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Abstract:  

The preparation of nanosuspensions has been introduced as a well-defined method to 

enhance the solubility and dissolution of poorly water-soluble drugs. The aim of this 

study was to evaluate the feasibility of using Soluplus® as a stabilizer for loratadine 

nanosuspensions. The concept of Quality by design (QbD) was followed particularly to 5 

link the critical material parameters (CMPs) and the critical process parameters (CPPs) 

with the required critical quality attributes (CQAs) and risk assessment (RA) to select the 

optimized critical material and process parameters. The ultrasonic-assisted precipitation 

method was selected to prepare the nanosuspensions with different concentrations of 

Soluplus®. Particle size, polydispersity index (PDI), solubility and dissolution were set as 10 

the main CQAs. Soluplus® successfully produced loratadine nanosuspensions with 

particle size ranging between 168.3-245.35 nm and PDI in the range of 0.12 and 0.25. 

The freeze dried sample with 0.6% Soluplus® (DLNS3) showed an amorphous status of 

loratadine with particle size and PDI in the range of 220±6.23 and 0.21±0.02, 

respectively. Contact angles, surface free energy, and polarity measurements showed an 15 

enhancement of the hydrophilic properties of DLNS3. DLNS3 displayed 121-fold 



saturation solubility and released approximately 57% of loratadine within 15 min. The 

effects of CMPs and CPPs on the CQA were expected by the QbD approach.  
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Introduction:   20 

Recently, particle size reduction to the submicron level has been proved as 

one of the most efficient methods to enhance solubility and dissolution, 

hence the bioavailability of poorly water-soluble drugs. Nanosuspension 

(NS) is an essential part of nanotechnology that produces particles at the 

submicron level stabilized by a suitable type and amount of stabilizer(s). 25 

Generally, two methods can be applied for producing NS; the top-down and 

the bottom-up method with the possibility of combining both methods. On 

the contrary to the top-down, the bottom-up method is based on building up 

the particles from the molecular state of the drug [1,2]. 

Precipitation assisted by ultrasonication is a commonly used as bottom-up 30 

method. The preparation of NS is usually followed by drying procedures, 

such as spray drying and freeze drying, to ensure long-term stability. All the 

parameters related to these processes could have significant effects on the 

properties of NS, such as particle size, particle size distribution, and stability 



in addition to the properties of the dry particles, such as re-dispersibility, 35 

particle size, solubility, etc [3–6]. 

Loratadine (LOR), a second-generation histamine H1 receptor antagonist, is 

the most frequently prescribed antihistamine drug for the treatment of 

allergic conditions. LOR belongs to class II of the biopharmaceutical 

classification system and has a pH-dependent solubility, as a consequence, it 40 

shows low and variable bioavailability. Many techniques have been adopted 

to enhance the solubility and dissolution of LOR, including solid dispersion, 

inclusion with ß-cyclodextrin derivatives, and micellar solubilization [7–11]. 

On the other hand, various drug delivery system such as microparticulated 

and nanoparticulated systems has been introduced to overcome the 45 

inconvenience of the currently used systems [12]. 

In a multivariate production process, all the parameters of the different 

operations should be cautiously selected and their effects on the final 

product must be assessed. In the case of preparing nanosuspension by 

precipitation ultrasonication, all the parameters related to these processes 50 

must be evaluated in addition to the drying procedure. The Quality by 

Design (QbD) approach supports the development of products with a 

predefined quality based on knowledge and risk assessment (RA). For QbD-



based development, it is necessary to identify the critical quality attributes 

(CQAs) which critically influence the predefined quality target product 55 

profile (QTPP). Moreover, the critical material and critical process 

parameters (CMPs and CPPs, respectively) with high impacts on CQAs 

must be defined [13,14].  

In practice, the identification of CQAs, CMPs and CPPs is based on the 

previous practice, and literature knowledge and experience. In a recent study 60 

of our team, we evaluated the preparation of loratadine (LOR) 

nanosuspension by the precipitation ultrasonication method, with the use of 

the most commonly applied stabilizers, including polymers 

(hydroxylpropylmethylcellulose (HPMC), polyvinylpyrrolidone (PVP-

K25)), nonionic surfactant (Tween 80, Pluronic F68) and ionic surfactant 65 

(sodium lauryl sulfate (SLS)) as single or combined stabilizers. In the 

present paper, the authors emphasize the impacts of CMPs, CPPs and the 

effect of using a new material as a stabilizer, e.g. Soluplus®, on the 

production of NS for loratadine. The aim was to demonstrate the efficiency 

of applying the QbD concept in reducing the experimental trials and 70 

predicting the results based on previously determined the CMPs and CPPs. 

Moreover, this study aimed to explore further possibilities for LNS 



stabilization with Soluplus® and evaluate its effect on the CQAs of LNS and 

DLNS.  

2. Materials and methods  

2.1 Materials 75 

Loratadine was purchased from Teva Ltd. (Budapest, Hungary). Soluplus® 

was purchased from BASF (Ludwigshafen, Germany). Ethanol was supplied 

by Spectrum-3D (Debrecen, Hungary) and trehalose dihydrate was supplied 

by Sigma-Aldrich (New York, USA). Water was purified by double 

distillation. 80 

2.2 Methods 

2.2.1 Determination of QbD elements (CQAs, CPPs, and RA) 

Based on prior knowledge, previous studies, preliminary experiments, and 

data from relevant literature, CQAs, CPPs were determined for producing 

LNS. Previous studies led to the selection of particle size, polydispersity, 85 

and zeta potential as CQAs. In the case of DLNS, particle size, 

polydispersity index, solubility, and dissolution properties were determined 

as CQAs. 



The RA was performed with Lean QbD Software® (2014QbD Works LLC., 

Fremont, USA). According to this software, the connections between CQAs, 90 

CMPs and CPPs were evaluated and rated on a three-level scale. This scale 

reflects the impact of their interaction on the product as high (H), medium 

(M) or low (L). Further, Pareto charts were generated by the software, 

presenting the numeric data and the ranking of CQAs, CMPs and CPPs. 

2.2.2 Preparation of loratadine nanosuspension and dried nanoparticles  95 

LNSs were prepared with the precipitation-ultrasonication method. LOR was 

dissolved in ethanol, while Soluplus® was dissolved in water. Both solutions 

were filtered through a 0.45µm filter (FilterBio PES Syringe Filter, Labex 

Ltd., Budapest, Hungary). Afterwards, the drug solution was rapidly 

introduced into pre-cooled antisolvent under sonication using a UP 200s 100 

Ultrasonic processor (HielscheruUltrasonics GmbH, Germany) for 30 min at 

4 °C and 50% amplitude. The temperature of sonication was controlled by 

JulaboF32 (JULABOGmbH,Germany). LNSs were stirred at room 

temperature for 24 h to remove the organic solvent. The selected LNS 

sample was lyophilized with 5% (w/v) trehalose to produce DLNs by using a 105 

ScanVac, CoolSafe™ freeze-dryer (LaboGene, Denmark). The selected LNS 

was lyophilized at −40°C. The solvent was sublimed under a pressure of 

0.01 mbar for 36 h. 



2.2.3 Preparation of physical mixtures 

Physical mixtures (PMs) corresponding to the composition of LNS were 110 

prepared by blending LOR and Soluplus® in a Turbula mixer (Turbula 

System Schatz; Willy A. Bachofen AG Maschinenfabrik, Basel, 

Switzerland) using 60 rpm for 10 minutes with a LOR: Soluplus ratio of 

1:2.4, w/w (PM1). Moreover, PM with trehalose was prepared to figure out 

the effect of the cryoprotectant (PM2) with a LOR: Soluplus: trehalose ratio 115 

of 1:2.4:20, w/w. 

2.2.4 Particle size characterization  

The MPS, PDI, and ZP of LNSs were measured by dynamic light scattering 

using Malvern Nano ZS zetasizer (Malvern Instrument, UK), with water 

used as dispersant and refractive index set to 1.62. The samples were 120 

adequately diluted with distilled water and measured at 25°C and pH 5.77. 

12 parallel measurements were carried out. 

2.2.6 Characterization of dried nanoparticles  

2.2.6.1 Scanning electron microscopy (SEM) 

The morphology of the powder particles was investigated by scanning 125 

electron microscopy (SEM) (Hitachi S4700, Hitachi Scientific Ltd., Tokyo, 



Japan) at 10 kV. The samples were coated with gold-palladium (90 seconds) 

with a sputter coater (Bio-Rad SC 502, VG Microtech, Uckfield, UK) using 

an electric potential of 2.0 kV at 10 mA for 10 min. The air pressure was 

1.3–13.0 mPa. 130 

2.2.6.2 X-ray powder diffraction (XRPD) 

The structure of lyophilized nanoparticles and raw materials was 

characterized using a BRUKER D8 Advance X-ray powder diffractometer 

(Bruker AXS GmbH, Karlsruhe, Germany) with Cu K λI radiation (λ = 

1.5406 Å) and a VÅNTEC-1 detector. The powder samples were scanned at 135 

40 kV and 40 mA, with an angular range of 3° to 40° 2θ, at a step time of 

0.1s and a step size of 0.01°. 

2.2.6.3 Differential scanning calorimetry (DSC)  

The thermal analysis was carried out using a differential scanning 

calorimeter (Mettler Toledo DSC 821e, Mettler Inc., Schwerzenbach, 140 

Switzerland). About 3–5 mg of powder was accurately weighed into DSC 

sample pans, which were hermetically sealed and lid pierced. An empty pan 

was used as a reference in an inert atmosphere under constant argon purge. 

The samples were examined in the temperature interval of 25-300 °C at a 

heating rate of 5 °C min-1. 145 



2.2.6.4 Surface free energy and polarity investigation  

The contact angle, surface free energy (SFE) and polarity of the samples 

were measured. 0.15 g of sample was pressed at 1-ton hydraulic press to 

pastille (PerkinElmer Hydraulic Press; PerkinElmer Inc., Waltham, MA, 

USA). Then, the surface of the pastilles was dripped with polar and non-150 

polar solvents. The contact angle was detected for 30 seconds with 

DataPhysics OCA 20 device (DataPhysics Inc. GmbH, Filderstadt, 

Germany), and then Wu correlation was used. The solvents were distilled 

water (γ p=50.2 mN/m, γ d =22.6 mN/m) and diiodomethane (γ p=1.8 

mN/m, γ d =49 mN/m). 155 

2.2.6.6 Dissolution studies 

The dissolution tests were performed using the modified paddle method 

(USP dissolution apparatus, type II Pharma Test, Hainburg, Germany). 

Samples were tested in 100 mL of PBS (pH 7.4). The paddles were rotated 

at 100 rpm at 37 °C. At a predetermined time, 5-mL aliquots were 160 

withdrawn and filtered. The concentration of LOR was measured 

spectrophotometrically (Unicam UV/VIS Spectrophotometer, Cambridge, 

UK) at ƛmax 248 nm.  

3. Results and discussion 



3.1 Knowledge space development for the precipitation ultrasonication 165 

method 

The development of knowledge space could visualize the overall 

manufacturing process with respect to the selection of CPPs, and the 

definition of the required CQAs [13].  

To adapt to QbD-based development principles, the first step was to define 170 

the required CQAs (Table I), followed by the identification of the CPPs and 

affect the CQAs considering particle size the main factor based on the 

definition of nanosuspension and on its consequences on the other CQAs, 

such as solubility and dissolution (Table II). Afterwards, the RA 

relationships between CQAs and CPPs in addition to the numeric data of 175 

the critical factors and their ranking (Pareto charts) were determined (Fig 1) 

to finally select the optimized CMPs and CPPs that support the achievement 

of the required CQAs. (Table III) shows the optimized CMPs and CPPs 

based on our previous studies [13]. 

3.2 Preparation of nanosuspensions and dry nanoparticles 180 

MPS, PDI and ZP results are summarized in Table IV. The freshly prepared 

LNSs showed a significant reduction in MPS at the range of 168.3 and 

245.35 nm monodispersion with low PDI index. Soluplus® produced LNS 



with the lowest particle size compared to the commonly used stabilizers 

[14]. Soluplus® is an amphiphilic compound that interacted with the 185 

nonpolar surface area of LOR and covered the newly formed surfaces, 

providing steric hindrance to prevent recrystallization from the solution and 

aggregation of the primary particles. Higher concentrations of Soluplus® 

could stabilize the NS more effectively due to weak Ostwald ripening as the 

drug will diffuse slowly from the formed micelles [15]. 190 

The MPS of the three samples were preserved within the nanorange (Table 

V). LNS3 with the smallest MPS was selected for further characterization as 

dry nanoparticles (DLNS3). 

DLNS3 showed a MPS in the order of 220±6.23 nm, PDI range 0.21±0.02 

and ZP of -23.8±4.4 mV after constitution in 5 mL of distilled water. 195 

3.3 Morphology 

SEM images (Fig. 2) showed that LOR had an irregular rod-like crystal 

shape with a particle size above 5 µm and some aggregation emphasized the 

broad distribution of the raw drug. DLNS3 had spherical particles at the 

nanosized scale embedded within the carriers. The effect of stabilizer type 200 

on morphology was expected and confirmed here as Soluplus® produced a 



spherical shape, while F68 and F68 with PVP-K25 produced short rod 

morphologies [14].  

3.4 Structural analysis (DSC and XRPD) 

The thermal behaviors of the pure materials and DLNS3 are shown in Fig.3. 205 

LOR showed a single narrow peak at 134.7 °C corresponding to its melting 

point. The Soluplus® thermogram showed a wide peak, which represents 

water evaporation. PMs showed the crystalline state of LOR, while the 

absence of a LOR peak in DLNS3 indicates the presence of LOR in an 

amorphous state. Fig 4 shows the XRPD spectra of raw materials, PMs and 210 

DLNS3. The characteristic crystalline peaks disappeared in the pattern of the 

dry DLNS3. This revealed the presence of LOR in its amorphous state.  

3.5 Surface free energy and polarity investigation 

Table VI lists the results of polarity and contact angles. Water contact angle 

decreased for PM1, and DLNS3 showed the lowest value, indicating the 215 

highest wetting properties. When diiodomethane was used instead of water, 

DLNS3 showed an increase to 23.1° compared to approximately 13.5 of 

LOR and PM1. The increase in SFE suggests the conversion of the surface 

toward higher polarity. These results were confirmed by measuring the 

polarity%, where DLNS3 showed the highest value (33.65%). 220 



3.6 Solubility and dissolution 

DLNS3 exhibited a marked increase in the solubility and dissolution of LOR 

(Table VII). It showed 59.39 ±5.18 µg/mL with 121-fold enhanced solubility 

compared to LOR that showed a solubility of 0.49±0.001 µg/mL. Two main 

factors are responsible for such enhancement; the reduction in particle size 225 

and the wettability of the polymers. The dissolution of nanoparticles is 

enhanced based on Noyes–Whitney equation [16]. Moreover, Soluplus® can 

create a hydrophilic environment around the drug nanoparticles. PMs 

showed higher solubility than LOR due to the wettability enhancement of 

Soluplus®. However, trehalose slightly affects the solubility of LOR as the 230 

solubility of PM2 was comparable to that of PM1. 

Fig.5 shows the dissolution profiles of the samples. LOR exhibited low drug 

release, less than 2% within the first 15 min, and the maximum release was 

approximately 5% after 2 h. PM1 and PM2 showed a release of 4.7 and 7% 

after 2 h, respectively. On the contrary, release from DLNS3 was high, 235 

approximately 57% in the first 15 min and 80% after 2 h. 

Table VIII lists %DE values for different time periods in addition to MDT 

and RD60. At 30 min, the DE value of the drug is only 1.6% with a low 

value also for PMs, while DLNS3 showed a high release of 47.0%. Similar 



increments were observed at 60 and 120 min with a maximum DE shown by 240 

DLNS3 at 120 min (67.3%). Moreover, RD60 of DLNS3 showed an 

observed enhancement compared to PMs. On the other hand, MDT showed a 

maximum reduction with DLNS3. which emphasized the faster dissolution 

of the nanoscale formulation. 

Conclusion 245 

QbD showed an efficient tool for predicting the product’s quality. The use of 

risk analysis for selecting high-risk factors and the further evaluation of 

those factors save time and costs by providing the visual identification of 

high-risk factors. The high impact relationships between CMPs, CPPs and 

CQAs that were suggested by the QbD based approach were proved by 250 

studying the effects of changing the stabilizer type. Compared to the 

previously used stabilizers (e.g. HPMC, PVP-K25, F68, Tween 80 and 

SLS), Soluplus® showed an expected difference in particle size, particle size 

distribution, zeta potential, morphology, dissolution and solubility with 

preferred effects related to lower particle size, higher zeta potential, thus 255 

stability, higher dissolution rate and immense solubility enhancement.  
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