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ON INVARIANT SETS IN LAGRANGIAN GRAPHS

XIAOJUN CUI LEI ZHAO

Abstract. In this exposition, we show that a Hamiltonian is always constant on a
compact invariant connected subset which lies in a Lagrangian graph provided that the
Hamiltonian and the graph are smooth enough. We also provide some counterexamples
for the case that the Hamiltonians are not smooth enough.

1. Introduction

Let M be a closed, connected C∞ manifold of dimension d, and T ∗M be the cotangent
bundle of M . We always assume that Hamiltonian T ∗M → R is Cr smooth (r ≥ 1).
We denote the associated Hamiltonian vector field and Hamiltonian flow by XH and φt

H

respectively.
In Hamiltonian dynamics, the following result is well known:
Let Γ be an invariant (under the Hamiltonian flow φt

H) C1 Lagrangian graph,
then H is constant on Γ.

In fact, if Γ is only Lipschitz, the result still holds [7], i.e.,

Proposition 1. Let Γ be an invariant (under the Hamiltonian flow φt
H) Lipschitz La-

grangian graph, then H is constant on Γ.

We always assume the Lagrangian graphs we consider are at least C1, unless other
stated. After this proposition, it is naturally then to pose the following problem:

Problem 1.1. If Λ is a compact, connected, invariant (under φt
H) set, and Λ ⊆ Γ, then

is H constant on Λ?

In the case Λ 6= Γ, the answer to this problem is not obvious, since the structure of Λ
could be very complicated. We will study this problem concretely in this short exposition.

We denote the projection of Λ into M by Λ0.
More precisely, we have:

Theorem 1. If h(q) := H(q,Γ(q)) ∈ Cd′,s(M,R) with d′ ≥ d, or d′ = d − 1 and s = 1,
then H is constant on Λ.

Remark 1.1. Actually the conclusion of the former theorem still holds under weaker con-
ditions, for example h ∈ Cd−1,Zygmund, i.e., the d − 1 order derivatives of h is smooth in
the sense of Zygmund (see [6] for details).

We say Γ is a Lipschitz Lagrangian graph, if Γ coincides with the differential of a C1,1

function locally. Then, we have

Remark 1.2. In the case of 1 degree of freedom, one can show that if Λ is a compact,
connected, invariant set under φt

H , and Λ lies in a Lipschitz Lagrangian graph, then H|Λ
is constant.

The first author is supported by National Natural Science Foundation of China (Grant 10801071) and
research fellowship for postdoctoral researchers from the Alexander von Humboldt Foundation.

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by OPUS Augsburg

https://core.ac.uk/display/228382038?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://arxiv.org/abs/0911.5720v3


2 XIAOJUN CUI LEI ZHAO

Remark 1.3. If Λ0 admits some special structures, e.g., Lipschitz lamination, lower Haus-
dorff dimension, semi-analytic or semi-algebraic, then H is still constant on Λ under some
weaker (than Theorem 1) smooth hypothesis. We refer to [3],[4], for more details.

Among these cases stated in Remark 1.3, the most interesting case is

Theorem 2. If for any two points in Λ, there is a rectifiable path in Λ which connects
them, then H is constant on Λ.

In the case that H is not so smooth, we have the following:

Theorem 3. Assume that d ≥ 2. For d′ < d− 1 and s ∈ [0, 1] or d′ = d− 1 and s ∈ [0, 1)

, there exist examples with H ∈ Cd′,s(T ∗M,R) such that H is non constant on Λ.

Remark 1.4. These examples show that the condition in Theorem 1 is optimal in some
sense.

2. Proof of Theorem 1

The following lemma is an easy consequence of the flow-invariance of Λ:

Lemma 2.1. If Γ is C1 smooth, then Λ0 is contained in the critical set of h.

Proof. We will prove dh(q0) = 0 for any point q0 ∈ Λ0. For this, we only need to show
that dh(q0) · v = 0 for any v ∈ Tq0M . Now we also regard Γ as a map from M to T ∗M ,
then dh(q0) · v = dH(q0,Γ(q0)) · Γ∗v, here Γ∗v ∈ T(q0,Γ(q0))Γ. Since Λ is invariant under

the flow φt
H , we have XH(q0,Γ(q0)) ∈ T(q0,Γ(q0))Γ. Note that T(q0,Γ(q0))Γ is a Lagrangian

subspace, we have

dh(q0) · v = dH(q0,Γ(q0)) · Γ∗v = −ω(XH ,Γ∗v) = 0.

�

Clearly, we may generalize Lemma 2.1 to

Lemma 2.2. If Γ is Lipschitz, then every differentiable points contained in Λ0 is critical
for h.

Now we begin to prove Theorem 1.
Suppose H is not constant on Λ. This means that h is not constant on its critical point

set Λ0. Note that Λ0 is connected, so the Lebesgue measure of the set of critical values of
h is positive. This contradicts to Bates’ improved Morse-Sard’s theorem [1].

3. Proof of Theorem 2

Of course, it is a direct consequence of Norton’s improved Morse-Sard’s theorem [4].
However, we present a slightly different proof here.

For any two points (q1, p1), (q2, p2) on Λ, denote by β the rectifiable path connects them.

Note that β ∈ Λ, and Λ is invariant, so dH · β̇(t) = 0, at each differential point, (here, we
choose t as the parameter of arc length). Thus

H((q2, p2))−H((q1, p1)) =

∫
dH · β̇(t) = 0.
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4. Proof of Theorem 3

In [9], Whitney constructed a function f(q) ∈ Cd−1 on d (≥ 2) dimension manifold M

such that there exists a connected set Λ0 with df(q) = 0 for every q ∈ Λ0, but f is not
constant on Λ0. In [5], Norton showed more in this direction the existence of a large class
of Whitney-type examples for f ∈ Cd−1,s with 0 ≤ s < 1.

By using these Whitney-Norton type examples, we can construct examples Theorem 3
required.

In fact, for any s ∈ [0, 1), there exists a Cd−1,s function f(q) and a connected subset
Λ0 ⊂ M such that df(q) = 0, ∀q ∈ Λ0, but f(q) is not constant on Λ0. Moreover, we
may assume that Λ0 is contained in a coordinate neighborhood U , by changing f outside
if necessary. Shrinking U if necessary, we may introduce an auxiliary C∞ Riemannian
metric g such that g is Euclidiean on U .

Now we define the Hamiltonian:

H(q, p) = f(q) +
1

2
|p|2,

where

q = (q1, q2, · · · , qd), p = (p1, p2, · · · , pd)

are local coordinates of T ∗M , and | · | is induced by the Riemannian metric g. The
Hamiltonian equation is:

q̇ =
∂H(q, p)

∂p
= p, ṗ = −

∂H(q, p)

∂q
= h(q).

Let Λ = (Λ0, 0), then Λ is contained in the zero section of T ∗M . It is easy to check that
Λ is invariant under the flow φt

H . But H|Λ = h|Λ0
is not constant by the definition of f .

Remark 4.1. If, we take Hamiltonian to be

H(q, p) = f(q) +
1

2
|p− Γ|2,

here Γ is any Lagrangian graph, then the required invariant critical set Λ ⊂ Γ.

Remark 4.2. In this example, the invariant set Λ consists only of fixed points. In fact, we
can also construct examples such that Λ support non-Dirac measures:

For instance, consider the standard 4-torus. Let f(q1, q2, q3) be a function of Whitney-
Norton type on 3-sub-torus, (denote the associated connected critical set by Λ1), as dis-
cussed above. Now let the Hamiltonian be

H(q1, q2, q3, q4, p1, p2, p3, p4) = f(q1, q1, q3) +
1

2
(p21 + p22 + p23 + (p4 + 1)2),

then Λ0 = Λ1 × T is the required projected invariant set, and

Λ = {(q1, q2, q3, q4, 0, 0, 0, 0) : (q1, q2, q3) ∈ Λ1}.

Clearly, Λ is contained in the zero section, and the Hamiltonian flow is not stationary on
Λ.

5. Problems

In the example in Theorem 3, the section is C∞, but the Hamiltonian H is finite
smooth. It is more interesting if one can construct counterexamples with infinitely smooth
Hamiltonian and finite smooth Lagrangian graph. For this purpose, we pose the following
problems:
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Problem 5.1. Can one construct an explicit example of H of C∞, which admits a com-
pact, connected invariant set Λ in a Lagrangian graph Γ of finite smooth, such that H is
not constant on Λ?

We call a graph Γ is C0,s Lagrangian, if Γ coincides with a differential of a C1,s function
locally. As a negative side of Proposition 1, we also pose

Problem 5.2. Can one construct an explicit example of H, which admits an invariant
C0,s (here 0 ≤ s < 1) Lagrangian graph Γ, such that H is not constant on Γ?

Remark 5.1. For Tonelli Hamiltonians, solutions of the associated Hamilton-Jacobi equa-
tion have the following nice property: a C1 solution must be C1,1, [2]. So, if one can
construct a C0,s (0 ≤ s < 1)), non-Lipschitz invariant (under the flow of φt

H , H is Tonelli
Hamiltonian) Lagrangian graph Γ, then H is not constant automatically.

6. Appendix

In this appendix, we give a proof of Proposition 1, which is slightly different from [7].
Let h be the function as in Theorem 1, then h is a Lipschitz function on M , and

dh = 0 at any differentiable point. For any two points q0, q1, we can choose an absolutely
continuous curve γ : [0, 1] → M with γ(0) = q0, γ(1) = q1 and h is differentiable on γ

almost everywhere. Hence, h(q0) = h(q1). Thus, h constant on M , and H is constant on
Γ, consequently.a
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