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ON INVARIANT SETS IN LAGRANGIAN GRAPHS

XIAOJUN CUI LEI ZHAO

ABSTRACT. In this exposition, we show that a Hamiltonian is always constant on a
compact invariant connected subset which lies in a Lagrangian graph provided that the
Hamiltonian and the graph are smooth enough. We also provide some counterexamples
for the case that the Hamiltonians are not smooth enough.

1. INTRODUCTION

Let M be a closed, connected C'°° manifold of dimension d, and T*M be the cotangent
bundle of M. We always assume that Hamiltonian 7*M — R is C" smooth (r > 1).
We denote the associated Hamiltonian vector field and Hamiltonian flow by Xz and ¢},
respectively.

In Hamiltonian dynamics, the following result is well known:

Let I be an invariant (under the Hamiltonian flow ¢!;) C'! Lagrangian graph,
then H is constant on I'.

In fact, if T" is only Lipschitz, the result still holds [7], i.e.,

Proposition 1. Let I' be an invariant (under the Hamiltonian flow ¢';) Lipschitz La-
grangian graph, then H is constant on I

We always assume the Lagrangian graphs we consider are at least C', unless other
stated. After this proposition, it is naturally then to pose the following problem:

Problem 1.1. If A is a compact, connected, invariant (under ¢%;) set, and A C T', then
is H constant on A?
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In the case A # I', the answer to this problem is not obvious, since the structure of A
could be very complicated. We will study this problem concretely in this short exposition.

We denote the projection of A into M by Ag.

More precisely, we have:

Theorem 1. If h(q) := H(q,T(q)) € C**(M,R) with d > d, ord =d—1 and s = 1,
then H is constant on A.

Remark 1.1. Actually the conclusion of the former theorem still holds under weaker con-
ditions, for example h € C4-1.Zvgmund i o the d — 1 order derivatives of h is smooth in
the sense of Zygmund (see [6] for details).

We say I is a Lipschitz Lagrangian graph, if I' coincides with the differential of a C'':!
function locally. Then, we have

Remark 1.2. In the case of 1 degree of freedom, one can show that if A is a compact,
connected, invariant set under ¢f;, and A lies in a Lipschitz Lagrangian graph, then H|j
is constant.
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Remark 1.3. If Ag admits some special structures, e.g., Lipschitz lamination, lower Haus-
dorff dimension, semi-analytic or semi-algebraic, then H is still constant on A under some
weaker (than Theorem 1) smooth hypothesis. We refer to [3],[4], for more details.

Among these cases stated in Remark 1.3, the most interesting case is

Theorem 2. If for any two points in A, there is a rectifiable path in A which connects
them, then H is constant on A.

In the case that H is not so smooth, we have the following:

Theorem 3. Assume thatd > 2. Ford <d—1ands€[0,1] ord =d—1 and s € [0,1)
, there exist examples with H € C%*(T*M,R) such that H is non constant on A.

Remark 1.4. These examples show that the condition in Theorem 1 is optimal in some
sense.

2. PROOF OF THEOREM 1

The following lemma, is an easy consequence of the flow-invariance of A:
Lemma 2.1. If I is C' smooth, then A is contained in the critical set of h.

Proof. We will prove dh(qy) = 0 for any point gy € Ag. For this, we only need to show
that dh(qo) - v = 0 for any v € T;)M. Now we also regard I" as a map from M to T*M,
then dh(qo) - v = dH(qo,1'(q0)) - T«v, here T'wv € Tig r(go) - Since A is invariant under
the flow ¢%;, we have Xy (qo,T(qo0)) € T(qo.T (o))~ Note that Tiy 1T is a Lagrangian
subspace, we have

dh(qo) - v =dH(qo,T'(q0)) - T'wv = —w(Xg,T\v) = 0.

Clearly, we may generalize Lemma 2.1 to

Lemma 2.2. If I' is Lipschitz, then every differentiable points contained in Ag is critical
for h.

Now we begin to prove Theorem 1.

Suppose H is not constant on A. This means that h is not constant on its critical point
set Ag. Note that Ag is connected, so the Lebesgue measure of the set of critical values of
h is positive. This contradicts to Bates’ improved Morse-Sard’s theorem [1].

3. PROOF OF THEOREM 2

Of course, it is a direct consequence of Norton’s improved Morse-Sard’s theorem [4].
However, we present a slightly different proof here.

For any two points (¢1,p1), (g2, p2) on A, denote by 3 the rectifiable path connects them.
Note that 3 € A, and A is invariant, so dH - §(t) = 0, at each differential point, (here, we
choose t as the parameter of arc length). Thus

H((g2.p2)) — H((g1.p1)) = / dH - (1) = 0.
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4. PROOF OF THEOREM 3

In [9], Whitney constructed a function f(¢) € C4 ! on d (> 2) dimension manifold M
such that there exists a connected set Ag with df(q) = 0 for every g € Ag, but f is not
constant on Ag. In [5], Norton showed more in this direction the existence of a large class
of Whitney-type examples for f € C4 1% with 0 < s < 1.

By using these Whitney-Norton type examples, we can construct examples Theorem 3
required.

In fact, for any s € [0, 1), there exists a C% 1 function f(q) and a connected subset
Ap C M such that df(q) = 0, Vg € Ag, but f(g) is not constant on Ag. Moreover, we
may assume that Ag is contained in a coordinate neighborhood U, by changing f outside
if necessary. Shrinking U if necessary, we may introduce an auxiliary C*° Riemannian
metric g such that g is Euclidiean on U.

Now we define the Hamiltonian:

H(g.p) = F(a) + 5ol

where
q= (QIJJ%“‘ 7Qd)7p = (p17p27"' 7pd)

are local coordinates of T*M, and | - | is induced by the Riemannian metric g. The
Hamiltonian equation is:

. 9H(q,p) . 0H(q,p)
_ — —— = h(qg).
o9 p, P 9 (q)
Let A = (Ao, 0), then A is contained in the zero section of 7M. It is easy to check that
A is invariant under the flow ¢%,. But H|p = h|a, is not constant by the definition of f.

Remark 4.1. If, we take Hamiltonian to be
1 2
H(g.p) = f(a) + 5lp =TI,
here T" is any Lagrangian graph, then the required invariant critical set A C T

Remark 4.2. In this example, the invariant set A consists only of fixed points. In fact, we
can also construct examples such that A support non-Dirac measures:

For instance, consider the standard 4-torus. Let f(q1, g2, q3) be a function of Whitney-
Norton type on 3-sub-torus, (denote the associated connected critical set by Aj), as dis-
cussed above. Now let the Hamiltonian be

1
H(q1, 42,43, qa, 1,2, D3, 1) = F(q1,q1,03) + g(p% +p3+ 5+ (pa+ 1)),

then Ag = Ay x T is the required projected invariant set, and

A= {(q17q27Q37q470707070) : (Q1,Q2aQ3) € Al}

Clearly, A is contained in the zero section, and the Hamiltonian flow is not stationary on

A.

5. PROBLEMS

In the example in Theorem 3, the section is C°°, but the Hamiltonian H is finite
smooth. It is more interesting if one can construct counterexamples with infinitely smooth
Hamiltonian and finite smooth Lagrangian graph. For this purpose, we pose the following
problems:
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Problem 5.1. Can one construct an explicit example of H of C°°, which admits a com-
pact, connected invariant set A in a Lagrangian graph I' of finite smooth, such that H is
not constant on A?

We call a graph I' is C%* Lagrangian, if I" coincides with a differential of a C'* function
locally. As a negative side of Proposition 1, we also pose

Problem 5.2. Can one construct an explicit example of H, which admits an invariant
C%* (here 0 < s < 1) Lagrangian graph T', such that H is not constant on I'?

Remark 5.1. For Tonelli Hamiltonians, solutions of the associated Hamilton-Jacobi equa-
tion have the following nice property: a C' solution must be CY!', [2]. So, if one can
construct a C%% (0 < s < 1)), non-Lipschitz invariant (under the flow of ¢%;, H is Tonelli
Hamiltonian) Lagrangian graph I', then H is not constant automatically.

6. APPENDIX

In this appendix, we give a proof of Proposition 1, which is slightly different from [7].

Let h be the function as in Theorem 1, then A is a Lipschitz function on M, and
dh = 0 at any differentiable point. For any two points qg, g1, we can choose an absolutely
continuous curve v : [0,1] — M with v(0) = qo,7(1) = ¢1 and h is differentiable on ~
almost everywhere. Hence, h(qy) = h(q1). Thus, h constant on M, and H is constant on
I", consequently.a
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