝜎
𝐼
𝑗

. (5)

As in the second model, two sets of temperatures are cal-
culated simultaneously. In this model, these sets correspond
to the maximum and minimum temperatures of the same
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Figure 6: Comparison between observed and generated temporal semivariograms of ((a), (c)) maximum and ((b), (d)) minimum
temperatures for the months of January ((a), (b)) and July ((c), (d)). Weather station: Asheboro, Randolph, NC. Observed (solid line),
generated by first model (dash line), second model (dots line), and third model (dash and dots line).

day. The correlation matrix in this case is composed of two
correlation matrices and the cross-correlation matrix (6):

C =


CX CXI
CIX CI


. (6)

Similar to the second model, a vector of independent
standard Gaussian random numbers (R), with length equal
to twice the number of locations, is transformed into a
vector (RΨ) whose elements are correlated random numbers
(𝑟𝜓) that follow the observed correlations between stations
and cross-correlations between maximum and minimum
temperatures within the same station and between stations.
To obtain RΨ, a vector of random numbers (𝑟 ∼ 𝑁[0, 1])
is matrix-multiplied by the Toeplitz-Cholesky factorization
matrix (F) calculated based on the newly composed corre-
lation matrix produced by (6).

The elements in RΨ are then rescaled according to the
Gaussian distributed percentages of the population being

included. Using (3), the elements of this vector are used to
finally obtain𝑋 and 𝐼 for all locations.

2.2. Factorization of the Correlation Matrix. To factorize a
correlation matrix using Toeplitz-Cholesky factorization or
eigendecomposition, the matrix must be a positive-definite
matrix. Thus, the resulting upper triangular matrix after
applying an LU-decomposition must strictly contain only
positive diagonal entries. When this is the case, the factor-
ization is a straightforward process.

When the size of the correlation matrix increases (due
to a large number of weather stations or the use of more
complex matrices) and/or the correlation values within the
matrix are homogeneous (which is the case for temperatures),
the correlation matrix may become nonpositive definite. To
solve this problem, Rebonato and Jäckel [34] proposed two
iterative methods: (a) the hyperspheric decomposition and
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Figure 7: Comparison between observed versus generated ((a), (b), (c)) mean maximum temperatures (∘C) and ((d), (e), (f)) standard
deviations of maximum temperatures (∘C) for each month. ((a), (d)) first model, ((b), (e)) second model, and ((c), (f)) third model. (I)
December-January-February, (◻) March-April-May, (Δ) June-July-August, and (◊) September-October-November.

(b) the spectral decomposition. Both methods are based on
redefining the correlation matrix prior to the factorization to
guarantee a positive-definite matrix. These time-consuming
methods are adequate for relatively small matrices with
heterogeneous correlation values within the matrix. For
applications with a large number of variables, these methods
are not guaranteed to produce a positive-definite matrix.

The solution proposed and tested in this paper is to apply
an LU decomposition to the correlation matrix using an
extension of Crout’s algorithm [35, 36] (see Figure 9). This
algorithm produces a total of 𝑛2 equations for the (𝑛2 +
𝑛) unknown values of the L- and U-triangular matrices
(the diagonal being represented twice). Because the number
of unknowns is greater than the number of equations,
the standard procedure is to set the 𝑛 of the unknowns
arbitrarily to one and then to try to solve for the others.
For this application, the procedure is repeated iteratively
by slightly increasing the arbitrary values (steps of 0.01 in
our case) until all the diagonal values of the U-triangular
matrix are positive (see the Appendix). After reaching this
condition, the L- and U-triangular matrices are multiplied
to produce the new correlation matrix. This new matrix
guarantees the positive-definite matrix necessary for the
factorization.

2.3. Case Study

2.3.1. Data. The 10 selected weather stations (Table 3) used
in this study are located in the state of North Car-
olina between 36∘35N, 84∘19W and 33∘50N, 75∘28W.
The daily observed data of maximum and minimum tem-
peratures and rainfall from these weather stations were
obtained from the NOAA/NWS/National Climate Data
Center (http://nndc.noaa.gov/?home.shtml/). The distance
between weather stations in North Carolina ranges from
approximately 34 to 164 km. The period from 1974 to 2004
was selected to avoid the effects of temporal climatic shifts
detected over time [9, 37].

2.3.2. Evaluation. As stated by Ferraris et al. [38], referring
to the evaluation of downscaling models, the stochastic
geospatial weather generator models presented in the current
paper must be able to reproduce the statistics on which they
have been optimized (observed spatial-, temporal- and/or
cross-correlations; monthly mean and standard deviations),
as well as being able to reproduce other statistics of the data
not used in model development (e.g., RMSE, temporal semi-
variograms). To satisfy both requirements and to compare the
three previously described models, one thousand year-long
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Figure 8: Comparison between observed versus generated ((a), (b), (c)) mean minimum temperatures (∘C) and ((d), (e), (f)) standard
deviations of minimum temperatures (∘C) for each month. ((a), (d)) First model, ((b), (e)) second model, and ((c), (f)) third model. (I)
December-January-February, (◻) March-April-May, (Δ) June-July-August, and (◊) September-October-November.

replications of daily maximum and minimum temperatures,
along with rainfall events and amounts, were generated for
the 10 selected weather stations. Correlation coefficients and
root mean square errors (RMSEs), between the observed and
the generated daily maximum temperature, were compared
among the three models. The calculations were performed
using the monthly correlations between all pairs of locations.
The same comparison was performed for daily minimum
temperatures. Correlation coefficients and root mean square
errors (RMSEs) calculated based on the monthly correlations
between all pairs of locations calculated from the observed
and generated daily maximum (minimum) temperatures
were compared among the three models. RMSEs were used
to represent differences between spatial correlations of the
historical records and spatial correlations of the generated
temperatures. Cross-correlations between daily values of
maximum and minimum temperatures for each month were
calculated from the generated data and compared with their
observed counterparts. Observed and generated multiannual
monthly means of daily maximum and daily minimum
temperatureswere compared. For everymonth, a comparison
between observed and generated interannual variance of
daily maximum and minimum temperatures was performed

by comparing standard deviations. The correlation coeffi-
cients and RMSEs were calculated from the mean and the
standard deviations of the three models. Temporal semi-
variograms calculated from generated daily maximum and
minimum temperatures of the three models were compared
with the corresponding semivariograms calculated from the
historical record.

3. Results and Discussion

3.1. Generation of Maximum and Minimum Temperatures.
Figure 4 shows the comparisons between observed and
generated correlations of daily maximum and minimum
temperatures among all pairs of locations for eachmonth.The
three models reproduced the monthly observed correlations
of maximum and minimum temperatures with correlation
coefficients ranging from 0.876 to 0.989. For maximum
temperatures, RMSE values (as a percentage) relative to the
mean observed correlation among all locations were 2%,
10%, and 4% for the three models, respectively; for the
minimum temperatures, relative RMSEs were 3%, 11%, and
7%, respectively.
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Table 2: Variable description.

Symbol Definition Units

CX, CI Correlation matrices of maximum and minimum temperatures Unitless

CXI Cross-correlation matrix between maximum and minimum temperatures Unitless

E Eigen decomposition matrix Unitless

F Toeplitz-Cholesky factorization matrix Unitless

𝑖, 𝑗 Locations Unitless

𝐼, 𝐼, 𝐼 Observed, expected and mean daily minimum temperature ∘C

𝑛 Total number of locations Unitless

𝜂 Total number of pairwise daily observations Unitless

𝜑
𝑖𝑗
, 𝜑
𝑖𝑗 Cross-correlation between locations 𝑖, 𝑗 based on observed and generated data, respectively Unitless

𝑟 Random number from a Gaussian𝑁[0, 1] distribution Unitless

𝑟
𝜓 Correlated random number from a Gaussian𝑁[0, 1] distribution Unitless

R Vector of random numbers following a Gaussian𝑁[0, 1] distribution Unitless

RΨ Vector of spatially correlated random numbers following a Gaussian𝑁[0, 1] distribution after
matrix-multiplying a vector of random numbers by F or E

Unitless

𝜌
𝑖𝑗
, 𝜌
𝑖𝑗 Pearson’s correlation between locations 𝑖, 𝑗 based on observed and generated data, respectively Unitless

𝜎
𝑖
, 𝜎
𝑗 Standard deviation of daily temperature observations ∘C

𝜎
𝑋𝑖
, 𝜎
𝐼𝑗 Standard deviation of daily observations of maximum and minimum temperatures ∘C

𝑡 Notation of time for a specific day Days

𝑇
𝑖𝑡
, 𝑇
𝑗𝑡 Pairwise temperature observations on day 𝑡 for locations 𝑖, 𝑗 ∘C

𝑇, �̂�, 𝑇 Observed, expected and mean daily temperatures ∘C

𝑋,𝑋,𝑋 Observed, expected and mean daily maximum temperatures ∘C

Table 3: List of weather stations used in this study.

Code Name County Latitude (∘N) Longitude (∘W) Altitude (m a.s.l.)
0286 Asheboro Randolph 35∘42 79∘50 265
1677 Chapel Hill Orange 35∘55 79∘05 152
2500 Dunn Harnett 35∘19 78∘41 61
3017 Fayetteville Cumberland 35∘04 78∘52 29
4464 Jackson Springs Montgomery 35∘11 79∘41 223
4860 Laurinburg Scotland 34∘45 79∘28 64
7079 Raleigh State University Wake 35∘48 78∘42 122
7656 Sanford Lee 35∘32 79∘03 80
7924 Siler City Chatham 35∘46 79∘28 186
7994 Smithfield Johnston 35∘31 78∘21 46

As expected, only the third model reproduced the
monthly observed cross-correlations between daily maxi-
mumandminimum temperatures.The correlation coefficient
(relative RMSE) for the thirdmodel was 0.920 (10%), whereas
the correlation coefficients (relative RMSEs) for the first
and second models were 0.765 (57%) and 0.738 (67%),
respectively (Figure 5).

Figure 6 shows the temporal structure of the observed
and generated daily maximum and minimum temperatures
from the weather station at Asheboro. Only one location
is shown because all temporal semivariograms followed the
same trend.Theweather stationwas randomly selected.There
were differences in the observed sill and range parameters
of the temporal semivariograms. As expected, the second
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model adequately represented the sill parameter; however,
the range parameter was 2 days shorter than the observed
range. This behavior could be because only a 1-day lag
was included in the correlation matrix; future research
should explore the extention of the input matrix of the
second model to 2-day or even 3-day lag. The third model
overestimated the sill parameter but adequately reproduced
the range parameter (better in the summer than in the
winter). A hybrid model between the second and third
models could potentially better represent both the sill and
the range parameters of the temporal semivariogram. This
should be the focus of future research. The first model
produced a range of 2 days shorter than the second model,
and it overestimated the sill parameter as did the third
model.

Comparisons between observed and generated multian-
nual monthly means of daily maximum temperatures and
daily minimum temperatures are shown in Figures 7(a), 7(b),
7(c), 8(a), 8(b), and 8(c), respectively. For both variables
and for the three models, correlations were 1.000. Relative
RMSEs for maximum temperature were 1%, 0.7%, and 0.2%
for models from one to three, respectively. For minimum
temperature, relative RMSEs were 1%, 2%, and 0.3%, respec-
tively. The interannual variability of maximum temperatures
(Figures 7(d), 7(e), and 7(f)) and minimum temperatures
(Figures 8(d), 8(e), and 8(f)) were well reproduced by
the three models. For maximum temperatures, correlation
coefficients for the threemodels were 0.896, 0.900, and 0.965,
respectively; for minimum temperatures, they were 0.901,
0.837, and 0.996, respectively. For maximum and minimum
temperatures, relative RMSEs were 13% and 13% for the first
model, 16% and 20% for the second model, and 27% and
14% for the third model, respectively. These comparisons
were made between the observed and generated interannual
variance of daily maximum andminimum temperatures, and
they are directly related to the overdispersion problem (i.e.,
the underestimation of the interannual variability) reported
in other weather generators [39]. All three models presented
in this paper were able to reproduce the interannual variabil-
ity of the observed temperatures; however all models, espe-
cially the third model, slightly underestimated the standard
deviation.

3.2. Factorization of Nonpositive Definite CorrelationMatrices.
For this paper, only 10 weather stations were used to demon-
strate the performance of the described models; however,
the factorization method was tested with 65 weather stations
(results not published). In the third model, the size of the
correlation matrix reached 130 × 130 elements. All twelve
monthly correlation matrices were nonpositive definite. To
factorize these matrices, the hyperspherical decomposition
and the spectral decomposition methods [34] were applied,
but without success. The extended Crout’s algorithm needed

less than 10 iterations to solve the set of equations. In
the current study, the new n-unknown values assigned to
solved the Crout’s algorithms were less than or equal to
1.10.

4. Conclusions

The three proposed stochastic models for generating spatially
and temporally correlated daily maximum and minimum
temperature data reproduced the main statistics of the
observed historical record of each individual weather station
as well as the spatial correlations between pairs of weather
stations for each month, the temporal correlations within
sites, and/or the cross-correlations between variables. The
proposed models did not show the overdispersion problem
on the interannual variability of maximum and minimum
temperatures. Among the presented models, the final selec-
tion will depend on the specific user’s necessities regarding
the relative importance of taking into account spatial, tem-
poral, and/or cross correlations.

The method for transforming a non-positive defi-
nite matrix into a positive definite matrix to satisfy the
matrix factorization requirements produced satisfactory
results.

The methods proposed in this paper can be used in
the same manner in any other region (larger area, differ-
ent density of the station network, complex topography,
etc.). After some simple transformation to fit other non-
Gaussian distributions, the methods proposed can be applied
to different time step duration (e.g., hourly), other variables
[10], or being applied outside the atmospheric sciences to
datasets showing spatial-, temporal- and/or cross-correlated
structure. Also, the use of semivariograms based on the
spatial correlation could help if one wants to apply the
model on a region where the length of the dataset is too
short to permit a proper calculation of the correlation
matrices. To follow the World Meteorological Organization’s
guidelines, a minimum of 30 years of daily historical records
are necessary to calibrate the statistical models; however, to
consider the effects of climate change, specific analyses must
be performed to determine the best historical record length
[9].

The idea of mixing the second (spatial and temporal
correlations) and the third (spatial and cross-correlations)
models will be carried out in future researches. The expec-
tations of this hybrid model is to surpass its predecessor, gen-
erating data that is spatial-, temporal- and cross-correlated,
closely matching the observed historical record; however, it
is also expected that the necessary computational resources
will increase.

Appendix

Extension of Crout’s algorithm
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Figure 9: Flow diagram detailing the sequence of processes for the extended Crout’s algorithm.
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