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Abstract. In discrete tomography sometimes it is necessary to reduce
the number of projections used for reconstructing the image. Earlier, it
was shown that the choice of projection angles can significantly influence
the quality of the reconstructions. In this study, we apply convolutional
neural networks to select projections in order to reconstruct the original
images from their sinograms with the smallest possible error. The train-
ing of neural networks is generally a time-consuming process, but after
the network has been trained, the prediction for a previously unseen in-
put is fast. We trained convolutional neural networks using sinograms
as input and the desired, algorithmically determined k-best projections
as labels in a supervised setting. We achieved a significantly faster pro-
jection selection and only a slight increase in the Relative Mean Error
(RME).
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1 Introduction

In the field of image processing, the selection of the appropriate projections plays
a key role in the reconstruction of binary images. Computed Tomography [4, 8]
generates the 2D cross-section images of 3D objects using its projections taken
from different directions. The object itself may be regarded as a 3D function
representing the X-ray attenuation value at each point of the object, while pro-
jections are the line integrals of this function measured on the path of the X-ray
beams, turned into a vector. Gathering all the projections from the different di-
rections, we get the sinogram of an object. In most cases, hundreds of projections
are needed to produce a high quality reconstruction. However, in some cases, it
is not possible to gather a large number of projections, due to physical and/or
time limitations.

Discrete tomography [5, 6] employs the assumption that the cross-section
image to be reconstructed contains only a few different intensities which are

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by SZTE Publicatio Repozitórium - SZTE - Repository of Publications

https://core.ac.uk/display/228382674?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 G. Pap and G. Lékó et al.

known in advance. This allows us to reconstruct the object with a smaller set of
projections and still get an acceptable quality. The purpose of binary tomography
is to reconstruct objects containing only one type of material in a non-destructive
way. The slices of a binary object can be represented by binary matrices (images),
where 1 and 0 denote the presence and the absence of the material, respectively.
The range of choice in the case of a small number of projections (say, 20 at most)
is quite large.

In [14, 19] the authors showed that in most of the cases, the correct selection
of the projection angles has a big impact on the reconstruction quality. It means
that it is important to find the most informative angles for the reconstruction.
There are two main types of projection selection, namely offline and online. In
the former case, the sampled angles are known and the projections have already
been acquired, i.e. we have a so-called blueprint data [18, 13]. In the latter case,
the number of projections in not known in advance. However, one can define
an upper threshold for the projection number. The adaptive projection selection
algorithms allow one to perform dense sampling in the information-rich areas
and sparse sampling in the information-poor areas [3, 2, 1].

The previously mentioned papers provide a good overview of the available
approaches for finding the most informative angles. All of these algorithms fo-
cus on solving the problem of projection selection using procedural algorithms.
Recently, deep learning approaches, especially Convolutional Neural Networks
(CNNs) have achieved tremendous success in various fields such as classification
[12], segmentation [15], denoising [20], super resolution [10, 16] and removing
low-dose related CT noise [9]. Although neural networks are widely used in im-
age processing tasks, in the current literature we could not find any studies
that concentrate on how to solve the task of projection selection using machine
learning algorithms, or any general process in which CNNs could replace a step
regarding reconstruction.

The main aim of this paper is to show that neural networks are capable of
solving a complex task like projection selection without any reconstruction step
(and to significantly decrease the running time of this process for the online
scenario).

The structure of the paper is the following. In Section 2, we briefly describe
artificial and convolutional neural networks, and in Section 3 we outline the
methods that we used for projection selection using CNNs. In Section 4, we
provide details about our experimental frameset. In Section 5, we describe how
the evaluation of our method was performed, while in Section 6 we present the
experimental results. Finally, in Section 7 we draw some conclusions and make
some suggestions for future research.

2 Artificial and Convolutional Neural Networks

Artificial neural networks have provided an efficient and reliable tool for statis-
tical pattern recognition. Neural networks are capable of learning many tasks
in the diverse field of computer science and they are also applied frequently to
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other related disciplines. CNNs generally make use of convolutional layers (2
dimensional in the case of binary images) in which he convolutional neurons
respond to a predefined window of perception. Each neuron has its kernel and
these kernels are convolved with the image data. After computation with every
possible position with its step size, a pooling layer is applied, which computes
the maximum (or in some cases the average) of the convolved features. This is
necessary to reduce the parameter space and to make the features translation
invariant. After the desired number of convolutional and pooling layers, the col-
lected activation values are flattened and connected to a dense neural network,
which attempts to solve a classic machine learning task (e.g. classification or
regression).

3 Methods using CNN for projection selection

Since our input for training consists of sinograms, which can be considered as
2D images, we decided to apply Convolutional Neural Networks. The sinograms
extracted from the original images were 91 pixels for each projection direction,
which formed an 180 × 91 sized image. The intensity ranges lay between 0-91,
so we normalized all of our data by dividing by 91. Reducing input shape by a
scaling factor was also experimented with, but we did not notice any improve-
ment regarding accuracy. Based on this observation, we thought about increas-
ing the size of the input parameters, which we also explored using 32760 and
65160 points of data as the source of the training set. These trials were prone to
overfitting despite the strict regularisation and normalisation methods applied
(dropout [17], batch normalisation [7]). To sum up, 180 by 91 pixels seems to be
the optimal size for training the networks, as smaller input features decreased
the accuracy of the reconstructions, while larger input spaces led to overfitting
(not to mention the increase in training time and memory requirements).

Fig. 1 summarizes the main steps of our method. First, the CNN takes a
sinogram as input and a dense classifier connected to it outputs 180 activation
values, corresponding to the available directions. Next, these values are thresh-
olded to get the minimum number of projections required for each entity. Since
we might end up with more than the required number of projections, a K-means
clustering is applied to determine the exact angles to be used in the reconstruc-
tion process. We found that the output values of the sigmoid units responsible
for angles close to the ground truth are relatively high, which makes clustering
them a necessary step. (e.g. often 89-90-91-92 are essential for precise recon-
struction, but only one of them should be chosen. Lastly, calculating the RME
between the original image and the images reconstructed using the labels, pre-
dictions and equiangular projections gives an estimate of the effectiveness of the
selection procedure.
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Fig. 1: Our proposed pipeline. The input for the CNN is a sinogram, while the output of
the network is 180 activation values (one for each direction) upon which we threshold
and use K-means clustering. Afterwards, we reconstruct the images and calculate the
RME.

4 Test Frameset

Our image database consisted of 8983 phantoms (icons) of varying structural
complexity, each with size 64 × 64 pixels. To create the train dataset, we per-
formed a modified version of the SFS (Sequential Forward Selection) method
[13]. We started the algorithm without initial angles, which resulted in the first
two being selected by the algorithm the same way as it would choose in the case
of a bigger number of angles. We did not quite follow the method described in
the article, because we ran this algorithm just once, instead of their 18 Multi-
start. The reason for these changes is that the SFS’s running time was much too
long for 8983 images. Furthermore, with this approach we obtained the sequence
of the most informative angles. They turned out to be feasible owing to the fact
that many of the experiments needed to be done with a different number of label
projections (e.g. 4-8). Therefore only having as many projections as needed for
the label data could be done without losing the valuable data contained in the
algorithmically selected and ordered labels. The labels stored the information
in descending order, with the first containing the angle with the most valuable
information for minimising the reconstruction error. This way of selecting projec-
tions resulted in having only a local optimum with the most informative angles
instead of calculating a global one. However, in our case the former was also as
applicable to the given task as the latter.

For the projection selection we used the same setup as the authors in [13],
except for the above-mentioned changes in the SFS algorithm. For the validation
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of our CNN, the reconstructions were performed using the thresholded version
of the skimage python package’s SART [4] algorithm. The output of SART is an
image with intensity values around 0 and 1. The quality of the reconstructions
using the predictions was measured with the Relative Mean Error (RME) defined
as

RME(x∗,y) =

∑
i |xi

∗ − yi|∑
i xi

∗ , (1)

where x∗ is the blueprint (original image) and y is the reconstructed image.
Our experiments were all performed on 4 NVIDIA Tesla K10 GPUs for equal
measurement conditions.

5 Evaluation

Standard evaluation methods used for scoring neural network predictions might
be misleading in the case of a task like this. The reason for this is that a label
mostly depends on the basic geometrical properties of the input image and it
might generate some artifacts resulting from degree-favouritism (selection of
common projections such as 0 or 90) or it might find equiangular projections to
be the best predictions. The latter might be regarded as the closest one to every
possible label projection, but this produces sub-optimal reconstructions.

The main purpose of projection selection procedure is to outperform the
Naive equiangular [18] approach by choosing the required angles in order to
achieve a lower reconstruction error. To further investigate this issue and to get
a better understanding of the selected projections, our method was compared
to both the algorithmically selected projection angles, and to the equiangular
angle set calculated as i 180

◦

P | i = 0, . . . , P − 1, where P denotes the number
of projections used in each case. We will simply refer to the former projection
selection method as Label (as it was the training objective of our neural nets)
and the latter as Naive, following the authors of [18].

Here, 10-fold cross-validation [11] was used during the training of our network
and we based our RME values and other statistical calculations on these runs.

6 Results

In Table 1, we present the RME and Standard Deviation (STD) values of the
different methods with 4-6-8 angles, respectively. The / symbols denote when
the differences are statistically significant ( ) or not ( ), using a t-test with a
significance level of 0.05. The results are statistically significant only with 8 pro-
jections. The RME values computed from the label projections are naturally the
smallest of the three, followed by our CNN approach. The equiangular approach
produces the highest RMEs, meaning that the reconstructed images differed
from the original ones the most using the Naive angle set. Using our 10-fold
cross-validation test evaluations we analyzed the RME values obtained using
the 3 methods with 4 projections. We also present our findings in Table 2. In 37
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cases our CNN managed to predict a set of projections that was as good as the
labels. We note here that these values are from the test set containing examples
never encountered during the training of the model. We should add that the
more angles we have, the closer we will be to the equiangular approach in terms
of minimising the RME. Some of the reconstruction results with the RME values
can be seen in Fig. 2 with 8 projections. As can be seen, our algorithm runs an
order of magnitude faster than the modified SFS algorithm.

Table 1: Average of RME and Standard Deviation values calculated from 10 runs for
the three different approaches. The significance values were computed pairwise for
Naive-Label, Label-CNN and Naive-CNN and the significant statistical differences are
presented column-wise with the symbols of / .

4 projections Label CNN Naive

RME 0.3817 0.4015 0.4912
STD 0.2078 0.2189 0.2903

6 projections Label CNN Naive

RME 0.3196 0.3430 0.3866
STD 0.1723 0.1723 0.2341

8 projections Label CNN Naive

RME 0.2746 0.2940 0.3128
STD 0.1842 0.2174 0.2312

Table 2: The number of images on which the 3 distinct methods gave the smallest RME
values are shown along the diagonal. The other cells show where two approaches gave
the same RME value.

4 projections Label CNN Naive

Label 4676 37 19

CNN 37 3096 14

Naive 19 14 1141

7 Conclusions

In this study, we trained a Convolutional Neural Network to select projections
for the accurate reconstruction of binary tomography images. After training,
prediction is achieved using K-means clustering to get a smaller set of projection
data. After comparing the procedural algorithm and the results obtained using a
neural network, we observed only a small increase in the RME values compared
to the reconstructions from label projections (but performance-wise we achieved
a notable improvement with the former). We found that CNNs can be applied
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(a) (b) 0.2113 (c) 0.1090 (d) 0.1428

(a) (b) 0.1766 (c) 0.2339 (d) 0.2982

(a) (b) 0.4330 (c) 0.4168 (d) 0.3692

Fig. 2: Reconstruction from 180 projections (a), results of the Label (b), the CNN
approach (c) and the Naive approach (d). The values under the figures are the RME
values compared to (a). The first row shows a case where the CNN selected the most
informative projections. Reconstructing from labels produced the smallest RME in the
second row. The last row showcases one image when the equiangular set gave the best
score.
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to projection selection tasks by training in a multilabel classification scenario.
To the best of our knowledge, this was the first attempt to predict projections of
binary images for reconstruction using CNNs and to perform projection selection
without any reconstruction step. In the future, we intend to include various
projection selection problems and approaches originating from different CT or
tomography methods.
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