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ABSTRACT ARTICLE HISTORY
Additions of large wood (LW) have become a go-to technique for Received 29 November 2018
recovering altered river ecosystems. However, successful applica- Accepted 25 April 2019

tions of this technique are generally limited to unchannelized riv-
ers and headwater streams. Channelization of rivers, that is,
engineering river channels to reduce recruitment and retention of
in-channel structure, may, by definition, limit success of this res-
toration technique. Moreover, sufficient time has passed (a cen-
tury or more) since initial channelization of many large rivers that
portions of the fish community associated with LW may have
become extirpated. Thus, the maxim that LW leads to a positive
fish community response may not hold true. We examined fish
community associations in habitats with and without LW in the
channelized Missouri River to gain an understanding of the role
of LW in large, channelized rivers. There were some differences
between habitats with wood present compared to those without,
but the differences were not evident once year, season and chan-
nel modifications intended to create aquatic habitat were taken
into account. We assert that careful planning is necessary to
ensure that additions of LW in channelized rivers are made to
appropriate locations such that it will be retained in-channel for
use as fish habitat and that LW-associated species are found in
the system.

KEYWORDS
Missouri River; woody
debris; fish community

Introduction

Societal use of large rivers for navigation, flood control and hydropower has led to
declines in native biota (Dudgeon et al. 2006; Vorosmarty et al. 2010; Pracheil et al.
2013). The resulting declines in aquatic organism abundances are due in no small part to
river channel alterations including dams and channelization that have fundamentally
changed hydrology, storage and export of sediment and nutrients, and channel form and
function. Moreover, impoundment and channelization have reduced habitat availability
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for some fish and other aquatic biodiversity (Wolter and Arlinghaus 2003; Dudgeon et al.
2006; Vorosmarty et al. 2010). Restoration solutions in large rivers, however, are not sim-
ple because channel alterations are necessary pieces of human infrastructure and therefore
cannot be removed. We must now focus our efforts on gaining a more mechanistic
understanding of the patterns, processes and rates of these altered riverscapes to balance
the needs of humans and biodiversity.

Engineering large-river channels to support navigation has proved especially inhospit-
able to riverine biota (Wolter and Arlinghaus 2003). Transforming a river into a naviga-
tion highway requires creating channels of sufficient depth, clearance and permanence
that barges can safely pass. River transformation takes place via removal of obstructions
such as large wood (LW) and channelization: that is, armouring banks with rocks or other
hard materials to stabilize banks to hydrologically push debris from the navigation chan-
nel and quickly shunt water and in-channel debris downstream. Channelization thus has
ecosystem-level effects because it changes the rate of recruitment, retention and export of
resources in riverine habitats (Guyette et al. 2002) which directly affects biota (Kennedy
and Turner 2011). For example, unchannelized reaches of the Rio Grande River maintain
greater energetic connectivity between aquatic and riparian areas as demonstrated by
higher abundance of terrestrial carbon (C) composition in macroinvertebrates (Kennedy
and Turner 2011).

Transforming the lowest 1183 km of the Missouri River to better suit commercial navi-
gation has resulted in changes to river hydrology, geomorphology, productivity and bio-
diversity. For instance, the removal of in-channel trees beginning in 1838 and
channelization beginning in 1912 to facilitate steamship travel has dramatically altered the
fish community and contributed to declines of several native species including the feder-
ally endangered Pallid Sturgeon Scaphirhynchus albus (Hesse and Sheets 1993). The
response of fish communities to these channel alterations is not unique to the Missouri
River Basin. Similar channel alterations on the lower Rhone River in Europe have led to
marked changes in biological communities in that riverine ecosystem such that entire fish
assemblages have disappeared (Fruget 1992; Jongman 2002).

While LW is most certainly important fish habitat in intact large rivers, snag removal
and habitat alteration have catalyzed steep declines in fish populations where physical
modifications have occurred. As a result, it is not necessarily clear that the remaining
native fish communities still respond to LW. Sufficient time has passed since the initial
channelization and snag removal activities in the Missouri River that characteristic fish
assemblages affiliated with LW may no longer exist. Thus, our general understanding of
the fish community response to LW derived in other systems may not apply to anthropo-
genically altered systems like the Missouri River. Specifically, the role of LW in smaller
lotic systems has been well documented (e.g. Angermeier and Karr 1984; Harmon et al.
1986; Dolloftf and Warren 2003), yet this information may not be scalable to the Missouri
River due to the long legacy of alterations and non-linear, discharge-dependent controls
on riverine biota (Oberdorff et al. 2011; Pracheil et al. 2013). Our study works to fill this
knowledge gap by characterizing fish communities in sites with and without LW present
along a channelized section of the Missouri River.

Methods
Study area

We sampled 10 sites (eight river bends and two chutes) on the channelized Missouri
River between Sioux City, IA (mean daily discharge 848 m>s™") and the confluence of
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Figure 1. Map of study area showing locations of sites. Letters on map correspond to sites as follows: (A) Lower
Peterson Cut-off Bend, (B) California Chute, (C) DeSoto Cut-off Bend, (D) Lower Calhoun Bend, (E) Boyer Bend, (F)
Tobacco Bend, (G) Lower Copeland Bend, (H) Hamburg Chute, (I) Upper Hamburg Bend and (J) Upper Barney Bend.
Names of sites represent geographic names and are not necessarily indicative of current habitat conditions (i.e. cut-
offs are not currently cut-off habitats). Sites marked with * represent sites modified to mitigate the effects of channe-
lization and sites marked with ** represent chutes.

the Kansas River (mean daily discharge 1,475m’s™"; Figure 1) between May 2007 and
September 2008. We used a stratified random sampling design to select study sites rep-
resentative of habitat modifications that have been used to mitigate effects of channeli-
zation through increasing shallow water habitat availability. As such, we selected (1)
four bends where wing-dike channelization structures have been lowered and chevrons
installed (v-shaped underwater rock structures constructed to collect sediment and cre-
ate shallow water habitat), hereafter called modified sites, (2) two unregulated historic-
ally present chutes that were re-established by cutting trenches into the floodplain and
reconnecting to the river at two points and (3) four bends consisting of unaltered
wing-dike channelization structures, hereafter called unmodified channelization struc-
ture sites.
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Table 1. Snag rating index from Lehtinen et al. (1997).

Rating Value #Major Branches Trunk Circumference (cm) Roughness

0 0-2 0-40 Smooth, no bark

1 3-6 41-80 Some bark

2 7-10 41-120 Most bark, shallow ridges

3 11-14 121-160 Most to all bark, medium ridges
4 >15 >160 Most to all bark, deep ridges

Each variable (# major branches, trunk circumference, roughness) is given a rating value from 0 to 4. Variables are
then summed to give a snag rating index ranging from 0 to 12.

Biota abundance

All sites were sampled seasonally: April-May, June-July and August-September during
2007 and 2008 to determine fish community attributes at sites with and without LW.
Sampling occurred at five randomly selected stations containing LW (one accumulation of
LW per site) and five randomly selected stations containing open water (OW) per site.
All available stations were sampled if study bends contained five or fewer LW stations.

Fish collection methods closely followed those of Lehtinen et al. (1997) and consisted
of 5min electrofishing runs (boat-mounted electrofisher, Smith-Root GPP 5.0, pulsed-DC,
60 Hz, ~8 amps, with two dip netters) that began approximately 10 m downstream of the
snag and continued in an upstream direction ending approximately 10 m upstream of the
LW. OW stations were sampled in a similar manner and covered approximately the same
amount of surface area (e.g. 20-30 m). Fish species abundances were recorded in the field
and returned to the water near the point of capture; however, fish that we could not easily
identify in the field were preserved in 10% formalin and identified in the laboratory.
Habitat classifications were recorded in accordance with the Missouri River Standard
Operating Procedures for Sampling and Data Collection (Drobish 2006) and included
recording GPS coordinates, LW dimensions (diameter estimated at water surface and
length using sonar) and condition, maximum water depth, surface water temperature, sur-
face water velocity (m*s™h), conductivity (uS/cm) and dominant substrate type (sand, silt,
gravel) at each fish sampling station. We also used a snag rating index devised by
Lehtinen et al. (1997) to describe size and complexity of snags at each station (Table 1).
This index requires assigning scaled values to three parameters that characterize LW,
ranges from 0 to 12, and was calculated as

> Ni+Ci+R

where N; = the number of major branches of the LW snag i (ranging from 0 to 4), C; =
the circumference in mm of the LW; snag (ranging from 0 to 4) and R; = roughness of
the LW snag i (ranging from 0 to 4). Sites without LW snags were assigned a snag rating
index of 0.

Data analysis

We used an analysis of variance (ANOVA) to determine if there were differences in habi-
tat characteristics between LW and OW habitats such as water depth, velocity, conductiv-
ity, dissolved oxygen and turbidity as well as the Shannon diversity index of the fish
community while controlling for year, season, bend and modification type (o < 0.05). We
summarized the relative abundance of fish species irrespective of year, season or habitat
modification using catch per unit effort (CPUE; fish/min). Not all components of the fish
community may respond similarly to LW, so we examined the biotic response of the (1)
entire fish community, (2) large-river specialist fish community and (3) small-bodied fish
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community separately. We chose to specifically examine the response of small-bodied and
large-river specialist fish because these groups are of conservation concern in the Missouri
River (Pracheil et al. 2013). Additionally, efforts to mitigate biodiversity declines caused,
in part, by channelization have led to two general types of experimental channel modifica-
tions (constructed chutes and wing-dike modification) in the Missouri River. We therefore
controlled for modification type in our analysis to determine if these modifications influ-
ence fish community response to LW.

We used a non-metric multidimensional scaling (NMDS) ordination of sites, stratified
by site modification (R Core Team 2013; metaMDS, Vegan package; Oksanen et al. 2016)
to visually display fish community composition and structure in LW or OW sites. An
NMDS is an unconstrained ordination technique that can be used to visualize differences
between sites, where the distance between sites is directly relational to differences in com-
munities based on rank orders of a dissimilarity matrix (in our case, a Bray-Curtis
matrix). Fish abundance data were Wisconsin double standardized prior to analysis. We
coupled the NMDS ordination with an analysis of similarity (ANOSIM) to test whether
or not LW and OW fish communities were different (P <0.05; R < 0.20). The ANOSIM is
allied with NMDS, in that it also uses rank orders of the dissimilarity matrix to statistic-
ally differentiate between groups. Initial analyses indicated that there were no differences
in fish community structure either seasonally or annually within a given bend type (e.g.
unmodified channelization structure, modified, chute; P> 0.05; R > 0.20). Therefore, we
were able to combine sample data within a bend for a given habitat type. Where the
ANOSIM identified differences in fish communities between LW and OW habitats, we
used a similarity percentage (SIMPER) analysis to determine which fish species contrib-
uted to that difference (Vegan package; Oksanen et al. 2016).

We calculated Shannon-Weiner diversity values for the entire fish community at all
LW and OW stations for each site to compare community diversity. We then tested for
the effect of site modification (i.e. unmodified channelization structure, modified, chute)
on the relationship between community diversity and snag complexity using an
ANCOVA (¢ <0.05). We excluded stations with a snag index rating of 0 because we were
interested in a gradient of snag complexity in this analysis.

Results

We sampled a total of 2733 fish at 588 stations during 2007 and 2008. Our sampling
included 252 snags with a mean + SD snag rating index of 7.4+ 2.59 and ranging in snag
index value from 1 to 12 (Figure 2). There were differences in physical properties of LW
and OW habitats (Table 2); stations with LW were associated with higher velocity, turbid-
ity and depth. However, the differences appeared to be minor and may reflect variability
encompassed in measurement precision rather than meaningful differences.

There were no differences in overall fish community with respect to year, season, habi-
tat modification or presence/absence of LW. Stress values for the two-dimensional NMDS
plots shown in Figure 3 ranged from 0.2 to 0.5 (Figure 3). For all species assemblages,
four-dimensional NMDS provided stress values below 0.1. We chose to display dimen-
sions one and two because they provided the greatest marginal reduction in stress values,
and the results were consistent with information from our ANOSIM analysis. Presence of
LW had a significant effect on the overall fish community (ANOSIM: R=0.15, P=0.04;
Figure 3(a)), although there were no differences in components of the fish community on
the Missouri River that are of conservation concern (ANOSIM: large-river specialist:
R=0.05, P=0.18; small-bodied: R=0.06, P=0.15; Figure 3(b,c)). Gizzard shad
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Figure 2. Frequency of snag rating index scores of 252 stations where the large wood-associated fish community
was sampled.

Dorosoma cepedianum was the most abundant species sampled and was primarily associ-
ated with OW, while common carp Cyprinus carpio was the most abundant species asso-
ciated with LW for the entire fish community analysis (Figure 4). Gizzard shad, emerald
shiner Notropis athernoides, common carp, red shiner Cyprinella lutrensis, river carp-
sucker Carpiodes carpio and flathead catfish Pylodictus olivarus relative abundances
accounted for 58% of the difference in LW and OW communities for the SIMPER ana-
lysis (Figure 5). Only flathead catfish is a large-river specialist species, whereas emerald
shiner and red shiner are small-bodied fishes. Furthermore, LW and OW fish commun-
ities in the Missouri River are different, but these differences do not lead to separation in
overall fish community diversity when bend modification was considered (ANCOVA:
F3.16= 0.55; P=0.66).

Discussion

Our study found that there were some limited species-specific differences in abundance
between LW and OW sites, but these differences did not translate to clear separation in
fish communities between habitat types in the Missouri River. Our findings posit the ideas
that (1) LW may not be as important as generally assumed in large rivers that have been
altered extensively and for an extended period of time and/or (2) that the sector of the
fish community that historically relied more heavily on LW no longer exists. The lack of
detectable association between fish species abundance and diversity to the presence of LW
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Table 2. Results of ANOVA of effect of year, season (spring, summer, fall), modification (modified/unmodified chan-
nelization structure, chute) and treatment (open water or large wood) on habitat charactics, including water depth,
dissolved oxygen, turbidity (uS/cm) and water velocity (m/s) from sample sites.

Source df. Fe.04 P
Depth

Model (num. d.f., denom d.f.) 6, 24

Year 1 34.42 6.07 x 10°°
Season 2 21.98 877 x107°
Modification 2 3.41 0.07
Treatment 2 15.94 0.01 x 107*
Dissolved Oxygen

Model (num. d.f., denom d.f.) 6, 24

Year 1 290.57 220% 1070
Season 2 51.99 220x 107"
Modification 2 19.32 136 x 1077
Treatment 2 46.45 220x 1076
Turbidity

Model (num. d.f., denom d.f.) 6, 24

Year 1 16.25 5.82x107°
Season 2 37.15 220x 1076
Modification 2 6.88 0.001
Treatment 2 1.32 0.27
Velocity

Model (num. d.f., denom d.f.) 6, 24

Year 0

Season 2 8.89 1.00 x 10*
Modification 2 3.41 220% 10716
Treatment 2 15.94 336x 107

in the channelized Missouri River compared to results from other systems may be due to
several reasons. It may be that historically, LW has not been important to the native fish
community. However, this explanation is unlikely due to the historic abundance of LW in
the Missouri River (Hesse and Sheets 1993) and the large number of studies reporting the
importance of LW to fish communities and populations across scales of lotic ecosystems
(e.g. Angermeier and Karr 1984; Lehtinen et al. 1997; Johnson et al. 2005). Perhaps, more
likely is the long legacy of snag removal and channelization on the Missouri River
coupled with low availability, recruitment and retention of LW into the current system
(Archer 2010) that may have led to extirpation of species reliant on LW from this portion
of river. For example, we show that the bulk of the contemporary fish community either
does not respond to LW differently from OW or responds positively to OW habitats, a
potential outcome of selection against species that rely solely on LW.

The spatial scale of alterations that have occurred on the Missouri River may have
been greater than the spatial scale at which many native species complete their life his-
tory. Recent work has shown that for habitat heterogeneity to benefit species and over-
come negative effects of alterations, improvements must be made at a scale relevant to
the life history of target organisms. Lepori et al. (2005) showed, for instance, that fish and
macroinvertebrate communities on the Ume River in Sweden did not respond to habitat
improvements aimed at increasing habitat complexity because the spatial scale of the
alterations was large relative to both the spatial scale of habitat improvement and the
organisms in the biotic community. Our study did not focus on the addition of LW as a
means of restoration; however, the same principle - that heterogeneity (in this case, LW)
must be present at a scale at which organisms can detect such - may still apply. Fish
communities in the channelized Missouri River may not be detecting LW to use as struc-
ture because it is too sparse as a result of the low retention of LW in the system
(Archer 2010).
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Figure 3. Non-metric multidimensional scaling plot of fish species (hollow dots) and bends (letters; N=10) containing
no large wood (black letters) and large wood (gray letters) for (a) all species (N=44 species; N=2,732 fish), (b)
large-river specialist species (N =20 species; N=766 fish) and (c) small-bodied species (N=17 species; N=614 fish).
Polygons were constructed by joining the centroids from sites with Open Water (OW - polygon connecting black let-
ters) and those containing Large Wood (LW - polygon connecting gray letters). Overlapping dots and letters are hid-
den for clarity.

We can gain further understanding of the interactions between LW and channelization
by comparing our study with Lehtinen et al. (1997) who surveyed LW and OW sites in
channel border and backwater habitats in Pool 6 of the Mississippi River - an unchannel-
ized system similar in size (mean daily discharge 838 m’s™') to the Missouri River — and
found LW to be important for many native fish species. Similar to our study, Lehtinen
et al. (1997) found common carp to be more abundant in LW locations, but several other
species they found were absent or rare in our study despite our study area being within
many of these same species’ ranges. Specifically, species of fish commonly associated with
LW in the Lehtinen et al. (1997) study such as bluegill Lepomis macrochirus, bigmouth
buffalo Ictiobus cyprinellus and piscivorous smallmouth bass Micropterus dolomieu, large-
mouth bass M. salmoides, black crappie Pomoxis nigromaculatus, walleye Sander vitreus
and sauger S. canadense were not common in our study. Interestingly, Lehtinen et al.
(1997) also found emerald shiner to be associated with LW where we found this species
associated with OW. Species found in the Lehtinen et al. (1997) study associated with LW
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that were rare or absent in our study are generally associated with slower velocity currents
(Pegg and Pierce 2002): a rare environmental condition in the channelized Missouri
River. In fact, stations containing LW had higher current velocities than stations with
OW (Table 2), suggesting that the multiple benefits for fish to be associated with LW
such as increased cover and food availability are not realized. However, we were unable
to measure velocities directly within snags where there was a high diversity of current
velocities, including areas of lower velocity. Because we do not have these measurements,
we are unable to directly compare within snag velocities with OW current velocities,
although we assume that some areas of within snag velocity were lower than those
reported here.

The Missouri River now has substantially less in-channel LW than the pre-alteration
river; however, because fish communities have changed as a result of these channel
alterations (Pegg and Pierce 2002), additions of LW to this and other channelized rivers
are not likely to engender a broad, positive response from the native fish community.
As such, the results of our study further demonstrate the need for appropriate process-
based restoration approaches (Beechie et al. 2010) to recover highly altered river ecosys-
tems. Additions of LW in river ecosystems have proven a very effective technique for
restoring some riverine habitats (e.g. Dolloff and Warren 2003; Acuna et al. 2013), par-
ticularly where the recruitment of LW to a river ecosystem has only recently been lost
or reduced due to human activities like tree harvest. In these ecosystems, the lack of
LW is the primary problem, and in adding LW, the geomorphic and biologic functions
provided by these additions can quickly aid fishes. For instance, additions of LW to
Tenmile Creek, OR, were responsible for an immediate increase in young-of-year steel-
head Onchorhynchus mykiss survival (Johnson et al. 2005). However, channelized rivers
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either LW or OW habitats.
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like the Missouri River have endured over a century of ecosystem alterations — namely
in-channel snag removal, loss of floodplain-channel connectivity and reduced channel
complexity - that have likely resulted in changes to the overall fish community struc-
ture due to required use of human-made habitats by native fishes (Ridenour et al.
2009). We show in this study that the native fish community, especially portions of the
native fish community of concern, may not respond to a simple addition of LW if res-
toration attempts are implemented because the baseline species set may no longer be
present to benefit from habitat improvements. Rather, careful planning will be needed
to ensure not only that LW habitat is available in appropriate locations but also the
species that have or will use such habitat are also found in the system. Moreover, the
effects of channelization not only reduce the recruitment and retention of LW (Archer
2010) but potentially trump the geomorphic and hydrologic influence of in-channel
wood. Given LW has been shown to reside in-channel for as much as 800 years
(Guyette et al. 2002), it may well be that recovering geomorphic and biologic processes
lost from massive snag removal and subsequent channel engineering activities may take
decades to centuries.
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