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Abstract 
 
Emotional sounds and their localization are influential stimuli that we need to process all along our 

life. Affective information contained in sounds is primordial for the human social communications and 

interactions. Their accurate localization is important for the identification and reaction to 

environmental events. This thesis investigate the encoding of emotional sounds within auditory areas 

and the amygdala (AMY) using 7 Tesla fMRI. 

 

In a first experiment, we studied the encoding of emotion and vocalization and their integration in 

early-stage auditory areas, the voice area (VA) and the AMY. We described that the response of the 

early-stage auditory areas was modulated by the vocalization and by the affective content of the 

sounds, and that this affective modulation is independent of the category of sounds. In contrast, AMY 

process only the emotional part, while VA is responsible for the processing of the emotional valence 

specifically for the human vocalization (HV) categories. Finally, we described a functional correlation 

between VA and AMY in the right hemisphere for the positive vocalizations only.  

 

In a second experiment, we investigated how the spatial origin of an emotional sound (HV or non-

vocalizations) modulated its processing within early-stage auditory areas and VA. We highlighted a 

left hemispace preference for the positive vocalizations encoded bilaterally in the primary auditory 

cortex (PAC). Moreover, comparison with the first study indicated that the saliency of emotional 

valence could be increased by spatial cues, but that the encoding of vocalization is not impacted by the 

spatial context. 

 

Finally, we examined the functional correlations between early-stage auditory areas and VA and how 

they are modulated by the sound category, the valence and the lateralization. We documented a strong 

coupling between VA and early-stage auditory areas during the presentation of emotional HV, but not 

for other environmental sounds. The category of sound modulated strongly the functional correlations 

between VA, PAC and auditory belt areas, while the spatial positioning induced only a weak 

modulation and no modulation was caused by the affective content.  

 

Overall, these studies demonstrate that the affective load modulates the processing of sounds within 

VA only for HV, and that this preference for vocalizations impacts the functional correlations of VA 

with other auditory regions. This strengthens the importance of VA as a computation hub for the 

processing of emotional vocalizations. 
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Résumé 
 
Les sons émotionnels ainsi que leur localisation sont des stimuli importants que nous devons traiter 

tout au long de notre vie. L’information affective contenue dans les sons est primordiale pour les 

communications et interactions sociales. Leur localisation correcte est importante pour l’identification 

et la réaction par rapport aux événements nous entourant. Cette thèse étudie l’encodage des sons 

émotionnels dans les aires auditives et l’amygdale (AMY) en utilisant l’IRM fonctionnel à 7 Tesla. 

 

Dans une première expérience, nous avons étudié l’encodage des émotions et des vocalisations, ainsi 

que leur intégration dans les aires auditives primaires et non-primaires, dans l’aire des voix (VA) et 

dans AMY. Nous avons décrit que la réponse des aires auditives primaires et non-primaires étaient 

modulées par les vocalisations ainsi que par le contenu affectif des sons, et que cette modulation 

affective était indépendante de la catégorie sonore. En revanche, AMY traite uniquement la partie 

émotionnelle, tandis que la VA est responsable du traitement de la valence émotionnelle 

spécifiquement pour les vocalisations humaines (HV). Finalement, nous avons décrit une corrélation 

fonctionnelle entre VA et AMY dans l’hémisphère droit pour les vocalisations positives uniquement.  

 

Dans une seconde expérience, nous avons cherché à comprendre de quelle manière l’origine spatiale 

d’un son émotionnel (HV et non-vocalisations) modulait son traitement dans les aires auditives, 

primaires et non-primaires, et VA. Nous avons mis en évidence une préférence de l’hémi-champ 

gauche pour les vocalisations positive encodées bilatéralement dans le cortex auditif primaire (PAC). 

De plus, une comparaison avec la première étude a indiqué que l’importance de la valence 

émotionnelle pourrait être augmentée grâce aux indices spatiaux, mais que l’encodage des 

vocalisations n’étaient pas impacté par le contexte spatial.  

 

Finalement, nous avons examiné les corrélations fonctionnelles entre les aires auditives primaires, 

non-primaires et VA afin d’évaluer de quelle manière elles étaient modulées par la catégorie sonore, la 

valence et la latéralisation. Nous avons mis en évidence un fort couplage entre VA et les aires 

auditives primaires et non-primaires durant la présentation des HV émotionnelles, mais cet effet n’était 

pas présent pour les autres sons environnementaux. La catégorie sonore modulait fortement les 

corrélations fonctionnelles entre VA, PAC et les régions auditives latérales, alors que le 

positionnement spatial n’influençait que faiblement leur modulation. De plus, il n’y avait pas de 

modulation causée par le contenu affectif. 

 

En résumé, ces études démontrent que le contenu affectif module le traitement des sons dans VA 

uniquement pour les HV, et que cette préférence pour les vocalisations a un impact sur les corrélations 
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fonctionnelles de cette région avec les autres régions auditives. Cela souligne l’importance de VA 

comme centre computationnel pour le traitement des vocalisations émotionnelles.  
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1 Introduction  
 

1.1 General introduction 

 
Sounds, and in particular emotional sounds are highly relevant information that we need to process 

all along our life. These meaningful sounds are crucial for social communication as well as for 

everyday life in our environment. Affective auditory information can be conveyed by many different 

sound sources spanning from human voices to traffic noises. The former being part of innate 

emotional communication while the latter is part of specific environmental sounds inducing 

emotional feelings specific to each person and its background. Processing of emotional sounds allow 

us to categorize everyday sounds to have an appropriate behavioural response, protect us from 

danger, and allow social interactions. If you hear the sound of an explosion, your brain will react by 

preparing you to run away, on the other hand, your own child laughing will induce in you a positive 

feeling. Besides the affective component, the localization of auditory objects is the key factor 

making sounds so influential in our life. In humans, the most developed and used sense is the vision, 

however, vision can be easily degraded or absent. Spatial hearing is thus very important to replace or 

complement vision to identify and correctly react to environmental events. Consequently, sounds, 

their emotional content and localization are significant information that our brain need to accurately 

process all along our life.  

 

In this introduction, I will review first auditory principles such as the auditory cortex (AC) anatomy, 

auditory functions, auditory spatial representations as well as encoding of specific sound types. In a 

second part, I will introduce the concept of emotion in general and then more specifically emotional 

sounds. Finally, I conclude with some brief knowledge on fMRI principles.  

 

 

1.2 Auditory system 

1.2.1 Auditory pathways  

In brief, the primary ascending auditory pathway links the ear to the AC. It starts at the level of the 

cochlea, then reaches the cochlear nucleus located on the brainstem and then the superior olivary 

complex (SOC). Separate nuclei of SOC are responsible for the computation of spatial cues i.e., 

interaural time difference and interaural level difference (ITD and ILD respectively; see section 1.2.5 

Auditory spatial representations). Neurons from SOC convey the auditory information to the 

midbrain in the inferior colliculus, and then the medial geniculate nucleus, located in the thalamus. 

From the thalamus, the neurons project finally to the AC (Brugge, 2013; Saenz and Langers, 2014). 
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1.2.2 Auditory cortex anatomy 

Anatomical, histological and functional studies divided the AC into the core, belt and parabelt 

regions, with a clear hierarchical organization (Baumann et al., 2013; Clarke and Morosan, 2012; 

Rauschecker and Scott, 2009). Core and belt/parabelt areas can be differentiated on the basis of their 

cytoarchitecture. Studies on post-mortem brains allowed the identification of the Primary Auditory 

Cortex (PAC) based on architectonic landmarks (Morosan et al., 2001; Rivier and Clarke, 1997; 

Wallace et al., 2002). The previous studies described a high variability in PAC definition and 

localization, mainly pertaining to its major landmark, Heschl’s gyrus (HG). HG presents a high 

intersubject and interhemispheric variability due to its different possible anatomies; single gyrus, 

partial or complete duplication (Da Costa et al., 2011; Moerel et al., 2014). This variability is even 

stronger in different populations with expertise in the auditory field, such as musicians and non-

musicians (Benner et al., 2017). To unify the definition of PAC, a method has been developed, based 

on tonotopic mapping, meaning that neurons in the PAC are organized based on their tuning 

frequency (Da Costa et al., 2011; Formisano et al., 2003; Humphries et al., 2010; Striem-Amit et al., 

2011; Talavage et al., 2004). PAC can be defined by the presence of two mirror-symmetric 

frequency progressions (high-low-low-high) running perpendicular to HG (Figure 1A and B). On the 

posterior part of HG, the first frequency gradient defines A1, while on the reverse direction, the 

region R can be delimited (Da Costa et al., 2011). Surrounding the two regions of PAC, four lateral 

regions can be characterized (L1, L2, L3 and L4), as well as four medial regions (M1, M2, M3 and 

M4; Da Costa et al., 2015, 2018; Figure 1C). These regions are less specific for frequency 

preferences than PAC and can be described as the belt and parabelt regions. This division of AC into 

ten regions will be used in the experiments described in this thesis.  
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Figure 1: Tonotopic mapping and auditory cortex division 
 

1.2.3 Auditory functions 

The hierarchical anatomical organization of AC coincides with a hierarchical processing going from 

pure tones to more complex auditory features and finally semantic aspects of auditory input (Binder 

et al., 2000; Chevillet et al., 2011; Cohen et al., 2016; Rauschecker and Scott, 2009; Rauschecker 

and Tian, 2000).  PAC is involved in the processing of the most basic auditory objects, pure tones 

(Da Costa et al., 2011; Formisano et al., 2003; Talavage et al., 2004). Non-primary auditory areas are 

for their part tuned to more complex spectrotemporal features, such as frequency modulation, pitch, 

amplitude modulation or envelop (Altmann et al., 2008; Leaver and Rauschecker, 2016; Scott, 2005; 

Warren et al., 2005). These regions presented stronger response to band-pass noise or frequency-

modulated sweeps compared with pure tones (Rauschecker and Tian, 2000; Wessinger et al., 2001). 

Higher-order areas respond to melody, linguistic and semantic aspects or specific sound categories 



Auditory system 

 4 

(Bergerbest et al., 2004; De Meo et al., 2015; Doehrmann et al., 2008; Hall et al., 2002; Kumar et al., 

2007; Leaver and Rauschecker, 2010; Lewis et al., 2005, 2004; Lucia et al., 2010; Murray et al., 

2008). The high anatomical variability found between different populations is also present at the 

functional level with bigger evoked responses for musicians than non-musicians (Schneider et al., 

2002). 

 

1.2.4 Auditory connectivity 

AC is a brain region displaying a high intra-auditory (between regions in AC) and extra-auditory 

areas (with other areas) connectivity. Within AC, studies described connections originating from 

PAC and reaching mainly the surrounding belt areas with only sparse direct connections between 

PAC and parabelt areas (Cammoun et al., 2015; Hackett and Kaas, 2004; LeDoux, 2000). The link to 

the parabelt areas is done by connections through the belt areas. Behond the belt areas, diffusion 

spectrum imaging (DSI) and functional connectivity studies described connections between the 

lateral belt areas and VA (Cammoun et al., 2015; Pernet et al., 2015). AC shows also strong 

connections with extra-auditory areas, such as medial geniculate body, frontal or parietal regions 

(Ethofer et al., 2012). Most of these studies described intra-hemispheric connectivity, but AC is also 

strongly connected at the interhemispheric level (Budinger and Heil, 2006; Kaas and Hackett, 2005).  

 

1.2.5 Auditory spatial representations 

In our environment, the sounds are spatially positioned and our brain needs to determine the sound 

sources based on specific spatial cues in order to react properly. Sound localization in the horizontal 

plane is mostly supported by two mechanisms: interaural level difference (ILD) and interaural time 

difference (ITD) (Grothe et al., 2010). The difference either in time or in intensity allows the 

computation of the angle of the sound source in SOC. Sound localization is based on variable ratio of 

ITD and ILD in function of the acoustic features of the sound. ILD are more prominent in high 

frequency sounds, while ITD are the principal localization cues in low frequency sounds. ILD 

describe the fact that lateralized sound will have a different intensity for the left and right ear (Figure 

2), while ITD reflect the fact that a lateralized sound will reach both ear at a different time, 

specifically a left-lateralized sound will first reach the left ear and then the right one.  
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Figure 2: Localization cues in the horizontal plane 
 

Higher in the processing pathway, a specific cortical network is responsible for the processing of 

auditory spatial information. This functional network is the dorsal stream, also called the “where” 

pathway, in opposition to the ventral stream, or “what” pathway, from the dual stream model 

(Rauschecker and Scott, 2009). This model is based on animal studies, human activation studies and 

brain lesion studies (Altmann et al., 2008; Clarke et al., 2000, 2002; Rauschecker and Tian, 2000; 

van der Zwaag et al., 2011; Viceic et al., 2006; Warren et al., 2002), and formulates that the ventral 

stream is selective for the meaning of the sounds, namely the recognition of categories of 

environmental sounds, as well as the processing of the semantic aspects of the auditory input 

(Altmann et al., 2007; Da Costa et al., 2015; Engel et al., 2009; Leaver and Rauschecker, 2010; 

Lewis et al., 2005; Murray et al., 2006).  This “what” pathway runs anterior to PAC from the planum 

polare to the inferior frontal cortex. On the other hand, the dorsal stream is selective for the location 

of the sound source and runs posterior to PAC from the planum temporale and project to the parietal 

cortex. PAC is not part of the dual-stream model, as its specificity is equal for sound recognition or 

localization (Maeder et al., 2001). In parallel to this dual-stream model, evidence suggests that a 

third stream could be implicated in the processing of the integrated identity and position of a sound 

(Adriani et al., 2003; Altmann et al., 2007; Bourquin et al., 2013; Clarke and Geiser, 2015; Da Costa 

et al., 2018; van der Zwaag et al., 2011; Figure 3).  
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Figure 3: Three-steram model of auditory processing 

1.2.6 Voice processing 

In addition to this hierarchy, AC shows also fluctuating sensitivity to the harmonic content of the 

sounds. The regions the closer to PAC respond to harmonics present in artificial sounds, then more 

lateral regions (i.e., in the border of the superior temporal gyrus; STG) exhibited sensitivity to the 

harmonics of animal vocalizations, and finally even more lateral regions (i.e., in the border of the 

superior temporal sulcus; STS) respond to human vocalizations (HV), with the larger harmonic 

content (Brefczynski-Lewis and Lewis, 2017.; Giordano et al., 2014; Latinus et al., 2013). This latter 

region, namely the voice area (VA), show a high specificity for HV and is located in non-primary 

AC on the STS (Belin et al., 2004, 2002, 2000). These studies described VA as a region responding 
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stronger to vocal sounds (speech and non-speech) than to any type of non-vocal sounds, comprising 

also scrambled speech sounds. In the right VA, the specificity for vocal sounds from human sources 

is even conserved against stimuli matched for low-level acoustic features, such as pitch or harmonics 

to noise ratio (Agus et al., 2017). This region is difficult to define anatomically, even if recent study 

described a coherence between the functional location of VA and the deepest point of the STS 

(Bodin et al., 2017). An overlap between the regions responding to low frequencies and voices was 

also described by Moerel et al., (2012). Moreover, individual functionally-defined VA are very 

variable in term of location and extent (Pernet et al., 2015). In addition to VA, auditory regions in the 

STG and non-auditory regions showed a preference for vocal sounds compared to non-vocal sounds, 

and are also part of a large voice network (Aglieri et al., 2018; Leech and Saygin, 2011). These 

regions included prefrontal regions (e.g., inferior prefrontal cortex) and subcortical structures, such 

as the amygdala (AMY) (Pernet et al., 2015). Finally, the processing of vocalizations by VA is 

modulated by the emotional value of the stimuli (Ethofer et al., 2012; Grandjean et al., 2005; 

Leitman et al., 2010). VA shows a stronger response to emotional voices, being positive or negative, 

in contrast with neutral voices. This preference for affectively-loaded stimuli was not limited to VA, 

but extended to PAC, non-primary auditory areas and frontal regions (Leitman et al., 2010).  

 

 

1.3 Emotional processing pathways 

1.3.1 Amygdala anatomy, function and connectivity 

AMY is a subcortical structure composed of several subnuclei showing different connectivity, 

architecture and function. Cytoarchitectonic studies divided AMY into three major groups of nuclei: 

laterobasal, centromedian and superficial (Figure 4; Amunts et al., 2005). The majority of the 

sensory inputs, including auditory, reach AMY through its laterobasal nuclei. The centromedial 

nucleus is a major output region for the emotional responses (Benarroch, 2014; LeDoux, 2007). 

Studies described a lateralized effect in AMY, with the right AMY showing a more rapid detection 

of the stimuli compared to the left AMY that could be involved in a more detailed evaluation of the 

stimuli (Sergerie et al., 2008; van der Zwaag et al., 2012; Wright et al., 2003). The exact function of 

AMY is still a matter of debate as it has been proposed to be a relevance detector (Sander et al., 

2003), a social impact detector (Vrticka et al., 2013) or even a novelty detector (Pedersen et al., 

2017). AMY shows strong connections with the sensory cortices, and in particular the auditory 

system. The auditory information reach AMY both through thalamic and cortical inputs. These 

connections are bidirectional as are the ones with the prefrontal cortex (Amaral et al., 1992; LeDoux 

et al., 1990; Woodson et al., 2000).  
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Figure 4: Amygdala anatomy 
 

AMY is a region with a central role in emotional processing. However, its subcortical location in the 

brain contributes to the difficulty of imaging this small structure. Indeed it is located in the vicinity 

of large veins (Boubela et al., 2015), in a region with inhomogeneity in the local magnetic field 

(Labar et al., 2001) and subject to a strong dephasing (Mathiak et al., 2012), which induce an 

increased susceptibility to artefacts and a reduced signal-to-noise ratio (SNR) from AMY. Studies 

proposed specific functional magnetic resonance imaging (fMRI) acquisition parameters to improve 

the imaging of AMY (van der Zwaag et al., 2012), however these are difficulty reconcilable with the 

parameters needed to image the subregions of AC, such as a slab of limited thickness with a specific 

angle.  

 

1.3.2 Emotion processing 

Emotional processing engages a large network of multiple regions (Dalgleish, 2004; Duerden et al., 

2013; Lindquist et al., 2012; Peelen et al., 2010; Phan et al., 2002). These regions comprise the 

insula, the prefrontal cortex, AMY, hippocampus, orbitofrontal cortex and anterior cingulate cortex. 

Their involvement was defined with lesions or activation studies. The implication of AMY in the 

processing of emotions was first established for negatively valenced stimuli (Morris et al., 1998; 

Phillips et al., 1998; Wright et al., 2001), but is now well documented for positive stimuli (Anderson 
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et al., 2003; Ball et al., 2007; Costa et al., 2010; Hurlemann et al., 2008; O’Doherty et al., 2001; 

Sergerie et al., 2008; Winston et al., 2005; Zald, 2003). This valenced-view of the emotions is 

challenged by hypotheses concerning the evaluation of the arousal of the stimuli and not its valence 

by AMY (Anderson et al., 2003; Bonnet et al., 2015; Viinikainen et al., 2012; Zald, 2003). 

Regardless that AMY encodes the valence or the arousal of the stimuli, it processes behaviourally 

relevant stimuli with a very quick processing of the emotional value (Sauter and Eimer, 2009). 

Moreover, emotions modulate many physiological variables. This is the case of the heart rate, heart 

rate variability, pupil size dilation, corrugator activity (facial electromyography), startle reflexes and 

skin conductance (Bradley and Lang, 2000; Brouwer et al., 2013). Mainly, the heart rate shows a 

strong deceleration in response to negative stimulation (Bradley et al., 2008; Gomez et al., 2005; 

Martin-Soelch et al., 2006) and the pupil size dilation increases significantly in response to 

emotional compared to neutral stimuli (Bradley and Lang, 2000; Partala and Surakka, 2003). In 

emotional experiments, it is important to record physiological variables and to use them either as 

regressors in the analyses to remove physiological noise from the data or as implicit measure of 

valence. Brain activation and physiological variables modulation are correlated with several 

personality traits, mostly anxiety and depression (Canli et al., 2001; Frühholz et al., 2017; Laeger et 

al., 2012). For instance, high anxiety scores are associated with increased heart rate deceleration 

(Martin-Soelch et al., 2006) as well as increased AMY activation (Stein et al., 2007). 

 

1.3.3 Emotional sounds processing 

In the auditory domain, a large network was described to be responsible for the processing of the 

emotional content of sounds (Figure 5; Frühholz et al., 2016; Schirmer and Kotz, 2006). AMY, VA 

and early-stage auditory areas are part of this system. It is a core network composed of cortical and 

subcortical regions that processes emotional sounds in general. For the processing of specific 

categories of affective auditory stimuli specialized regions (e.g., orbitofrontal cortex, thalamus, 

inferior colliculi, hippocampus) are engaged in complement to the core network.  
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Figure 5: Core network of emotional sounds processing 
 

The modulation of auditory processing by emotional valence has been described with HV (Fecteau et 

al., 2007; Morris et al., 1999; Pell et al., 2015; Phillips et al., 1998; Sander and Scheich, 2005, 2001), 

prosody (Ethofer et al., 2008; Frühholz and Grandjean, 2013; Johnstone et al., 2006; Leitman et al., 

2010; Wiethoff et al., 2009), music (Aubé et al., 2015; Koelsch, 2010) and environmental sounds 

(Plichta et al., 2011; Viinikainen et al., 2012). In their study, Fecteau et al., 2007 described an 

increased activity of AMY, PAC and non-primary auditory areas in response to emotional 

vocalizations compared to neutral ones. This preference of AC for affective content was also present 

when tested with emotional environmental sounds (Plichta et al., 2011). 

 

 

1.4 Methodology 

1.4.1 Sound battery 

In the experiments of this thesis, we used a sound battery tested in a behavioural paradigm 

(Aeschlimann et al., 2008) showing that the HV are a special category of sounds compared to 

environmental sounds. This battery is composed of 66 emotional sounds of 2 seconds, distributed 
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into six categories: Human Vocalizations Positive (HVP), Human Vocalizations Neutral (HV0), 

Human Vocalizations Negative (HVN), Non-Vocalizations Positive (NVP), Non-Vocalizations 

Neutral (NV0), Non-Vocalizations Negative (NVN). The HVN category is composed of sounds of 

screams and fighting, the HV0 of syllables spoken either by a man or by a woman, while the HVP 

are laughs or erotic sounds. The non-vocalization categories are composed of environmental sounds 

from diverse sources; here are some example for each categories. NVN: gunshot, alarm clock and 

thunder; NV0: wind, train and court sport; NVP: applause, beer and guitar. The acoustic 

characteristics of the different sound categories are described in Grisendi et al., 2019a. 

 

1.4.2 Ultra-high field imaging 

The investigation of brain activation at 3 Tesla is limited by its spatial resolution. Using ultra-high 

field (≥7 Tesla (7T)) scanner allows the study of small structures, such as AMY (Sladky et al., 2013), 

or specific small ROI, such as subregions of AC (Da Costa et al., 2015, 2018), thanks to its increased 

sensitivity and specificity (De Martino et al., 2017; Dumoulin et al., 2017). The major advantage of 

imaging at 7T is the increased SNR which increments linearly with the magnetic field strength 

(Talavage et al., 2014; Triantafyllou et al., 2005; van der Zwaag et al., 2009, 2011). The increased 

SNR has three benefits: the use of smaller voxel size, the limited use of spatial smoothing, and the 

feasibility of single-subject analysis. However, the increase in SNR is counterbalanced by an 

increase in magnetic field inhomogeneity and physiological noise. This increase in artefacts make 

the imaging of structures located near air/water interfaces even more difficult. The imaging can be 

improved with specific acquisition parameters (van der Zwaag et al., 2012), as well as with the use 

of the physiological variables as regressors (Kasper et al., 2017; Reynaud et al., 2017). 

 

1.4.3 BOLD signal and fMRI designs 

fMRI is a non-invasive indirect method used to measure brain activity (Logothetis et al., 2001; 

Poldrack et al., 2011; Talavage et al., 2014). This method infers brain metabolic activity based on 

measures of the changes of blood oxygenation, namely on the Blood Oxygenation Level Dependent 

(BOLD) signal. This measure is based on the evidence that the haemoglobin in the brain display 

different magnetic properties depending on its state as oxygenated (Hb) or deoxygenated (dHb). 

Specifically, dHb is paramagnetic, while Hb is resistant to the magnetic field. An increase in the ratio 

of dHb/Hb induces a reduction in the local magnetic field homogeneity and thus a diminution of the 

signal. When a region of the brain is activated, its neurons require more oxygen, implicating an 

increased blood flow and blood volume and thus a decrease of the ratio dHb/Hb leading to a signal 
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increase. The hemodynamic response reflects the modulation of the blood flow required by the 

activation of neurons and then their deactivation.  

 

 

 

Figure 6: Block vs. Event-related design 
fMRI experiments are constructed either with block designs or event-related designs (Figure 6). 

Event-related designs are based on the discrete presentation of stimuli that are separated by inter-

stimulus interval of rest. This type of experimental design increases the design flexibility and permit 

the investigation of individual trial responses, as the hemodynamic response is estimated for each 

event. The major drawbacks of using event-related designs are the low SNR, the duration of the 

experiments and the complexity of the analyses in function of the inter-stimulus time (in case of 

overlapping of the hemodynamic responses, the signal need to be deconvolved). In order to 

strengthen the signal, the number of trials needs to be increased which results in longer scanning 

time. In the other hand, block designs are built on on/off patterns, with periods (blocks) of stimuli 

presentation interleaved with periods of rest. Block designs are advantageous in term of design and 

analysis simplicity and mostly of its strong statistical power. This is counterbalanced by the loss of 

the information for individual response time-course. The presentation of the stimuli in blocks induce 

a summation of the hemodynamic response, thus increasing the amplitude of the response but losing 
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the information about individual activation. Block design allow to study the specific effect of 

repetition suppression that is a decrease in neural activity following the repeated exposure to the 

same feature (Barron et al., 2016; Grill-Spector et al., 2006). This effect is used to study the 

sensitivity and specificity of brain regions to a given feature of stimuli or to a given category of 

stimuli. It allows also for the disentangling if some regions are made of different populations of 

neurons responding to different characteristics. 

 

 

1.5 Aim of the thesis 
 

In this thesis, I studied the encoding of emotional sounds in a non-spatial or spatial context in AC, 

VA and AMY and addressed three main issues: 

1. The relative contribution of early-stage auditory areas, VA and AMY to the processing of 

emotion and vocalization and to their integration. 

2. The modulation by the spatial origin of the encoding of emotional human vocalizations and 

emotional environmental sounds in early-stage auditory areas and VA. 

3. The modulation of the functional correlations between early-stage auditory areas and VA by 

sound category, valence and lateralization.  
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2 Summary of the results 
 

2.1 Study A: Processing pathways for emotional vocalizations 

 
Tiffany Grisendi, Olivier Reynaud, Stephanie Clarke and Sandra Da Costa 

 

This article is accepted in the journal “Brain Structure and Function”. 

 

Contribution 

The candidate contributed in the experimental design, recruitment of the participants, data 

acquisition, data analyses and manuscript preparation 

 

Abstract 

Emotional sounds are processed within a large cortico-subcortical network, of which the auditory 

cortex, the voice area and the amygdala are the core regions. Using 7T fMRI we have compared the 

effect of emotional valence (positive, neutral, negative) and the effect of the type of environmental 

sounds (human vocalizations, non-vocalizations) on neural activity within individual early-stage 

auditory areas, the voice area and the amygdala. A 2-way ANOVA was applied to the BOLD time 

course within each ROI. In several early-stage auditory areas it yielded a significant main effect of 

vocalizations and of valence, but not a significant interaction. Significant interaction as well as 

significant main effects of vocalization and of valence were present in the voice area; the former was 

driven by a significant emotional modulation of vocalizations but not of other sounds. Within the 

amygdala only the main effect of valence was significant. Post hoc correlation analysis highlighted 

coupling between the voice area and early-stage auditory areas during the presentation of any 

vocalizations, and between the voice area and the right amygdala during positive vocalizations. 

Thus, the voice area is selectively devoted to the encoding of the emotional valence of vocalizations; 

it shares with several early-stage auditory areas encoding characteristics for vocalizations and with 

the amygdala for the emotional modulation of vocalizations. These results are indicative of a dual 

pathway, whereby the emotional modulation of vocalizations within the voice area integrates the 

input from the lateral early-stage auditory areas and from the amygdala. 

 

 

2.2 Study B: Emotional value of the auditory space  

 
Tiffany Grisendi, Stephanie Clarke and Sandra Da Costa 

 

This article is in preparation for submission 
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acquisition, data analyses and manuscript preparation 

 

Abstract 

Evidence from behavioural studies suggests that the spatial origin of sounds may influence the 

perception of emotional valence. Using 7T fMRI we have investigated the impact of the type of 

sound (vocalizations; non-vocalizations), emotional valence (positive, neutral, negative) and spatial 

origin (left, centre, right) on the encoding in early-stage auditory areas and in the voice area. The 

combination of these different characteristics resulted in a total of 18 conditions (2 Types x 3 

Valences x 3 Lateralizations), which were presented in a pseudo-randomized order in blocks of 

eleven different sounds (of the same condition) in 12 distinct runs of 6min. In addition, the subjects 

(N = 14, with normal hearing) also listened to two different localizers (a tonotopy paradigm and a 

voice localizer), which were used to define the regions of interest. A 3-way repeated measure 

ANOVA on the BOLD responses revealed bilateral significant effects and interactions in the primary 

auditory cortex, the lateral early-stage auditory areas, and the voice area. Positive vocalizations 

presented on the left side yielded greater activity in bilateral primary auditory cortex than did neutral 

or negative vocalizations or any other stimuli at any of the three positions. The voice area did not 

share the same preference for the left space; spatial attributes modulated its activation by sound 

objects conveying positive or neutral emotional valence when presented on the right or left side (but 

not at the centre). Comparison with a previous study indicates that spatial cues may render emotional 

valence more salient within the early-stage auditory areas. 

 

 

2.3 Study C: Functional correlations between early-stage auditory areas and the 

voice area 

 
Tiffany Grisendi, Stephanie Clarke and Sandra Da Costa 

 

This article is in preparation for submission 

 

Contribution 

The candidate contributed in the experimental design, recruitment of the participants, data 

acquisition, data analyses and manuscript preparation 
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Abstract 

Human vocalizations processing and their modulation by emotional valence and/or localization 

involves brain regions, such as voice area (VA) and early-stage auditory areas. Using two separate 

datasets acquired at 7T fMRI, we have investigated the functional correlations between early-stage 

auditory areas and VA as modulated by the category of sound, valence and position. The functional 

correlations between VA, primary auditory cortex (PAC) and lateral belt areas were strongly 

modulated by the category of sound, weakly by the spatial positioning and not by the affective 

content. Human vocalizations produce stronger functional correlations between VA, PAC and lateral 

belt areas, compared to non-vocal environmental sounds. 
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3 Discussion  
 

3.1 General discussion 

 
The aim of this thesis was to investigate the processing of HV and NV and their modulation by 

emotional and/or spatial content within the early-stage auditory areas, VA and AMY. We acquired 

data of two block-design fMRI studies at 7T, using an emotional sound battery (Aeschlimann et al., 

2008). The BOLD time-courses of the different sound categories were analysed with repeated 

measure ANOVAs. To complete this analysis we looked also at the functional correlations between 

our regions of interest (ROI) and how these correlations were modulated by the different 

characteristics of the sounds. In this chapter, I will first review the results of the first two studies and 

the impact of using lateralized sounds. Then I will discuss the model derived from the last study in 

light of current proposed model of emotional processing. Finally, I will focus on future directions 

using connectivity analyses as well as the interest of the results of this thesis for specific populations 

of patients.  

 

3.1.1 Brief discussion of the results 

The different studies described in this thesis demonstrated that the emotional content modulate the 

processing of sounds in early-stage auditory areas, regardless of the sound category. In contrast, the 

emotional modulation is restricted to HV when processed in VA. This result was established using 

non-spatialized as well as lateralized sounds.  

 

With non-lateralized sounds, our study (Grisendi et al., 2019a) highlighted that the stimulus category 

does not influence the emotional processing in AMY. The processing of emotions by AMY was 

already demonstrated by various studies with HV (Fecteau et al., 2007; Frühholz and Grandjean, 

2013; Phillips et al., 1998) and with environmental sounds (Viinikainen et al., 2012; Zald and Pardo, 

2002). However, most of the studies did not included both categories of sounds and thus did not 

compare the emotional encoding for HV or NV in AMY.  

 

Specifically for lateralized sounds, our study (Grisendi et al., 2019b) demonstrated that there was a 

modulation of the HV by the emotional valence but not by the spatial origin of the sounds, in VA. 

The processing of positive sounds when presented in the left space, by PAC bilaterally, exhibited a 

strong sensitivity to the category of sound, with stronger response to positive HV than positive NV. 

This preference for HV was not present for any other sound position or emotional valence. Thus, the 

left auditory space appears to favour the specific encoding of positive HV within PAC in both 
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hemispheres. In line with our results, Kryklywy et al., (2013) reported an enhanced activity of AC in 

the right hemisphere in response to positive stimuli located in the left hemispace compared to 

positive stimuli in the right hemispace.   

 

As we used lateralized sounds of different categories, our results gave us an insight into the 

dual/three-stream model of auditory processing. However, our experiments were not designed to 

study specific effects in these processing pathways. Future investigations could study the impact of 

emotional processing on the dual/three-stream pathways. To do so, we should implement a “what” 

and a “where” pathway localizers that are distinct from the main experiment, as we did for the VA, 

with the voice localizer, and for AC, with the tonotopic mapping paradigm. These localizers would 

allow to define which specific regions are part of which auditory streams, and which regions are 

common to both pathway and are thus part of the third integration stream. Based on this repartition 

of our ROIs we could investigate the emotional modulation in each stream and highlight if there is a 

special processing within these auditory streams for the socially relevant stimuli. Kryklywy et al., 

(2013, 2018) documented an emotional modulation of the “what” auditory pathway that was not 

paralleled by an emotional modulation of the “where” stream. Moreover, they described an anterior-

lateral region of the right AC that could be part of the third-stream for the specific processing of 

emotional sounds. This region could correspond to our right L3 ROI that showed a preference for the 

processing of positive HV in the lateral space.   

 

In the third study, we compared Study A and B (Grisendi et al., 2019a,b) to study the impact of using 

lateralized sounds in an experiment on the processing of HV and other environmental sounds and 

their modulation by emotional content. However, the next discussed results are only exploratory and 

descriptive as the setup of both experiments was not identical and the difference was not limited to 

the use of lateralized sounds or not. More specifically, the second experiment present more subjects, 

a coil with more channels as well as a different way to define VA. These changes could have an 

influence on the statistical power or on the activation extent. But part of these descriptive results can 

be account for the use of lateralized sounds. Investigating the impact of using lateralized sounds 

highlighted that the processing of vocalizations is not modulated by the presence of spatial cues, as 

the same set of areas process preferentially HV in both studies. On the other hand, the processing of 

emotions seem to be modulated by the presence of spatial cues, as more regions are implicated in 

this processing in Grisendi et al., 2019b. The interaction Valence x Lateralization revealed only a 

significant effect in VA and not in any early-stage auditory areas, indicating that this modulation is 

specific to the spatial context of the experiment and not to the sound position itself. This means that 

the presence of spatial cues increases the saliency of sounds with an affective content. This could be 
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due to a more realistic experimental setup in case of lateralized sounds, as the sounds in the everyday 

life are always in a spatialized environment, which could lead to stronger emotional response or 

enhanced discrimination of emotional valence. 

 

Based on results of Grisendi et al., 2019a, (with non-lateralized sounds), we described a model of 

dual input to VA with category-specific input from lateral belt areas and emotion-specific input from 

AMY. This model was only based on functional correlations between BOLD signal of the ROIs and 

did not give us any insight about the direction of the connections. Different theoretical models were 

proposed for the processing of emotional sounds but there is currently no consensus (Kumar et al., 

2012; Liebenthal et al., 2016; Pannese et al., 2015; Schirmer and Gunter, 2017; Tschacher et al., 

2010). For instance, using dynamic causal modelling (DCM), Kumar et al., (2012) described a model 

with bidirectional connections between AC and AMY, which are modulated by different features 

(i.e., acoustic features and valence). For their part, Pannese et al., (2015) proposed a model with 

multi-step processing, including an early decoding based on acoustic features at a subcortical level, 

associated with a higher-level processing at the cortical level. With a simplified model of both 

studies (Figure 7; correlations with adjusted R2 > 0.9), we can observe that the lateral regions of the 

auditory belt are more implicated in the processing of emotional sounds than the medial regions, 

especially with non-lateralized sounds. However, due to our focus on auditory regions and the type 

of analyses we did, we cannot favour one model more than another one. Future connectivity studies 

(described in 3.3.1 Connectivity) could give answers to this question.  

 

In both studies we described a modulation of the functional correlations between VA and auditory 

areas in function of the category of sound and not related to the emotional content of the sound. The 

processing of HV, and not of environmental sounds, implicate strong functional correlations between 

VA, PAC and lateral belt areas, whatever the position of the sound or its valence. This model is 

based only on ITD spatial cues, and future studies with ILD or virtual reality using a combination of 

ITD and ILD, would be necessary to generalize this model to all types of lateralized sounds.  
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Figure 7: Model for emotional sounds processing within the human auditory cortex 
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In study C (Grisendi et al., 2019c), we demonstrated a dissociation of VA correlations in function of 

the vocalization content. A follow-up study would include functional connectivity with different 

sound categories to confirm the present results. Moreover, our analyses were restricted to AC, and 

did not show a global picture of the processing. Two main reasons rise the importance of integrating 

extra-auditory regions in the analysis. First, there is strong evidence of a core network implicated in 

the processing of emotional sounds composed of auditory and non-auditory regions: medial frontal 

cortex, inferior frontal gyrus, insula, AC, basal ganglia, AMY and cerebellum (Frühholz et al., 

2016). Secondly there are proofs for connections between AC and extra-auditory regions (Budinger 

and Heil, 2006; Kaas and Hackett, 2005). Finally, the involvement of different population of subjects 

with different auditory expertise would be interesting to study the modulation of the functional 

connectivity in these specific situations, as auditory anatomy and functions are known to vary across 

different populations.  

 

3.1.2 Limitations and improvements 

The sound battery used in our experiments was composed of emotional sounds, varying in term of 

valence (positive, negative or neutral) and type (HV, NV). The different categories were controlled 

for their general acoustic characteristics, more specifically their mean spectrograms were not 

statistically different. However, this global control did not guarantee that the categories are not 

acoustically different along specific parameters. We found mainly big differences for the category 

HV0, which was statistically different from all other sound categories in term of entropy and 

harmonics-to-noise ratio. The type of sounds present in each category can account for this. Indeed, 

the HV0 category was composed exclusively of speech sounds, while HVN and HVP categories did 

not contain any speech sounds, and were composed of non-verbal vocalizations only. HV, 

specifically speech sounds, contain greater harmonics-to-noise ratio than other environmental sounds 

(Lewis et al., 2005), and this could be implicated in the specific processing of voices. Moreover, the 

BOLD signals of VA indicate that the sounds from the HVN category are not recognized as pure 

vocalizations as the response is lower than for HVP or HV0 categories. This finding was present in 

both experiments, and is thus due to the sound battery. Finally there are repetitions of different 

exemplars of the same sound objects within a category (mostly NVP, HVN and HVP) as well as 

between different categories. This could be a problem as evidence showed that a repetition priming 

effect is induced by the presentation of sound objects from the same sound source (Bourquin et al., 

2013; Da Costa et al., 2015). All the previous points could lead to confound factors in our 

experiments and thus emphasize the importance of using a controlled sound battery. However, it is 

impossible to control for every acoustical parameters without ending with categories composed of 
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identical sounds (Leaver and Rauschecker, 2010). This is especially true when using emotional 

sounds, as studies documented a discrimination of valence of vocalizations by AC based on acoustic 

features (Bestelmeyer et al., 2017; Ethofer et al., 2006; Leitman et al., 2010). 

 

The repartition of the sounds in a given category of valence was based on a separated behavioural 

study with a different population of subjects (Aeschlimann et al., 2008). The perception of the sound 

valence is linked to each individual subject and relates to its own life experiences. An implicit rating 

of the sounds valence would be beneficial to study the processing of different emotions without a-

priori categorization. This could be achieved with the help of eye-tracking. This method measures 

the amount of pupil size dilation and reflects the emotional load of the stimuli. The pupil dilation 

increases for emotional stimuli compared to neutral stimuli, and this is the case for positive and 

negative valences (Bradley et al., 2008; Partala and Surakka, 2003). By using this method of implicit 

valence judgment we could make a personalized repartition of the sounds in the emotional categories 

and thus have a perfect match between the valence perceived by the subject and the valence category 

in which the sound is assigned for the statistical analysis. This would increase the sensitivity of the 

analysis. Moreover, implicit or explicit (as valence ratings in Grisendi et al., 2019a) valence 

judgment could be used to re-analyse the data based on an event-related point of view.  

 

In the study investigating the representation of emotional sounds (Grisendi et al., 2019a), the quality 

of the structural imaging did not allow us to anatomically parcellate AMY. This would be of special 

interest, as the different subnuclei of AMY are known to present different functional responses and 

connectivity patterns (Benarroch, 2014; Bzdok et al., 2013; Kim et al., 2011; LeDoux, 2007; Sah et 

al., 2003). The use of the whole AMY as a ROI could impair the visualisation of results with an 

averaging of the responses from the different subnuclei. For instance, Ball et al., (2007) reported a 

positive signal change in the basolateral group at the same time as a negative signal change in the 

superficial and centromedial groups in response to emotionally-loaded music. With positive and 

negative signal changes in response to the same stimuli within AMY, the global activation would 

show no or only little response. This highlighted the importance of a parcellation of AMY in studies 

investigating the processing of emotions, and thus the use of high spatial resolution and specific 

structural MRI sequences.  

 

In the study investigating the spatial representation of emotional sounds (Grisendi et al., 2019b), 

AMY was not included in the analysis, as this region did not show any response in any of the 

experimental conditions. This was a major drawback as AMY is known to be implicated in the 

global processing of emotional sounds (Frühholz et al., 2016) and was responsible of the analysis of 
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the affective content of the sounds from our battery as shown in the first study (Grisendi et al., 

2019a). We hypothesize that this lack of results could be due to the type of spatial cues used to 

lateralize the sounds (ITD). Even if both ITD and ILD are first compute in the SOC, they are 

processed in two different nuclei along different pathways (Grothe et al., 2010; Tardif et al., 2006). 

ILD are first processed in the lateral superior olive (LSO) while ITD are initially computed in the 

medial superior olive (MSO). These different pathways could explain an insensibility of AMY to the 

ITDs. To test for this hypothesis we should reproduce the same study with sounds lateralized by ILD 

spatial cues. The analyses of Grisendi et al., (2019b) were thus limited to AC. Moreover, in this 

study, the use of lateralized sounds did not allow us to reveal regions from the “where” pathway, as 

only regions of PAC in the left hemisphere reported to show a main effect of lateralization. This 

could be due to the lack of localization task, or change of sound position in the block, in our 

experimental paradigm.  

 

The impact of using lateralized sounds on emotional sounds processing could be studied by 

comparing the same experiment using once lateralized sounds, and once non-lateralized sounds. 

However, in this thesis, this was limited by divergence between both studies. To study only the 

impact of spatial context and to avoid any other confound factors, we would need to have a perfect 

match between the setup of both studies, namely the same subjects (pseudo-randomly assigned to 

participate in study A or B first), the same MRI material (scanner and coil), the same fMRI paradigm 

(number of sound presentations, duration of the blocks, instructions) and the same ROIs definition 

(localizer). This was not the case of our studies, which restricted our conclusions about the use of 

lateralized sounds. To have an insight into the differences between both studies, we performed a 3-

way ANOVA Vocalization (HV, NV) x Valence (negative, neutral, positive) x Study (study A, study 

B) on the data of four subjects who participated in both studies. This statistical analysis did not 

reveal any effect of the factor Study, suggesting thus a weak influence of the varying parameters 

between both studies.  

 

In both studies, our analyses were restricted to specific ROIs because of the high spatial resolution 

required to image individual sub-regions of AC, and thus the limited field of view we could use. This 

assumed choice was a big advantage to investigate the specific processing of emotional sounds 

within individual sub-regions of AC, but did not allow us to have a global picture of the whole 

network. In future studies investigating the entire emotional sounds network, we should use a whole 

brain acquisition (Narsude et al., 2016; van der Zwaag et al., 2018).  
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3.2 Conclusions 

 
Emotional sounds are highly salient auditory stimuli that we need to process adequately in our 

everyday life in order to protect us from danger and to promote social interactions. The localization 

of this affective information is important to enable an accurate behavioural response. The aim of this 

thesis was to investigate the encoding of sounds with variable vocalization, emotional and spatial 

contents within the early-stage auditory areas, VA and AMY. 

 

Our results demonstrated an encoding of the valence of the stimuli in the early-stage auditory areas 

and AMY independently of the category of sounds. The emotional processing in VA was for its part 

limited to the category of HV. A category-specific coupling between VA and early-stage auditory 

areas paralleled this restricted emotional modulation. We found strong functional correlations 

between VA and auditory lateral belt areas for the presentation of HV lateralized or non-lateralized. 

The presence of spatial cues modulates only the processing of valence and not of vocalization, and 

increases the functional coupling of PAC and auditory medial belt areas with aforementioned 

regions. Finally, we described a favoured encoding by bilateral PAC of the positive HV when 

presented in the left auditory space.  

 

These findings give us new insights into the processing of affective sounds by early-stage auditory 

areas, VA and AMY and strengthen the importance of VA as a computational hub for the processing 

of emotional vocalizations.  

 

 

3.3 Future perspectives 

 

3.3.1 Connectivity 

In the last part of this thesis we described the functional correlations between VA and early-stage 

auditory areas. It would be useful to design a functional connectivity study to investigate the 

connections between our ROIs but also with other areas involved in the processing of emotional 

sounds. Several studies showed increased functional coupling between cortical voice areas and 

subcortical structures such as basal ganglia and thalamus, when processing emotional prosody 

(Ethofer et al., 2012; Frühholz and Grandjean, 2012). Moreover, Koelsch et al., (2018) described 

different functional connectivity of AC when processing affective music. Their study highlighted an 

intra-auditory network, with functional connections between PAC and other auditory regions (i.e. 

contralateral PAC and non-primary auditory areas), and an extra-auditory network, with functional 
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connections between anterior and posterior regions of auditory association cortex with limbic, 

somatosensory, visual and attentional structures. However, none of these studies documented global 

functional connectivity of subregions of AC with other auditory areas and extra-auditory areas.  

 

Future connectivity studies could investigate different hypotheses: 

1. Seed-based functional connectivity with ROIs from localizers (AC, VA, “what” and “where” 

regions) would highlight the connections as well as the segregation and integration between 

the auditory streams in case of emotional processing. This seed-based functional 

connectivity experiment could investigate the connections of the different seeds to specific 

structures, such as AMY, and study if they target the same or different part of this region.  

2. Functional connectivity with a whole brain approach could investigate the global network 

implicated in the processing of emotional sounds. This would give an insight into the whole 

emotional sounds network, as the majority of studies focused only in parts of this network. 

3. Eigenvector centrality mapping (Lohmann et al., 2010) could be used to investigate the 

connections within the emotional network and define computational hubs. This method 

assigns a value to each voxel in function of the number of connections of the given voxel 

and the centrality of the voxels to which it is connected. Big value corresponds to a voxel 

strongly connected with central nodes of the network. We could investigate if the 

computational hubs of emotional sound network are modulated by the valence, the category 

or position of the stimuli.  

4. Vector autoregression (Roebroeck et al., 2005) would take advantage of the BOLD time-

series to investigate causal relationship between regions of the emotional sound network. 

This method correlates the time-series of different ROIs with a time lag allowing inferring 

causal relationship between the regions.  

 

3.3.2 Applications 

The results of the studies included in this thesis are of special interest for specific populations of 

patients. I will focus here on two populations, namely autistic individuals and unilateral auditory 

spatial neglect patients. 

 

The processing of emotional sounds and in particular HV is acquired very early in our life (Flom and 

Bahrick, 2007; Grossmann, 2010; Locke, 1993), with a discrimination of affective voices at around 5 

months of age. However this is only the case in typically-developing children. Patients with autism 

spectrum disorder (ASD) show deficits in social communication and emotional voices 
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understanding, that could implicate the voice processing network (Fan and Cheng, 2014; Gervais et 

al., 2004). ASD individuals exhibit enhanced processing of low-level auditory stimuli but decreased 

processing of complex stimuli, such as speech (Boddaert et al., 2004; O’Connor, 2012). Infant at 

high risk of ASD (first-degree family member diagnosed with ASD) presented an abnormal voice 

selectivity, with few differences in the processing of HV and NV, as it should be the case (Blasi et 

al., 2015). In addition to abnormal activations, ASD individuals also exhibited abnormal functional 

auditory connectivity patterns (Linke et al., 2018).  Investigation of the processing and functional 

connectivity of emotional sounds in a normal population and in an ASD population would be 

especially interesting to draw a better picture of the impaired cognitive and neural correlates of 

auditory processing in ASD. This knowledge could help to develop early-stage diagnostic tools with 

imaging methods and cognitive individual-based therapies. 

 

Unilateral auditory spatial neglect patients show a lack of attention to the hemispace contralesional 

to a brain damage (Heilman et al., 2000; Mesulam, 1999). An emotional advantage was described in 

this specific population of patients, using emotional faces (Domínguez-Borràs et al., 2012) or 

affective voices (Grandjean et al., 2008). These studies demonstrated a better rate of detection, and 

thus a decreased extinction rate, for emotional stimuli compared to neutral stimuli presented in the 

contralesional hemispace. Our finding of the enhanced processing of positive HV located on the left 

space could be of interest for unilateral auditory spatial neglect patients with left auditory space 

neglect. The use of this specific category of sounds could lead to an even decreased extinction rate. 

Studies described that visual intervention (prismatic adaptation; Held et al., 1966) could improve 

auditory extinction in specific tasks (Jacquin-Courtois et al., 2010; Tissieres et al., 2017) but it is 

unknown if this effect could be implemented in the other direction and thus generalize the decreased 

extinction rate to visual or to multi-modal neglect patients. 
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Abstract 

Emotional sounds are processed within a large cortico-subcortical network, of which the auditory 

cortex, the voice area and the amygdala are the core regions. Using 7T fMRI we have compared the 

effect of emotional valence (positive, neutral, negative) and the effect of the type of environmental 

sounds (human vocalizations, non-vocalizations) on neural activity within individual early-stage 

auditory areas, the voice area and the amygdala. A 2-way ANOVA was applied to the BOLD time 

course within each ROI. In several early-stage auditory areas it yielded a significant main effect of 

vocalizations and of valence, but not a significant interaction. Significant interaction as well as 

significant main effects of vocalization and of valence were present in the voice area; the former was 

driven by a significant emotional modulation of vocalizations but not of other sounds. Within the 

amygdala only the main effect of valence was significant. Post hoc correlation analysis highlighted 

coupling between the voice area and early-stage auditory areas during the presentation of any 

vocalizations, and between the voice area and the right amygdala during positive vocalizations. 

Thus, the voice area is selectively devoted to the encoding of the emotional valence of vocalizations; 

it shares with several early-stage auditory areas encoding characteristics for vocalizations and with 

the amygdala for the emotional modulation of vocalizations. These results are indicative of a dual 

pathway, whereby the emotional modulation of vocalizations within the voice area integrates the 

input from the lateral early-stage auditory areas and from the amygdala. 
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Abbreviations 

AI primary auditory area 

AMY amygdala 

HVN human vocalizations with negative emotional valence 

HVP human vocalizations with positive emotional valence 

HV0 human vocalizations with neutral emotional valence 

NVN non-vocalizations with negative emotional valence 

NVP non-vocalizations with positive emotional valence 

NV0 non-vocalizations with neutral emotional valence 

R rostral (primary) auditory area 

VA voice area 
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Introduction 

The universal nature of human emotional vocalizations and the prominent role they play in shaping 

social interactions (Sauter et al., 2010) warrants the highly specialized processing, which has been 

described in a series of seminal studies. The emotional valence of human vocalizations is processed 

by complex cortico-subcortical networks, which include the primary auditory cortex, the surrounding 

early-stage and higher-order auditory areas, the inferior frontal gyrus and the amygdala, as well as 

the medial frontal cortex, the insula, basal ganglia and the cerebellum (Schirmer and Kotz, 2006; 

Frühholz et al., 2016). As highlighted in a recent review (Frühholz et al., 2016) the amygdala, the 

auditory areas, including the voice area, and the inferior frontal cortex have strong functional 

connections and encode not only the emotional valence of non-verbal vocalizations but also of other 

sound categories (e. g. speech prosody: Wildgruber et al., 2009 ; music: Koelsch, 2010).  

 

The amygdala (AMY) has been repeatedly shown to be involved in the processing of emotional 

stimuli of different sensory modalities, as demonstrated by fMRI and PET studies (Baas et al., 2004; 

Costafreda et al., 2008; Ball et al., 2009) and by intracranial recordings (for review Murray et al., 

2014). In the auditory modality emotional modulation was investigated for human vocalizations 

(Morris et al., 1999; Sander and Scheich, 2005; Ethofer et al., 2006a, 2006b; Viinikainen et al., 2012; 

Pannese et al., 2016), including emotional prosody (reviews: Wildgruber et al., 2006; Liebenthal et 

al., 2016); a mixture of human vocalizations and environmental sounds (Viinikainen et al., 2012); or 

instrumental music (reviews: Koelsch, 2010; Frühholz et al., 2014). Cytoarchitectonically AMY is 

subdivided into three major nuclei groups, the lateralbasal, centromedial and superficial (Amunts et 

al., 2005). As demonstrated in non-human primate and non-primate species, it receives auditory 

input via monosynaptic afferents from the medial geniculate nucleus (Ottersen and Ben-Ari, 1979; 

Russchen, 1982; LeDoux et al., 1985; Shinonaga et al., 1994) and by reciprocal interconnections 

with parts of the auditory cortex. The latter involve in non-human primates predominantly the non-

primary auditory areas and cortical regions on the postero-superior part of the temporal convexity 

(Price and Amaral, 1981; Yukie, 2002); in some species part of the primary auditory cortex was 

found to be involved as well (Reser et al., 2009). Among other wide-spread connections, AMY has 

also reciprocal connections with the prefrontal cortex (Ghashghaei and Barbas, 2002; Barbas, 2007) 

and with the mediodorsal nucleus of the thalamus (Russchen et al., 1987). Diffusion tensor imaging 

in humans revealed fibre tracts between AMY and medial geniculate nucleus related fibre tracts that 

are compatible with the connectivity described in non-human species (Keifer et al., 2015; Kamali et 

al., 2016). As shown in rodents, distinct amygdala circuits processes fearful and rewarding stimuli 

and modulate, via specific outputs, autonomic reactions (Janak and Tye, 2015).  
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The voice area (VA) was defined in the pioneering study of Belin and colleagues (Belin et al., 2000) 

by its stronger responses to human than animal vocalizations. It is located in the middle part of the 

superior temporal gyrus and sulcus. A follow-up study using the same stimulus set showed in 218 

subjects that the voice-sensitive region is mostly bilateral (94% of subjects). It confirmed the 

location within the posterior part of the superior temporal sulcus and on the adjacent part of the 

convexity of the superior temporal gyrus; the rostral extension of VA was shown to reach up to the 

(lower) lip of the sylvian fissure and to encroach on the lateral brim of the supratemporal plane. The 

authors reported great inter-individual variability as to its precise anatomical location (Pernet et al., 

2015). The part of the superior temporal gyrus and sulcus, where VA is located, receives auditory 

input from the primary auditory cortex via a cascade of cortico-cortical connections (Cammoun et 

al., 2015). In this respect it is similar to other auditory processing pathways in human (e. g. Kim and 

Knösche, 2016) and bears strong similarity to the homologous region in non-human primates (e. g. a 

recent comprehensive study: Scott et al., 2015). VA activity was reported to be modulated by the 

emotional value of vocalizations (Belin et al., 2002; Grandjean et al., 2005; Ethofer et al., 2006b, 

2008, 2009b; Beaucousin et al., 2007a; Obleser et al., 2007, 2008; Bestelmeyer et al., 2017). The 

emotional voice area has been identified by its stronger response to emotional than neutral pseudo-

sentences; it overlaps partially with VA and extends beyond it to the middle part of the superior 

temporal gyrus, Heschl’s gyrus, and the antero-lateral part of the planum temporale (Ethofer et al., 

2012). Thus, in addition to VA, the auditory cortex on the supratemporal plane participates 

significantly in the encoding of emotional vocalizations (Wildgruber et al., 2004a; Meyer et al., 

2005; Dietrich et al., 2007, 2008; Leitman et al., 2010; Szameitat et al., 2010; Ethofer et al., 2012). 

Although multiple subregions of the superior temporal cortex are involved (Frühholz and Grandjean, 

2013), none of previous studies analysed individual auditory areas, most likely because of limitations 

imposed by low spatial resolution. From the above studies eight used 1.5T (Belin et al., 2000, 2002; 

Wildgruber et al., 2004b; Grandjean et al., 2005; Ethofer et al., 2006b, 2008; Beaucousin et al., 

2007b; Szameitat et al., 2010) and nine 3T fMRI (Dietrich et al., 2007; Ethofer et al., 2008, 2009a, 

2012; Obleser et al., 2008; Leitman et al., 2010; Arnal et al., 2015; Bestelmeyer et al., 2017; Lavan 

et al., 2017), often with a voxel size of 3x3x3 mm or more (11 studies) and smoothing of more than 8 

mm (12 studies). In view of the anatomical evidence described below, this type of spatial resolution 

does not allow to analyse individual early-stage auditory areas. 

  

The supratemporal plane comprises several early-stage auditory areas, as demonstrated in 

histological studies (Clarke and Morosan, 2012). Investigating them with fMRI represents a 

challenge on three accounts. First, early-stage auditory areas tend to be relatively small (40-310 

mm2; (Clarke and Morosan, 2012) and their investigation requires high spatial resolution. Second, 
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the realignment of the supratemporal plane tends to be imprecise and landmarks, such as Heschl’s 

gyrus, has been shown to be shifted by as much as 4 mm between individual brains of a group study 

(Viceic et al., 2009). Thus, a whole brain contrast aligns in a group study regions, which do not 

correspond across subjects to the same area. To circumvent this problem, several studies used a 

functional marker for the primary auditory cortex and based its identification in each individual 

subject on tonotopic mapping (with ultrahigh field: Formisano et al., 2003; Da Costa et al., 2011; 

Moerel et al., 2014), or by approximating it with Heschl’s gyrus (Zilles et al., 1988; Rademacher et 

al., 2001; Viceic et al., 2006; van der Zwaag et al., 2011). Third, no reliable functional marker is 

available for individual non-primary auditory areas; they tend to be broadly tuned to complex 

features such as frequency, pitch, amplitude modulation or envelop (Hall et al., 2002; Rauschecker 

and Scott, 2009; Chevillet et al., 2011). Their characterization relies on histological criteria and was 

carried out in post-mortem material (Rivier and Clarke, 1997; Clarke and Rivier, 1998; Hackett et al., 

2001; Wallace et al., 2002; Chiry et al., 2003). Their identification in activation studies can be based 

on Talairach coordinates published in histological studies (Viceic et al., 2006; van der Zwaag et al., 

2011), preferably in combination with tonotopic mapping for the localization of the primary auditory 

cortex (Da Costa et al., 2015; 2018). 

 

The inferior frontal cortex contributes to the cognitive evaluation of emotional cues of verbal and 

non-verbal vocalizations and its modulation by attention (review Frühholz and Grandjean, 2013). 

The putatively homologous area in non-human primates, the lateral prefrontal cortex, receives 

relatively sparse afferents from AMY; this contrasts with the strong, bidirectional connections, 

which AMY has with the orbitofrontal and medial prefrontal areas (Ghashghaei and Barbas, 2002; 

Barbas, 2007; Barbas et al., 2011). 

 

In summary, the early-stage auditory areas, VA and AMY constitute a core network for the 

processing of emotional vocalizations (Frühholz et al., 2016), which is fostered by strong 

connections, as demonstrated in hodological studies in non-human primates and in man. The primary 

auditory cortex and AMY receive both direct auditory input from the medial geniculate nucleus 

(Shinonaga et al., 1994). A complex pattern of cortico-cortical connections links the primary and 

non-primary early-stage areas and the adjacent superior temporal convexity (Cammoun et al., 2015). 

The extended auditory region is interconnected with AMY (Price and Amaral, 1981; Yukie, 2002; 

Reser et al., 2009). On the basis of this complex architecture, and notably a dual auditory input via 

the primary auditory cortex and via AMY, it can be argued that the processing of emotional 

vocalizations may differ between the early-stage auditory areas, VA and AMY, possibly with 

different selectivity in respect to that of other emotional sounds. 
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Here, we made use of the high spatial resolution of ultra-high field fMRI at 7 Tesla to investigate the 

representation of human vocalizations vs. other environmental sounds, and their modulation by 

emotional valence within early-stage auditory areas, VA and AMY. Based on previous findings, we 

expected (1) the AMY to process emotional valence both for vocalizations and non-vocalizations; (2) 

specific auditory belt areas to encode specifically human vocalizations or emotional valence but not 

emotional valence of human vocalizations only; and (3) VA and/or AMY to process emotional 

valence selectively for human vocalizations. These hypotheses were tested by comparing the BOLD 

responses within the above regions of interest to human vocalizations and to other environmental 

sounds with positive, neutral or negative emotional valence using various repeated measures 

ANOVA. In addition we explored functional coupling between individual early-stage auditory areas, 

VA and AMY, expecting to find a signatures of the dual auditory input via the primary auditory 

cortex and the amygdala.  

 

Materials and Methods 

Subjects 

Eleven subjects (7 female, 8 right-handed, mean age 25.3 ± 4.27 years) participated in the study after 

giving written, informed consent. None of the participants reported hearing deficits or history of 

neurological or psychiatric illness. Hearing thresholds and mental states were measured prior to 

testing. All participants were native speakers of French, without musical training. All experimental 

procedures were approved by the Ethics Committee of the Canton de Vaud. The dataset of one 

subject was discarded due to data acquisition problems (ghosting), and data from the remaining ten 

subjects were used in the following analysis. 

 

Participants provided informative health status and then completed five questionnaires: the 

Edinburgh Handedness Inventory (Oldfield, 1971), the Hospital Anxiety and Depression (HAD) 

scale (Zigmond, A. S. and Snaith, R. P., 1983), the Big Five Inventory (Plaisant et al., 2010), and a 

musical aptitude questionnaire. The participants were representative of the general population. The 

results of the Big-Five Inventory showed that the N (Neuroticism) score had greater between-subject 

variability than the other scores. The scores for factors A (Agreeableness), C (Conscientiousness) 

and E (Extraversion) in our subject sample were higher than in the sample from (Plaisant et al., 

2010), whereas the N score was smaller and had greater variability. The distribution of the O 

(Openness) score of the current study was similar to that of (Plaisant et al., 2010). Concerning the 

HAD scale, the between-subject variability was greater for the anxiety score compared to the 

depression score. Despite this score variability, no subjects were excluded based on these results. 
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Experimental design and statistical analysis 

The experimental design included a single fMRI session (~ 55-60 min in  total) during which 

participants listened passively (i.e., without performing a task) to human vocalizations or other 

environmental sounds with positive, neutral or negative emotional valence while fixating on a red 

cross on a black background. The baseline condition was resting silently with the same fixation. The 

fMRI session was followed by a rating of the emotional valence of the 66 stimuli used in the 

experiment. A debriefing was then performed outside the MRI scanner. 

Auditory stimuli were presented in blocks of eleven different sounds from the same category (human 

vocalizations or other environmental sounds) and with the same emotional valence (positive, neutral 

or negative). On the whole 6 stimulus conditions were presented: i) human vocalizations with neutral 

valence (vowels or consonant-vowels without significance); ii) human vocalizations with positive 

valence (e. g. baby or adult laughing, erotic vocalization by man or woman); iii) human vocalizations 

with negative valence (e. g. frightened scream, vomiting, brawl); iv) non vocalizations with neutral 

valence (e. g. running car engine, wind blowing, train); v) non-vocalizations with positive valence (e. 

g. applause, opening beer can and pouring into the glass; river); and vi) non-vocalizations with 

negative valence (e. g. ticking and exploding bomb; tire skids, breaking glass). Each subject listened 

to three runs, in which blocks and their sequence order were pseudo-randomized. Each fMRI run 

began with a 30-s silent rest condition, followed by 14 blocks, each of which lasted 30 s (22 s of 

sounds + 8 s of silence), followed again by a 30-s silent rest condition (total of 8min). Sounds were 

presented using MATLAB (R2015b, The MathWorks, Inc., Natick, Massachusetts, United States) 

and the Psychophysics Toolbox (www.psychtoolbox.org). Stimuli were delivered binaurally at 80 ± 

8 dB SPL via MRI-compatible headphones (SensiMetrics S14, SensiMetrics, USA), following prior 

filtering with the SensiMetrics filters to obtain a flat frequency transmission. The auditory stimuli 

used in this experiment were the same as in (Aeschlimann et al., 2008), who showed in their study 

that human vocalization are a separate category within the environmental sounds. In this battery, 66 

different emotional sound files of 2 s were selected and equally distributed in the following six 

categories: Human Vocalizations Positive (HVP), Human Vocalizations Neutral (HV0), Human 

Vocalizations Negative (HVN), Non-Vocalizations Positive (NVP), Non-Vocalizations Neutral 

(NV0), and Non-Vocalizations Negative (NVN). Categories were controlled for their acoustic 

characteristics: the percentage of points showing a significant difference between the mean 

spectrogram of two different sound categories was calculated and maintained below 1% to avoid 

acoustic differences between the six categories of sound, as in (De Meo et al., 2015). All the sounds 

were also tested using PRAAT software (http://www.fon.hum.uva.nl/praat/) and homemade 

MATLAB scripts to determine their mean fundamental frequency, mean intensity, harmonics to 

noise ratio, power, center of gravity, mean Wiener entropy and spectral structure variation (Reddy et 

http://www.psychtoolbox.org/
http://www.fon.hum.uva.nl/praat/
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al., 2009). Two-way repeated measures ANOVA with the factors Vocalization (Human-

Vocalizations, Non-Vocalizations) x Valence (Positive, Neutral, Negative) were performed to 

compare the effect of each acoustic feature on the sound categories. We found a main effect of 

Vocalizations [F(1,64) = 18.68, p = 0.0015], a main effect of Valence [F(2,63) = 21.14, p = 1.17E-5] 

and an interaction Vocalizations x Valence [F(2,63) = 8.28, p = 0.002] on the mean Wiener entropy. 

We found a main effect of Valence [F(2,63) = 10.51, p = 0.0007] on the center of gravity. There was 

a main effect of Vocalizations [F(1,64) = 134.23, p = 4.06E-7], a main effect of Valence [F(2,63) = 

69,61, p = 9.78E-10] and an interaction of Vocalizations x Valence [F(2,63) = 17.91, p = 3.48E-5] on 

the harmonics-to-noise ratio. Finally, there was an interaction of Vocalizations x Valence on the 

mean intensity [F(2,63) = 12.47, p = 0.0003] and on the power [F(2,63) = 14.77, p = 0.0001]. 

 

The post-acquisition rating of the emotional valence of each stimulus was performed while the 

subject was still lying in the scanner (without any sequence running) to minimize emotional bias and 

to match at best the experimental conditions. Stimuli were presented in random order; after each 

sound presentation, the subject was instructed to judge the valence of the sound with a linear visual 

7-point scale (1 being very pleasant and 7 being very unpleasant) and to give their answer orally 

within a 5 s silent gap. 

 

Tonotopic mapping was achieved by presenting each subject pure tones (88 – 8000 Hz, in half octave 

steps) in ordered progressions for 2 s, as described previously (Da Costa et al., 2011; 2013; 2015; 

2018). A cycle was composed of 28 s of tone presentation (14 frequencies x 2 s) followed by a 12-s 

silent pause. A single fMRI run consisted of 12 identical cycles for a total duration of 8 min. Each 

subject listened to two runs, either with ascending or descending frequency progressions. One 

subject (the pilot of the study) had a different mapping paradigm (but comparable tonotopic maps), 

with seven tones (88 – 8000 Hz, in octave steps) and 12 cycles (composed of 14 s of tone 

presentation and 14 s of silent pause). 

 

The identification of the regions of interest (ROIs) was performed as follows. First, the identification 

of the early-stage auditory areas was carried out as described previously (Da Costa et al., 2015; 

2018). Briefly, individual tonotopic mappings were used to identify in each subject the primary and 

non-primary areas, which were designated as the primary auditory areas (A1 and R), the lateral belt 

areas (L1, L2, L3 and L4) and medial belt areas (M1, M2, M3 and M4). These individually defined 

areas were used as ROIs for the analysis of neural activity (Fig. 1A, orange box, Table 1), and their 

respective coordinates were in accordance with previously published values (Viceic et al., 2006; van 

der Zwaag et al., 2011; Da Costa et al., 2015; 2018). Second, VA was identified by the contrast 
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‘Human-Vocalizations vs. Non-Vocalizations’ (p = 0.001, uncorrected). All significant voxels on the 

posterior part of the superior temporal gyrus and sulcus were considered as part of VA. The 

Talairach coordinates of VA defined in this way were well within the general regions of VA as 

described by Pernet and colleagues (2015). For some subjects, a few voxels were located within the 

lateral early-stage auditory areas; they were not considered as belonging to VA but to the respective 

lateral early-stage auditory areas in further analysis. Third, AMY was identified in each subject on 

the anatomical images using BrainVoyager (BrainVoyager QX v2.8, Brain Innovation, Maastricht, 

Netherlands) drawing tools. Given that the same sounds are used for the definition of VA and for the 

following statistical analysis, the results for VA region are only descriptive, except for the post-hoc 

correlation analysis. 

 

Table 1: Mean Talairach coordinates (center of gravity) of all ROIs and mean areas. STD = standard 
deviation 

ROI X ± STD(X) Y ± STD(Y) Z ± STD(Z) Area ± STD(Area) 

Left hemisphere 

Amy -21.79 ± 4.32 -4.62 ± 3.06 -14.41 ± 3.42 1240 ± 218.96 

A1 -41.85 ± 4.77 -25.63 ± 4.82 10.71 ± 3.87 781.1 ± 113.52 

R -38.68 ± 4.18 -20.58 ± 4.77 10.04 ± 3.86 736.2 ± 147.44 

L1 -53.67 ± 5.02 -35.60 ± 8.63 16.97 ± 8.19 2204 ± 491.04 

L2 -54.40 ± 5.19 -18.26 ± 5.00 9.22 ± 4.00 794.2 ± 89.6 

L3 -48.86 ± 5.46 -8.73 ± 5.80 5.23 ± 3.51 1193 ± 286.6 

L4 -42.96 ± 4.16 -0.63 ± 9.85 -7.21 ± 6.98 2113 ± 305.24 

M1 -44.50 ± 6.44 -35.80 ± 5.31 20.71 ± 7.75 1723 ± 352.72 

M2 -32.94 ± 2.71 -31.42 ± 3.17 16.75 ± 2.87 254.7 ± 65.1 

M3 -30.05 ± 1.89 -27.67 ± 3.15 16.89 ± 3.46 182.4 ± 55.08 

M4 -34.54 ± 3.19 -11.19 ± 9.84 -2.39 ± 10.71 1698 ± 237.5 

VA -53.30 ± 6.21 -30.36 ± 5.72 6.13 ± 4.43 435.4 ± 202.36 

Right hemisphere 

Amy 20.27 ± 4.36 -5.05 ± 2.84 -14.57 ± 3.42 1259 ± 180.96 

A1 43.24 ± 4.83 -26.09 ± 5.00 11.79 ± 3.71 678.3 ± 110.16 

R 40.24 ± 4.24 -20.24 ± 4.96 8.71 ± 4.29 745.9 ± 141.28 

L1 55.52 ± 4.80 -31.55 ± 5.86 19.18 ± 9.55 1903 ± 436.44 

L2 56.71 ± 4.23 -21.04 ± 6.27 9.50 ± 4.49 922.5 ± 195.7 

L3 52.15 ± 5.07 -9.87 ± 5.78 3.67 ± 3.56 1003 ± 174.8 

L4 43.62 ± 4.71 0.31 ± 10.10 -7.29 ± 6.39 2380 ± 343.2 

M1 44.73 ± 6.25 -32.77 ± 5.04 24.99 ± 8.42 1477 ± 144.36 

M2 33.25 ± 3.11 -30.77 ± 4.48 17.78 ± 4.36 236.1 ± 35.3 

M3 31.47 ± 2.30 -26.75 ± 3.97 16.23 ± 4.21 199.3 ± 43.56 

M4 34.95 ± 2.92 -10.74 ± 10.96 -3.30 ± 10.32 1844 ± 279.36 

VA 48.79 ± 7.60 -31.39 ± 7.37 5.46 ± 4.98 592.3 ± 222.56 
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MRI data acquisition was performed on a 7-Tesla MRI scanner (Siemens MAGNETOM scanner, 

Siemens Medical Solutions) with an 8-channel head rf-coil (RAPID Biomedical). In order to acquire 

high spatial resolution datasets, a sinusoidal 2D-EPI sequence with 1.5 mm isotropic voxels was 

used for the functional acquisition (1.5 x 1.5 mm in-plane resolution, slice thickness = 1.5 mm, TR = 

2000 ms, TE = 25 ms, flip angle = 70°, slice gap = 0 mm, matrix size = 146 x 146, field of view = 

219 x 219, with 43 oblique slices centred on the superior temporal plane along the lateral sulcus, 

with a total coverage of ~ 65 mm and covering the full extent of the superior and medial temporal 

sulci until the entorhinal cortex). T1-weighted high-resolution 3D anatomical images were acquired 

with a MP2RAGE sequence (resolution = 1 x 1 x 1 mm3, TR = 5500 ms, TE = 1.87 ms, TI1/TI2 = 

750/2350 ms, slice gap = 0 mm, matrix size = 256 x 240, field of view = 256 x 240 (Marques et al., 

2010).  

 

The processing of emotional stimuli in AMY has been shown to modulate autonomic reactions, via 

specific outputs to brain stem nuclei (Janak and Tye, 2015). Emotional stimuli of different valence 

can thus induce distinct changes in heart rate or breathing and introduce a bias to image analysis. We 

accounted for this in our study and recorded during the experiment, pulse oximetry and respiration, 

using a plethysmograph and respiratory belt provided from the MRI scanner vendor. In total, each 

subject had an imaging session of 54 min with five functional runs: three runs of the auditory 

emotional experiment and two runs of the tonotopic mapping experiment, which were used for the 

definition of the ROIs within the superior temporal plane. 

 

The MRI analysis included the following steps. Preprocessing steps included scan time correction 

(only for the auditory emotional runs), temporal filtering, motion correction, segmentation and 

normalization into the Talairach space and were performed with BrainVoyager. These preprocessing 

steps were common to all fMRI acquisitions, then depending on the purpose of the fMRI run, the 

datasets were processed differently. In order to define early-stage auditory areas, a linear cross-

correlation analysis was computed for each tonotopic mapping dataset, and the resulting correlation 

maps were averaged together (ascending and descending correlation map) to define the best 

frequency value for each voxel according to the cycle order (Da Costa et al., 2011; 2013; 2015; 

2018). These analyses were performed at the single subject level in the volumetric space, and the 

resulting maps were projected onto the cortical surface meshes, where the individual early-stage 

auditory areas and VA were defined and projected back to the volumetric space (see the paragraph 

on “the identification of the regions of interest (ROIs)” for more details). Then, we performed a 

random effects (RFX) group analysis on the auditory emotional runs, with movement and respiration 

parameters as regressors, and tested for the contrast ‘Sounds vs. Silence’ with an FDR correction at q 
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< 0.05 (p < 0.05, Figure 1.B). This GLM analysis was used to verify that specific regions of the brain 

were activated by our paradigm and particularly that our ROIs were activated by the emotional 

sounds. The remaining analysis focused only on the BOLD responses extracted from these ROIs, as 

explained in the next paragraphs. 

 

The BOLD time course extraction and processing were performed as follows. Functional individual 

time courses for each ROI were extracted in the 3D volume space using BrainVoyager and imported 

into MATLAB. Each time course was normalized by its mean signal, separated according to the 

sound category, and averaged (1) spatially within each ROI, (2) temporally over blocks and runs, and 

(3) across the ten subjects, resulting in a time course of 15 time points for each ROI and category. A 

time-point-by-time-point 2-Way repeated measure ANOVA, 2 Vocalization (Human-Vocalizations, 

Non-Vocalizations) x 3 Valence (Positive, Neutral, Negative) was performed on the averaged BOLD 

time courses according to (Da Costa et al., 2015; 2018). Significant results were restricted temporally 

by only considering the p-values lower or equal to 0.05 for at least three consecutive time points. It is 

to be noted that the probability that three consecutive time-points be false positives is (0.05 x 0.05 x 

0.05) = 1.25*10-4. Therefore, this constraint in time was considered as a valid correction for our 

analysis (see Da Costa et al., 2015 for more details). Finally, post hoc time-point-by-time-point 

paired t-tests were performed between each pair of sound categories. 

  

Physiological data were processed with the TAPAS PhysIO toolbox (Kasper et al., 2017). The 

respiration recordings were used as regressors in the GLM model, whereas the cardiac recordings 

were processed with the same pipeline as the BOLD signal to obtain a pulse time course for each 

sound category. Heart rate, interbeat interval (time interval between two successive beats) time 

courses and heart rate variability were also extracted from these data. The heart rate variability was 

calculated using the root mean squared successive difference between the interbeat interval, 

normalized by the mean interbeat interval according to (Goedhart et al., 2007). These latter measures 

were used to evaluate the effect of the emotional content of the auditory stimuli on the cardiac 

rhythm. 
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Figure 1: A. Behavioral results. Left panel: Heart rate (beats per minute). Middle panel: Root mean squared 

successive difference (RMSSD). Right panel: Valence ratings. The red line represents the median value, the 

box indicates the values between the 25th and the 75th percentiles, and the whiskers show the data below the 

25th percentile or above the 75th percentile, not considered as outliers. The outliers are depicted with a plus 

symbol. The green diamond represents the mean value. Refer to the manuscript for the sound categories 

abbreviations. B. GLM statistical maps and ROI definition. The maps resulting from the contrast ‘Sounds 

vs. Silence’ are presented in the left panel on the volume in the coronal and transverse views and in the right 

panel on the surface (FDR corrected, q < 0.05). Orange box: tonotopic maps were projected into the individual 

right hemisphere surface of a representative subject (r > 0.12). The frequency-selective region was divided into 

10 ROIs: A1, R, L1, L2, L3, L4, M1, M2, M3 and M4. C. Hypothesis. We expected (1) the AMY to process 

emotional valence both for vocalizations and non-vocalizations and to be highly correlated with VA and 

specific lateral belt auditory areas (L1, L2, and L3; grey lines); (2) specific auditory belt areas to encode 

specifically human vocalizations or emotional valence but not emotional valence of human vocalizations only 

and to be correlated to each other; and (3) VA and/or AMY to process emotional valence selectively for human 

vocalizations and being modulated by lateral belt auditory areas (L2; dark lines). RH: right hemisphere; LH: 

left hemisphere. Refer to the manuscript for the ROIs definition and abbreviations. 
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Results 

Modulation of behavioural measures by emotional and vocal content 

The average heart rate did not show any significant differences between sound categories (Fig. 1.A, 

left). Heart rate variability, represented by the normalized RMSSD (Root Mean Squared Successive 

Difference), did not show any significant difference between sound categories (Erreur ! Source du 

renvoi introuvable..A, middle). The time courses of the pulses were submitted to a time-point-by-

time-point 2-way repeated measures ANOVA 2 Vocalization (Human-Vocalizations, Non-

Vocalizations) x 3 Valence (Positive, Neutral, Negative), which highlighted a main effect of 

vocalization. 

Post-scanning ratings of the valence of the sound stimuli showed a bigger variance in the categories 

HVP and NVN compared to that in the four other sound categories (Erreur ! Source du renvoi 

introuvable..A, right). A 2-way repeated measures ANOVA 2 Vocalization (Human-Vocalizations, 

Non-Vocalizations) x 3 Valence (Positive, Neutral, Negative) on the valence ratings revealed a main 

effect of valence [F(2, 653) = 532.29, p = 7.38E-138], no effect of Vocalization [F(1, 653) = 2.68, p 

= 0.1], and an interaction of Vocalization x Valence [F(2, 653) = 22.31, p = 4.23E-10]. As indicated 

by post-hoc t-tests, the latter was driven by the difference between vocalizations vs non-

vocalizations, which was significant for negative, but not neutral or positive valence.  

 

Emotional modulation of neural activity elicited by human vocalizations and by other environmental 

sounds 

The RFX GLM analysis with the contrast ‘Sounds vs. Silence’ (p < 0.005, q(FDR) < 0.05) resulted 

in a strong bilateral activation on the supratemporal plane, the posterior part of the superior temporal 

sulcus corresponding to VA and in the AMY (Fig. 1.B).  

 

Table 2: Talairach coordinates of the peaks of the activation clusters of Sounds vs. Silence. 
Talairach coordinates, t values, number of voxels and corresponding regions for the peaks 

of all the activation clusters resulting from the contrast Sounds vs. Silence in the RFX GLM 

analysis (FDR q < 0.05, cluster threshold of 100 voxels). Clusters were sorted according 

their size and corresponding region. HG: Heschl’s Gyrus; IFG: Inferior Frontral Gyrus; 

PFC: Prefrontral Gyrus; STG: Superior Temporal Gyrus; ITG: Inferior Temporal Gyrus; 

MGB: Medial Geniculate Body of the thalamus; AMY: Amygdala. 

Area X Y Z t value #voxels BA 

Left hemisphere 
      

Transverse gyrus (HG) -48 -19 10 33.75 21230 41 

Triangular part IFG -45 16 16 10.05 1282 45 

 
-42 19 10 9.33 771 

 
Dorsolateral PFC -47 42 7 9.73 392 46 

 
-51 29 13 7.41 247 

 
Parahippocampal gyrus -18 -11 -13 9.23 386 54 
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Orbital part IFG -28 27 -2 9.53 354 47 

Insula -24 23 12 7.11 307 13 

STG -52 -51 12 7.74 164 22 

Cerebellum -41 -58 -23 7.77 154 - 

 
-23 -29 -22 8.72 145 - 

ITG -54 -57 -15 7.63 150 20 

MGB -16 -26 -5 8.46 140 - 

Cuneus (V1) -11 -90 -8 7.11 137 17 

Right hemisphere 
      

Transverse gyrus (HG) 54 -16 5 31.22 24633 41 

Dorsolateral PFC 49 38 2 10.42 922 46 

AMY 16 -5 -20 11.30 715 53 

Opercular part IFG 45 16 21 11.87 615 44 

 
54 16 30 8.51 184 

 

 
36 30 0 6.76 159 

 

 
31 29 0 5.78 121 

 
Dorsolateral PFC 50 34 19 8.18 213 9 

Inferior Colliculus 6 -32 -2 11.95 144 - 

Secondary visual cortex 7 -88 -15 9.12 135 18 

Thalamus 11 -14 6 8.29 111 - 

 

 

Two-way repeated measure ANOVA on the BOLD responses with factors Vocalization (Human-

Vocalizations, Non-Vocalizations) and Valence (Positive, Neutral, Negative) revealed a significant 

main effect of Vocalization bilaterally in VA and L2, as well as in the left L1 and right L3 (Figure 

2.A). A main effect of Valence was significant bilaterally in VA and L3, as well as in the left L2, 

right L4 and AMY. The interaction Vocalization x Valence was significant bilaterally in VA, as well 

as in right A1. To investigate this significant interaction, we performed post-hoc one-way ANOVAs 

for the factor valence on the categories of human vocalizations and non-vocalizations separately, as 

well as post-hoc one-way ANOVAs for the factor vocalization on the categories of positive, negative 

and neutral  sounds separately (Figure 2.B). The analysis of the effect of emotional valence on 

human vocalizations (HVP, HV0, HVN) using one-way ANOVA yielded a significant main effect of 

Valence bilaterally in VA. The analysis of the effect of emotional valence on non-vocalizations 

(NVP, NV0, NVN) using one-way ANOVA did not yield any significant main effect. Post-hoc t-

tests reveal that the main effect of Valence on vocalizations in VA was driven by a significant 

difference between 'HVP and HVN' and 'HV0 and 'HVN'. The interaction effect found in right A1 

was driven by a main effect of vocalization only for the positive stimuli and not for the neutral nor 

negative stimuli. A post hoc three-way repeated measure ANOVA with factors Vocalization 

(Human-Vocalizations, Non-Vocalizations), Valence (Positive, Neutral, Negative) and Time (every 

15 time bins of the block) revealed a significant main effect for Vocalization in bilateral VA, in left 
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L1 and L2, and right L3; a significant main effect for Valence in right L3 and bilateral VA; a 

significant main effect for Time in all bilateral ROIs; a significant interaction Vocalization X Time 

bilaterally in R, L2, L3, VA, in left L1 and M3, and right M1 and M2; a significant interaction  

Valence X Time bilaterally in L2, L3, and VA; and a significant interaction Vocalization X Valence 

X Time in bilateral L2, L3, VA, right AMY and left A1 and R. There was no significant interaction 

Vocalization X Valence when Time was considered as a factor (results not displayed). The main 

effect for Time in all bilateral ROIs supported our main hypothesis that the BOLD evolved 

differently for each stimuli along the blocks, therefore our interpretations are focusing on the results 

from the two-way ANOVA. 

 

The BOLD time courses for the ROIs with a significant effect in the ANOVA are presented in Figure 

3. VA responded preferentially to human-vocalizations of neutral and positive valence, whereas the 

STG responded preferentially to neutral sounds. The AMY shows a stronger response for the 

positive emotional sounds. We observed that the processing of the various valences occurs at the 

beginning of the time course, regardless of the ROI. Moreover, we noticed a habituation effect for all 

sound categories in all ROIs, with the strongest one (i.e. longest plateau) observed in VA for the 

vocalizations. 

 

Correlation of BOLD signal between regions of interest 

To investigate the coupling between ROIs with significant effects of the 2-way repeated measure 

ANOVA of the BOLD responses, we performed post hoc correlations between the BOLD signals of 

the AMY, VA, L1, L2 and L3 for Human Vocalizations and for non-vocalizations (Fig. 4.A). 

Significant correlations (p < 0.01; with an adjusted R2 > 0.6; see Table 2 and 3) were found among 

the three belt areas (L1, L2, L3) and VA; their strength varied as a function of stimulus category and 

partially valence and between the hemispheres. Strikingly, the correlations between VA and the belt 

areas were stronger for Vocalizations than for Non-vocalizations. The right AMY was correlated 

with the right VA and right L1, L2 and L3 during the presentation of HVP (but not during Non-

vocalizations nor during HVN or HV0); this effect was not found in the left hemisphere. 
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Figure 2: Statistical results. A. Two-way ANOVA 2 Vocalization (Human Vocalizations, Non-

Vocalizations) x 3 Valence (Positive, Neutral, Negative) on the BOLD signal. The results of the ANOVA 

Vocalization x Valence, with the ROIs represented on the y-axis, the time points on the x-axis and the color bar 

indicating different statistical thresholds. The red colors indicate a p-value lower or equal to 0.05 for at least 

three consecutive time points. Upper panel: Main effect of Vocalization. Middle panel: Main effect of Valence. 

Lower panel: Interaction Vocalization x Valence. B. Separate one-way ANOVA for human vocalizations 

and non-vocalizations. Upper panel: Main effect of Valence on Human Vocalization categories (HVP, HV0, 

HVN). Lower panel: Main effect of Valence on Non-Vocalization categories (NVP, NV0, NVN). RH: right 

hemisphere; LH: left hemisphere. Refer to the manuscript for the ROIs definition and abbreviations. 
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Figure 3: BOLD time courses for significant ROIs: AMY, L1, L2, L3 and VA. BOLD time courses for the 

left and right hemisphere are in the left and right part, respectively. For each hemisphere, the left panel depicts 

the Human Vocalization categories [HVP (solid line), HV0 (dashed line), HVN (dotted line)] in warm colors 

and the right panel the Non-Vocalization categories [NVP (solid line), NV0 (dashed line), NVN (dotted line)] 

in cold colors. RH: right hemisphere; LH: left hemisphere. Refer to the manuscript for the ROIs and sound 

categories abbreviations. 
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Figure 4: BOLD correlations. Correlations between the BOLD time courses of the ROIs L1, L2, L3, VA and 

AMY, in the left and right hemispheres separately. The thickness of the lines represents the strength of the 

correlation. Correlations with an adjusted-R2 smaller than 0.6 are not represented. In the lower part of the 

figure, the correlations are separated for the Human Vocalizations categories [HVP (solid red line), HV0 

(dashed black line), HVN (dotted blue line)] and for the Non-Vocalizations categories [NVP (solid red line), 

NV0 (dashed black line), NVN (dotted blue line)]. RH: right hemisphere; LH: left hemisphere. Refer to the 

manuscript for the ROIs definition and abbreviations.  
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Table 3: BOLD correlations for the left hemisphere. P-values and R-square for the BOLD correlations of 

the left ROIs (L1, L2, L3, VA and AMY) for the different sound categories (HV0, HVP, HVN, NV0, NVP and 

NVN). The results are only presented for correlations with p-values lower than 0.01 and R-square greater than 

0.6. The correlations that do not meet this criterion are hatched. No result in the shaded part of the table, as this 

is a symmetrical matrix. Refer to the manuscript for the ROIs definition and abbreviations. 

 
      

Left hemisphere L1 L2 L3 VA AMY 

  p-value (R2) p-value (R2) p-value (R2) p-value (R2) p-value (R2) 

HV0           

L1   1.56E-09 (0.94) 8.36E-11 (09.96) 2.08E-09 (0.94)   

L2     1.56E-12 (0.98) 5.72E-12 (0.98)   

L3       4.86E-11 (0.97)   

VA           

AMY           

HVN           

L1   2.38E-09 (0.94) 2.20E-09 (0.94) 3.73E-07 (0.87)   

L2     6.73E-12 (0.98) 1.85E-08 (0.92)   

L3       5.38E-09 (0.93)   

VA           

AMY           

HVP           

L1   5.65E-09 (0.93) 5.05E-11 (0.97) 5.42E-13 (0.98)   

L2     1.14E-12 (0.98) 3.85E-10 (0.96)   

L3       1.73E-11 (0.97)   

VA           

AMY           

NV0           

L1   6.99E-08 (0.89) 6.74E-08 (0.89)     

L2     3.07E-13 (0.99)     

L3           

VA           

AMY           

NVN           

L1   3.04E-09 (0.94) 4.24E-08 (0.91) 2.73E-05 (0.75)   

L2     3.20E-10 (0.96)     

L3           

VA           

AMY           

NVP           

L1   1.97E-10 (0.96) 9.74E-08 (0.89) 5.06E-05 (0.73)   

L2     5.24E-08 (0.90) 2.30E-05 (0.76)   

L3       9.46E-06 (0.79)   

VA           

AMY           
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Table 4: BOLD correlations for the right hemisphere. Same conventions as in Table 3 

 
      

Right hemisphere L1 L2 L3 VA AMY 

  p-value (R2) p-value (R2) p-value (R2) p-value (R2) p-value (R2) 

HV0           

L1   1.60E-10 (0.96) 6.54E-10 (0.95) 4.82E-11 (0.97)   

L2     1.08E-12 (0.98) 4.31E-15 (0.99)   

L3       3.14E-13 (0.98)   

VA           

AMY           

HVN           

L1   1.43E-06 (0.84) 2.29E-06 (0.83) 1.34E-07 (0.89)   

L2     3.48E-13 (0.98) 1.71E-10 (0.96)   

L3       3.01E-09 (0.94)   

VA           

AMY           

HVP           

L1   2.08E-07 (0.88) 1.01E-07 (0.89) 3.45E-07 (0.87) 1.61E-04 (0.68) 

L2     9.18E-12 (0.97) 4.48E-13 (0.98) 2.96E-05 (0.75) 

L3       1.76E-10 (0.96) 1.48E-04 (0.68) 

VA         3.69E-06 (0.79) 

AMY           

NV0           

L1   5.88E-10 (0.95) 5.42E-10 (0.95) 4.65E-07 (0.87)   

L2     1.79E-12 (0.98) 1.99E-06 (0.83)   

L3       2.70E-07 (0.88)   

VA           

AMY           

NVN           

L1   1.12E-08 (0.92) 4.55E-07 (0.87) 2.43E-06 (0.83)   

L2     3.82E-11 (0.97) 4.33E-07 (0.87)   

L3       3.98E-08 (0.91)   

VA           

AMY           

NVP           

L1   2.26E-08 (0.92) 6.72E-08 (0.89) 2.87E-07 (0.88)   

L2     8.02E-10 (0.95) 3.26E-05 (0.75)   

L3       7.76E-06 (0.79)   

VA           

AMY           
 

 

 [insert Figure 4 here] 
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Discussion 

Our results indicate that emotional valence modulates differentially neural activity that is elicited by 

human vocalizations vs. non-vocal environmental sounds within individual early-stage auditory 

areas, VA and AMY. Using 7T fMRI and 1.5 x 1.5 x 1.5 mm voxel size, without smoothing, 

rendered individual auditory areas accessible to investigation. Whereas emotional content modulates 

both vocalizations and other environmental sounds in early-stage auditory areas, it singles out 

vocalizations in VA. Both types of sounds are also modulated in AMY. The specificity profiles 

within these regions and the correlations in their activity suggest that VA shares emotional 

information both with early-stage auditory areas and with AMY. 

 

Selectivity for emotional vocalizations 

Whereas emotional valence modulates neural activity elicited by different sensory modalities in 

AMY or by different sound categories in lateral belt areas, its modulation appears to be limited to a 

single category, human vocalizations, in VA. This area was initially identified by its selectivity for 

human vocalizations, including speaker’s identity, over other environmental sounds or acoustically 

similar control stimuli such as scrambled voices or amplitude modulated noise (Belin et al., 2000, 

2002; Warren et al., 2006; Latinus et al., 2013; Zäske et al., 2017). VA is located within the superior 

temporal sulcus and there is inter-individual variability as to its precise location (Pernet et al., 2015). 

VA neural activity elicited by human vocalizations was shown to be modulated by emotional 

intensity of happy or angry intonation (Ethofer et al., 2006b), of laughter (Lavan et al., 2017) and of 

positive or negative valence of non-verbal vocalizations (Bestelmeyer et al., 2017). Our results 

confirm the selectivity of VA for human vocalizations over other environmental sounds and show 

that emotional modulation impacts the encoding of vocalizations but not of other environmental 

sounds. To our knowledge, none of the previous studies investigated this issue specifically, and none 

reported emotional modulation of environmental sounds other than vocalizations within VA. Further 

studies need to establish whether the neural populations, which encode emotional vocalizations do so 

in a categorical way (positive vs. neutral vs. negative) or on a continuous scale. 

 

Selectivity for emotions and for vocalizations within early-stage auditory areas 

Our results indicate that specific lateral belt areas are selective for vocalizations over other 

environmental sounds and/or modulated by emotional valence but that emotional modulation is not 

limited to a specific stimulus category.  Within the left hemisphere areas, L1 and L2, which are 

located postero-laterally on the planum temporale, are selective for vocalizations, whereas L2 and 

L3, which are located laterally on the planum temporale and Heschl’s gyrus, are selective for 
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emotional valence. Within the right hemisphere L2 and L3 are selective for vocalizations and L3 and 

L4 for emotional valence. Voice selectivity within the planum temporale has been documented in 

previous studies, showing stronger activation to vocal than to non-vocal sounds (Belin et al., 2000) 

and participating in spectrotemporal analysis of vocalizations, a processing step which is believed to 

precede speaker identification in the superior temporal sulcus (Warren et al., 2006). Modulation by 

emotional valence was reported in a region located posterolaterally to the PAC, where emotional 

vocalizations yielded stronger activations than neutral voices (Wildgruber et al., 2004a; Ethofer et 

al., 2006b, 2012; Leitman et al., 2010; Bestelmeyer et al., 2017) or distinct spatial response patterns 

to different emotional categories (Ethofer et al., 2009b). This region on the posterolateral 

supratemporal plane is very likely part of the belt or parabelt areas, as suggested by its connectivity 

pattern. Diffusion Spectrum MRI (DSI)  and post-mortem tracing studies have shown that this part of 

the auditory cortex i) is interconnected with the primary auditory cortex and with higher-order areas 

on the superior temporal gyrus (Cammoun et al., 2015); ii) receives monosynaptic callosal afferents 

from the fusiform gyrus (Di Virgilio and Clarke, 1997); and iii) has intrinsic connections that tend to 

be longer than those within the primary auditory cortex, but shorter than those of Broca’s area 

(Tardif and Clarke, 2001; Tardif et al., 2007). This supratemporal region was included, together with 

a large part of VA, in the so-called “emotional voice area” (Ethofer et al., 2012) because of its 

responsiveness to emotionally modulated vocalizations; the specificity of the emotional effect for 

vocalizations vs. other sound categories has, however, not been investigated prior to our study. The 

high spatial resolution of the present study allowed us to show that the “emotional voice area” 

consists of two functionally distinct regions, the early-stage auditory areas, where the emotional 

content modulates neural activity elicited by vocalizations and by other environmental sounds, and 

VA, where it modulates responses to vocalizations only. The effect appears to be driven by a 

stronger response to neutral than positive or negative valence in early-stage areas and by positive 

valence in VA. 

 

Modulation by emotional valence in the amygdala 

Emotional valence in AMY is encoded independently of stimulus category. Although several studies 

have shown that AMY plays an important role in processing emotions in non-verbal vocalizations 

(Phillips et al., 1998; Morris et al., 1999; Sander et al., 2003, 2007; Fecteau et al., 2007; Frühholz et 

al., 2014), modulation by emotional valence concerns other auditory categories, demonstrated here 

and in a previous study (Frühholz et al., 2014) or other sensory modalities (Baas et al., 2004; 

Costafreda et al., 2008; Ball et al., 2009). Our finding that the emotional effect was driven by 

stronger responses to positive than neutral and negative stimuli is consistent with previous studies 

using human vocalizations (Fecteau et al., 2007; Wiethoff et al., 2009) or other stimuli (O’Doherty et 



 

 64 

al., 2001; Anderson et al., 2003; Winston et al., 2005; Ball et al., 2007; Hurlemann et al., 2008; 

Sergerie et al., 2008; Costa et al., 2010). However, our results contrast with a recent report that 

screams and alarms, a priori negative stimuli, activate strongly AMY; the authors attribute this 

selectivity to the acoustic feature of roughness, which is shared by both types of stimuli (Arnal et al., 

2015). Several other studies have highlighted the preference of AMY for negative emotional valence 

(Morris et al., 1998; Phillips et al., 1998, 2001; Wright et al., 2001). In our experimental paradigm 

modulation by emotional valence was stronger in AMY in the right hemisphere. Previous studies 

reported right (for laughing and crying sounds: (Sander et al., 2003) or left lateralization (for non-

linguistic lateralizations: (Fecteau et al., 2007) or bilateral activation (Aubé et al., 2015). These 

divergent findings could be explained by the complex structure of AMY, which is composed of 

several nuclei (Amunts et al., 2005; Roy et al., 2009; Solano-Castiella et al., 2011). Imaging AMY 

remains difficult because of inhomogeneities in the local magnetic field (Labar et al., 2001), the 

proximity of large veins (Boubela et al., 2015) and the lateralization of AMY activation due to the 

phase-encoding polarity (Mathiak et al., 2012). These limitations prevented us from parcellating 

AMY accurately and exploring emotional encoding in specific sub-nuclei. 

 

Processing pathway for emotional vocalizations 

Our results speak in favour of a module dedicated to the processing of the emotional value of human 

vocalizations but not of other environmental sounds, which is part of or co-extensive with VA (Fig. 

4B). This observation highlights three features of emotional processing. First, the neural mechanisms 

underlying this specificity involve most likely the combination of a category-specific input from the 

lateral belt areas and of emotion-specific input from AMY, as suggested by evidence from activation 

and connectivity patterns. Our results indicate that emotional information, which is encoded in VA, 

shares a preference for positive stimuli with AMY and for neutral stimuli with lateral belt areas. As 

reported in previous studies, the lateral part of the planum temporale processes temporo-spatial 

information pertaining to vocalizations and relays this information to VA, where higher-order 

analysis, including voice identification, is conducted (Belin et al., 2000; Warren et al., 2006). The 

corresponding interconnection between lateral belt areas and the region of the superior temporal 

sulcus, where VA is located, was demonstrated using DSI tract tracing (Cammoun et al., 2015). 

Furthermore, functional connections were described between VA and the supratemporal region 

(Pernet et al., 2015). Functional connectivity between AMY and VA, reported in an early study (Roy 

et al., 2009), were not confirmed in a later study, which proposed that the AMY-VA link passes via 

the prefrontal cortex (Pernet et al., 2015). The model of dual input to VA, from the lateral belt areas 

and from AMY, is consistent with the multi-stage concept for the processing of vocalizations and 

valence (Schirmer and Gunter, 2017); evidence from EEG studies suggests that vocalizations and 
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valence are processed first independently, before being integrated in higher order auditory or frontal 

regions. At the neuronal level, we can only hypothesize as to the mechanisms that underlie the 

emotion-vocalization selectivity by postulating the existence of populations of “human-vocalization-

neurons”, which are driven by inputs from lateral belt areas and AMY. Second, VA is not the only 

category-specific area that is selectively modulated by emotional valence. The fusiform face area 

shares the same feature. Emotional expressions were shown to modulate neural activity within the 

fusiform face area (intracranial recordings: Pourtois et al., 2009); fMRI: (Jehna et al., 2011; Harry et 

al., 2013), albeit less than within the face area in the superior temporal sulcus (Zhang et al., 2016). 

As revealed by a meta-analysis of fMRI studies, the fusiform face area appears to process emotional 

content for faces but not for other categories (i.e., visual scenes, Sabatinelli et al., 2011). Thus, 

predominantly auditory and predominantly visual cortices each comprise an area where category-

specific processing – voices and faces, respectively – is modulated by emotional valence. In both 

cases, this emotion-linked encoding concerns stimuli of high social relevance. Third, the emotion-

vocalization specific module within VA is very likely a stepping-stone towards a more global, 

hetero-modal representation of emotionally relevant information about people (Watson et al., 2014). 

The combined encoding of voices and faces, including emotional aspects, was shown to involve a 

small part of the superior temporal sulcus at the intersection of VA and the more posterior lying face 

area (Kreifelts et al., 2009; Ethofer et al., 2013). 

 

Several aspects of the processing of emotional vocalizations, which remain to be explored, could be 

addressed in future studies with an event-related paradigm at 7T. This would allow to correlate the 

perceived valence by a given subject with the activation within a ROI and compare thus more 

precisely emotional modulation of vocalizations and non-vocalizations. This same design would be 

particularly adapted to investigate neural coupling between ROIs. 

 

Conclusions 

Our results highlighted different stages in the processing of emotional vocalizations. Within the 

supratemporal plane, several lateral early-stage auditory areas responded strongly to non-verbal 

vocalizations and/or were modulated by emotional valence. However, none of these areas appeared 

to be dedicated to emotional processing of vocalizations only. This role was assumed by VA, where 

emotional valence modulated selectively responses to human vocalizations but not to other 

environmental sounds. In contrast, emotional valence modulated neural responses to both types of 

stimuli in right AMY. Correlation analysis revealed coupling between VA and early-stage auditory 

areas during the presentation of any vocalization, and between VA and right AMY during positive 

vocalizations. Thus, emotional vocalizations are processed in a dual pathway, whereby the emotion-
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vocalization module within VA integrates the input from the lateral early-stage auditory areas and 

from AMY. 
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Abstract  

Evidence from behavioural studies suggests that the spatial origin of sounds may influence the 

perception of emotional valence. Using 7T fMRI we have investigated the impact of the type of 

sound (vocalizations; non-vocalizations), emotional valence (positive, neutral, negative) and spatial 

origin (left, centre, right) on the encoding in early-stage auditory areas and in the voice area. The 

combination of these different characteristics resulted in a total of 18 conditions (2 Types x 3 

Valences x 3 Lateralizations), which were presented in a pseudo-randomized order in blocks of 

eleven different sounds (of the same condition) in 12 distinct runs of 6min. In addition, the subjects 

(N = 14, with normal hearing) also listened to two different localizers (a tonotopy paradigm and a 

voice localizer), which were used to define the regions of interest. A 3-way repeated measure 

ANOVA on the BOLD responses revealed bilateral significant effects and interactions in the primary 

auditory cortex, the lateral early-stage auditory areas, and the voice area. Positive vocalizations 

presented on the left side yielded greater activity in bilateral primary auditory cortex than did neutral 

or negative vocalizations or any other stimuli at any of the three positions. The voice area did not 

share the same preference for the left space; spatial attributes modulated its activation by sound 

objects conveying positive or neutral emotional valence when presented on the right or left side (but 

not at the centre). Comparison with a previous study indicates that spatial cues may render emotional 

valence more salient within the early-stage auditory areas. 
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Human vocalizations, emotions, auditory belt areas, voice area, lateralization, 7T fMRI 

 

Abbreviations 

AI primary auditory area 

HVN human vocalizations with negative emotional valence 

HVP human vocalizations with positive emotional valence 

HV0 human vocalizations with neutral emotional valence 

NVN non-vocalizations with negative emotional valence 

NVP non-vocalizations with positive emotional valence 

NV0 non-vocalizations with neutral emotional valence 

R rostral (primary) auditory area 

VA voice area



 

 80 

Introduction  

Three lines of evidence suggest that the spatial origin of sounds influences the perception of 

emotional valence. First, looming sounds tend to be perceived as more unpleasant, potent, arousing 

and intense than receding sounds (Bach et al., 2008, 2009; Tajadura-Jiménez et al., 2010b). Second, 

sounds were reported to be more arousing when presented behind than in front of a person and this 

effects was stronger for natural sounds, such as human or animal vocalizations, than tones (Tajadura-

Jiménez et al., 2010a). Third, when presented in a dichotic paradigm emotional vocalizations were 

shown to yield asymmetrical behavioural scores. An early study used syllables without significance 

spoken in seven different emotional intonations. The performance in detecting one emotion, defined 

as target, was significantly better for stimuli presented to the left than the right ear (Erhan et al., 

1998). A later study used four words, which differed in the initial consonant, and which were spoken 

in four different emotional intonations. The subjects attended either both ears or one of them at a 

time. Performance analysis revealed a significant left-ear advantage for identifying the emotion 

(Jäncke et al., 2001). The behavioural results of either study were interpreted in terms of right 

hemispheric competence for emotional processing (for recent review e. g. (Gadea et al., 2011)). The 

alternative interpretation, that the emotional perception may be modulated by the lateralization of the 

sound, as it is for looming vs. receding sounds (Bach et al., 2008, 2009; Tajadura-Jiménez et al., 

2010b), has not been considered. 

 

The encoding of the auditory space is believed to be partially independent of the encoding of sound 

meaning. A series of seminal studies lead to the formulation of the dual-stream model of auditory 

processing, which posits partially independent encoding of sound meaning along the anterior 

temporal convexity and that of sound position on the parietal convexity ((Anourova et al., 2001; 

Maeder et al., 2001; Hart et al., 2004; Ahveninen et al., 2006; De Santis et al., 2007a, 2007b; 

Rauschecker and Scott, 2009); for a review (Arnott et al., 2004)). The functional independence of the 

two pathways has been documented in patient studies, where lesions limited to the ventral stream 

impaired sound recognition but not localization and conversely lesions limited to the dorsal stream 

impaired sound localization but not recognition (Clarke et al., 2000, 2002; Rey et al., 2007).  

 

Recent evidence indicates that the combined encoding of sound object identity and location involves 

a separate, third processing stream, referred to also as the lateral pathway (Clarke and Geiser, 2015). 

Its initial demonstration relied on repetition priming paradigms; neural populations, which encoded 

the combined representation, displayed repetition enhancement when an object changed position and 

repetition suppression when it did not, both in EEG (Bourquin et al., 2013) and in 7T fMRI 

experiments (Da Costa et al., 2018). The latter identified several early-stage auditory areas on the 
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supratemporal plane which participate in the combined encoding of sound object identity and 

position. The position-linked representation of sound objects, as supported by the lateral auditory 

pathway, is likely to contribute to auditory streaming, where spatial cues play an important role in 

the very early processing stages (Eramudugolla et al., 2008). The functional independence of the 

lateral and dorsal auditory pathways, has been demonstrated in patient studies, where the implicit use 

of auditory spatial cues was preserved for the segregation of sound objects, despite severe sound 

localization deficits, including cortical spatial deafness (Thiran and Clarke, 2003; Duffour-Nikolov 

et al., 2012; Tissieres et al., 2019).  

 

The early-stage primary and non-primary auditory areas are located on the supratemporal plane and 

constitute first steps of cortical processing; several of them were defined by anatomical, histological 

and/or functional markers in post-mortem studies and by functional criteria (Clarke and Morosan, 

2012). The primary auditory cortex is roughly co-extensive with Heschl’s gyrus (Zilles et al., 1988; 

Rademacher et al., 2001) and consists of two orderly tonotopic representations (Formisano et al., 

2003; Da Costa et al., 2011, 2014; Moerel et al., 2014). The surrounding plana polare and temporale 

comprise several non-primary auditory areas, which were characterized on the basis of histological 

criteria (Rivier and Clarke, 1997; Clarke and Rivier, 1998; Hackett et al., 2001; Wallace et al., 2002; 

Chiry et al., 2003). Their Talairach coordinates were used in activation studies (Viceic et al., 2006; 

van der Zwaag et al., 2011; Besle et al., 2019), in addition to the identification of the primary 

auditory cortex by means of tonotopic mapping (Da Costa et al., 2011, 2015, 2018). 

 

Human vocalizations constitute emotionally highly potent stimuli. They are processed in a dedicated 

region on the superior temporal gyrus, the voice area (VA), which is defined by its stronger response 

to human than animal vocalizations (Belin et al., 2000). The encoding of vocalizations within VA is 

modulated by emotional valence, as demonstrated in a series of seminal studies (Belin et al., 2002; 

Grandjean et al., 2005; Ethofer et al., 2006, 2008, 2009, 2012; Beaucousin et al., 2007; Obleser et al., 

2007, 2008; Bestelmeyer et al., 2017). In addition to VA, the emotional valence of vocalizations 

impacts also the activity on Heschl’s gyrus and the antero-lateral part of the planum temporale 

(Wildgruber et al., 2005; Leitman et al., 2010; Ethofer et al., 2012; Arnal et al., 2015; Lavan et al., 

2017) . The relatively low spatial resolution used in these studies did not allow to analyse separately 

neural activity within VA and within individual auditory areas. This has been done in a recent 7T 

fMRI study, which used human vocalizations and non-vocalizations with positive, neutral or 

negative valence (Grisendi et al., 2019). Several early-stage auditory areas yielded stronger 

responses to non-verbal vocalizations and/or were modulated by emotional valence. In contrast, in 
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VA emotional valence modulated selectively responses to human vocalizations but not to non-

vocalizations.  

 

The impact of emotional valence on the processing in respect to the ventral and dorsal auditory 

streams was investigated in a fMRI study (Kryklywy et al., 2013). Neural activity elicited by 

environmental sounds (predominantly human vocalizations) with positive, neutral or negative 

valence, presented at one of two left or two right positions, yielded a main effect of position 

bilaterally in a temporo-parietal region driven by a stronger activity to contralateral stimuli. A main 

effect of emotion was present bilaterally in an antero-superior temporal region, driven by stronger 

activity to emotional than neutral stimuli. The right auditory cortex yielded a significant interaction, 

driven by stronger response to contralateral positive stimuli. In a follow-up study (Kryklywy et al., 

2018) the data were analysed with multi-voxel pattern analysis, which revealed overlapping 

representations of spatial and emotional attributes within the posterior part of the supratemporal 

plane.  

 

In summary, human vocalizations convey strongly emotional valence, with a major involvement of 

VA and of the postero-lateral part of the planum temporale (Wildgruber et al., 2005; Leitman et al., 

2010; Ethofer et al., 2012; Arnal et al., 2015; Lavan et al., 2017). The perceived emotional valence 

of sounds, including vocalizations, is modulated by spatial attributes as demonstrated for looming 

sounds (Bach et al., 2008, 2009; Tajadura-Jiménez et al., 2010b). A likely candidate for the 

interaction between emotional valence and spatial attributes of sounds is the planum temporale 

(Kryklywy et al., 2018). It is currently unclear whether other spatial attributes, such as left vs. right 

locations (and not simply left vs. right ear), modulate emotional perception and its encoding as well, 

and whether human vocalizations vs. other environmental sounds differ in this respect. 

We have addressed these issues and hypothetized that specific early-stage auditory areas and/or VA 

may display one or several of the following characteristics: 

i) The encoding of emotional vocalizations is more strongly modulated by their position than that 

of neutral vocalizations or non-vocalizations;  

ii) The encoding of emotional valence is modulated by the spatial origin of the sound;  

iii) The spatial origin of the sound impacts differently the encoding of vocalizations vs. non-

vocalizations.  

Furthermore, we expected to find spatial, emotional and vocalization selectivity, as reported in 

previous studies (Belin et al., 2002; Grandjean et al., 2005; Wildgruber et al., 2005; Ethofer et al., 

2006, 2008, 2009, 2012; Beaucousin et al., 2007; Obleser et al., 2007, 2008; Leitman et al., 2010; 

Kryklywy et al., 2013; Arnal et al., 2015; Bestelmeyer et al., 2017; Lavan et al., 2017; Da Costa et 
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al., 2018; Grisendi et al., 2019). To test these three hypotheses, we have made use of the high spatial 

resolution of ultra-high field fMRI at 7T to investigate the representation of human vocalizations vs. 

other environmental sounds, and their modulation by emotional valence and/or by their position 

within early-stage auditory areas and VA. 

 

Materials and Methods 

Subjects 

Fourteen subjects (9 female, 12 right-handed, mean age 26.36 ± 4.19 years) participated in this 

study. Due to problem during the acquisition, one subject was discarded. All were French native 

speakers, without musical training. None reported history of neurological or psychiatric illness or 

hearing deficits and all had hearing thresholds within normal limits. Prior to the imaging session, 

each subject had to complete six questionnaires on their health status, handedness (Edinburgh 

Handedness Inventory, (Oldfield, 1971), anxiety and depression state (Hospital Anxiety and 

Depression, HAD, scale; (Zigmond and Snaith, 1983), personality traits (Big-Five Inventory, 

(Courtois et al., 2018), and a musical aptitude questionnaire developed in the lab. These 

questionnaires revealed no significant differences in personality traits nor in mood disorders. Thus, 

our group of volunteers was representative of the normal population and no subject was excluded of 

the study. The experimental procedures were approved by the Ethics Committee of the Canton de 

Vaud; all subjects gave written, informed consent.  

 

Experimental design and statistical analysis 

The experimental design consisted of two fMRI sessions (~55-60 min each) during which auditory 

stimuli were presented while the subjects passively listen to the stimuli with eyes closed. In total, 

each subject performed two runs of tonotopy mappings, one run of voice localizer, and twelve runs 

of “emotions&space” runs. The latter consisted of 20s of silent rest (with no auditory stimuli except 

the scanner noise), followed by nine 36s-blocks of eleven sounds of the same condition (22s sounds 

and 14s of silent rest), and again 20s of silent rest. Each block was composed of eleven different 

sounds from the same category (human vocalizations or other environmental sounds), all of which 

had the same emotional valence (positive, neutral or negative) and the same lateralization (left, 

centre, right). Finally, blocks and their sequence order were pseudo-randomized within runs and 

across subjects.  

 

Sounds (16 bits, stereo, sampling rate of 41kHz) presented binaurally at 80 ± 8 dB SPL via MRI-

compatible headphones (SensiMetrics S14, SensiMetrics, USA), with a prior filtering with the 

SensiMetrics filters to obtain a flat frequency transmission, using MATLAB (R2015b, The 
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MathWorks, Inc., Natick, Massachusetts, United States) and the Psychophysics Toolbox 

(www.psychtoolbox.org). The auditory stimuli were the same as the battery used in previous studies 

(Aeschlimann et al., 2008; Grisendi et al., 2019), the total 66 different emotional sound files were 2s-

long and were equally distributed in the six categories: Human Vocalizations Positive (HVP), 

Human Vocalizations Neutral (HV0), Human Vocalizations Negative (HVN), Non-Vocalizations 

Positive (NVP), Non-Vocalizations Neutral (NV0), and Non-Vocalizations Negative (NVN). Sounds 

were lateralized by creating artificially a temporal shift of 0.3s between the left and right channel 

(corresponding to ~60), using the available software Audacity (Audacity Team, 

https://audacityteam.org), and were either perceived as presented on the left, the centre or the right 

auditory space. Thus, the combination of all the different characteristics resulted in a total of 18 

conditions (2 Types x 3 Valences x 3 Lateralizations). 

 

As previously, using a specific software, PRAAT (http://www.fon.hum.uva.nl/praat/), and MATLAB 

scripts, the sound acoustic characteristics (spectrograms, mean fundamental frequency, mean 

intensity, harmonics to noise ratio, power, centre of gravity, mean Wiener entropy and spectral 

structure variation) were controlled for each category: first, the significant differences between the 

mean spectrogram of pairs of sounds of different categories were maintained < 1% to avoid bias 

towards a specific category (as in De Meo et al., 2015); second, all the sounds characteristics  were 

tested with a 2-way repeated measures ANOVA with the factors Vocalization (Human-

Vocalizations, Non-Vocalizations) x Valence (Positive, Neutral, Negative) to compare the effect of 

each acoustic feature on the sound categories. As already reported in our previous study (Grisendi et 

al., 2019), the analysis on mean Wiener entropy showed a main effect of Vocalizations [F(1,64) = 

18.68, p = 0.0015], a main effect of Valence [F(2,63) = 21.14, p = 1.17E-5] and an interaction 

Vocalizations x Valence [F(2,63) = 8.28, p = 0.002]; while the same analysis on the centre of gravity 

revealed a main effect of Valence [F(2,63) = 10.51, p = 0.0007]. The analysis of the harmonics-to-

noise ratios highlighted a main effect of Vocalizations [F(1,64) = 134.23, p = 4.06E-7], a main effect 

of Valence [F(2,63) = 69,61, p = 9.78E-10] and an interaction of Vocalizations x Valence [F(2,63) = 

17.91, p = 3.48E-5], and these of the power showed an interaction of Vocalizations x Valence on the 

mean intensity [F(2,63) = 12.47, p = 0.0003] and on the power [F(2,63) = 14.77, p = 0.0001]. 

 

Regions of interest definition 

The subdivision of the early-stage auditory areas was based on the individual frequency preferences 

as described previously (Da Costa et al., 2015, 2018), the subjects listen to two runs (one ascending 

and one descending) of a modified version of a tonotopic mapping paradigm (as in previous studies 

(Da Costa et al., 2011, 2013, 2015, 2018)), which consisted of progressions of 2s-bursts of pure 

http://www.psychtoolbox.org/
https://audacityteam.org/
http://www.fon.hum.uva.nl/praat/
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tones (14 frequencies, between 88 and 8000 Hz, in half octave steps) presented in 12 identical cycles 

of 28s followed by a 12-s silent pause for a total duration of 8 min. Then, briefly, based on the 

resulting individual frequency reversals and anatomical landmarks, each early-stage auditory area 

was localized and defined in each subject as the primary auditory cortex, A1 and R, as well as the 

lateral (L1, L2, L3, L4) and medial non-primary areas (M1, M2, M3, M4). The coordinates of these 

regions were in accordance with previously published values (Table 1; (Viceic et al., 2006; van der 

Zwaag et al., 2011; Da Costa et al., 2015, 2018).  

Table 1: Mean MNI coordinates (center of gravity) of all ROIs. STD = standard deviation 

ROI X ± STD(X) Y ± STD(Y) Z ± STD(Z) 

Left hemisphere 

A1 -45.20 ± 5.61 -28.74 ± 5.42 9.11 ± 4.04 

R -42.84 ± 4.84 -21.79 ± 5.11 7.50 ± 4.37 

L1 -57.25 ± 5.74 -37.57 ± 7.71 18.06 ± 8.46 

L2 -58.14 ± 5.55 -21.17 ± 6.22 6.76 ± 5.49 

L3 -52.89 ± 5.41 -9.08 ± 6.75 0.60 ± 4.67 

L4 -45.23 ± 4.38 -4.18 ± 11.06 -11.17 ± 7.63 

M1 -46.51 ± 5.74 -38.74 ± 4.57 23.72 ± 7.95 

M2 -36.03 ± 2.71 -33.44 ± 2.85 17.74 ± 3.36 

M3 -33.14 ± 2.80 -29.26 ± 2.50 17.48 ± 3.25 

M4 -35.80 ± 3.17 -14.80 ± 9.49 -2.84 ± 11.85 

VA -55.50 ± 6.47 -33.46 ± 10.53 6.08 ± 5.62 

Right Hemisphere 

A1 49.54 ± 5.19 -23.74 ± 5.08 10.60 ± 3.49 

R 45.49 ± 4.65 -17.56 ± 4.88 6.73 ± 4.83 

L1 60.92 ± 5.04 -30.13 ± 4.67 21.69 ± 9.94 

L2 62.40 ± 4.10 -18.00 ± 7.27 7.07 ± 4.57 

L3 55.99 ± 5.43 -4.77 ± 6.81 -0.24 ± 4.68 

L4 46.90 ± 4.63 -0.42 ± 10.06 -11.67 ± 6.99 

M1 48.99 ± 6.26 -31.56 ± 3.64 26.70 ± 8.41 

M2 38.04 ± 3.49 -29.90 ± 3.19 18.33 ± 3.83 

M3 35.14 ± 3.12 -26.33 ± 3.43 16.28 ± 4.06 

M4 34.95 ± 2.92 -10.74 ± 10.96 -3.30 ± 10.32 

VA 48.79 ± 7.60 -31.39 ± 7.37 5.46 ± 4.98 
 

 
 

Finally, the localization VA was defined using a specific voice localizer used in previous studies 

(Belin et al., 2002; Pernet et al., 2015). Briefly, human vocalizations (vowels, words, syllables 

laughs, sighs, cries, coughs, etc.) and environmental sounds (falls, wind, animals sounds, etc.) were 

presented in a 10-min run, which consisted of forty 20s-long blocks (with 8s of sounds followed by a 

silent pause of 12s). This localizer was developed to easily and consistently identify the individual 
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voice area along the lateral side of temporal plane, by displaying the results of the general linear 

model (GLM) contrast Human vocalizations vs. Environmental sounds. In this study, the same 

approach was used in BrainVoyager (BrainVoyager 20.6 for Windows, Brain Innovation, Maastricht, 

Netherlands). After initial preprocessing, the functional run was first aligned with the subject 

anatomical, and analysed with a general linear model using a boxcar design for the two conditions. 

Second, the results of the contrast Human vocalization vs. Environmental sounds was projects on the 

individual 3D volume rendering with a p value of p < 0.005 (uncorrected) in order to cover the same 

extend in each subject. Finally, the activated region within the bilateral lateral borders of the 

STS/STG was manually selected as a patch of interest using the manual drawing tools from 

BrainVoyager and projected back into the MNI space and saved as the individual region of interest. 

The coordinates of the VA were also in accordance with those of previous studies (Table 1; Belin et 

al., 2002; Pernet et al., 2015). 

 

Imaging parameters and data analysis 

Brain imaging was acquired on a 7-Tesla MRI scanner (Siemens MAGNETOM scanner, Siemens 

Medical Solutions, Germany) with an 32-channel head RF-coil (Nova Medical Inc., MA, USA). 

Functional datasets were obtained with a 2D-EPI sinusoidal simultaneous multi-slice sequence (1.5 x 

1.5 mm in-plane resolution, slice thickness = 1.5 mm, TR = 2000 ms, TE = 23 ms, flip angle = 90°, 

slice gap = 0 mm, matrix size = 146 x 146, field of view = 222 x 222, with 40 oblique slices covering 

the superior temporal plane). T1-weigthed 3D structural images were obtained with a MP2RAGE 

sequence (resolution = 0.6 x 0.6 x 0.6 mm3, TR = 6000 ms, TE = 4.94 ms, TI1/TI2 = 800/2700 ms, 

flip angle 1/flip angle 2 = 7/5, slice gap = 0 mm, matrix size = 320 x 320, field of view = 192 x 192 

(Marques et al., 2010)). Finally, the physiological noise (respiration and heart beat) was recorded 

during the experiment using a plethysmograph and respiratory belt provided from the MRI scanner 

vendor.  

 

The data was processed with BrainVoyager with the following steps: scan time correction (except for 

tonotopic mappings runs), temporal filtering, motion correction, segmentation and normalization into 

the MNI space. Individual frequency preferences were extracted with a linear cross-correlation 

analysis, resulting correlation maps were averaged together (ascending and descending correlation 

map) to define the best frequency value for each voxel in the volumetric space, and then the average 

map was projected onto the cortical surface meshes for the ROIs definition (Da Costa et al., 2011, 

2013, 2015, 2018). For the VA localizer and the emotion&space runs, a random effects (RFX) 

analysis was performed at the group level, with movement and respiration parameters as regressor, 

and then we tested for the contrast ‘Sounds vs. Silence’ with an FDR correction at q < 0.05 (p < 
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0.05). The  GLM results for the VA localizer was used to define bilateral individual Vas, while the 

GLM results for the emotion&space runs were used to verify that our ROIs were activated by the 

paradigm. The scope of this paper was to evaluate the effects of spatial origin on the encoding of 

emotional sounds, therefore the remaining analysis focused on the BOLD responses extracted from 

all the ROIs.  

 

Functional individual BOLD time courses were processed as the following: first, they were extracted 

using BrainVoyager, imported into MATLAB. Second, they were normalized by their own mean 

signal, and divided according to their condition. Third, they were averaged spatially (across all 

voxels within each ROI), temporally (over blocks and runs), and across the 13 subjects. The resulting 

time course consisted of 18 time points for each ROI and condition. Finally, these time courses were 

analysed with a time-point-by-time-point 3-Way repeated measure ANOVA, 2 Vocalization 

(Human-Vocalizations, Non-Vocalizations) x 3 Valence (Positive, Neutral, Negative) x 3 

Lateralization (Left, Centre, Right) according to (Da Costa et al., 2015, 2018; Grisendi et al., 2019). 

This 3-way ANOVA was further decomposed for each vocalization type onto a 2-way repeated 

measure ANOVA, 3 Valence (Positive, Neutral, Negative) x 3 Lateralization (Left, Centre, Right). 

For each ANOVA, and each pair of condition, post hoc time-point-by-time-point paired t-tests were 

performed to evaluate the causality of the effects. Finally, results were restricted temporally by only 

considering at least three consecutive time points with significant p-values lower or equal to 0.05. 

 

Physiological noise processing 

Heartbeat and respiration recordings were processed with an open-source toolbox for Matlab, 

TAPAS PhysIO (Kasper et al., 2017). The cardiac rates were further analysed with the same pipeline 

than the BOLD responses to obtain a pulse time course for each condition, while the respiration rates 

were used within the GLM model as motion regressor. As in Grisendi et al. (2019), the effect of 

space and emotional contents of the sounds on the individual cardiac rhythm was evaluated by 

computing the heart rate variability according to (Goedhart et al., 2007). 

 

Results 

To explore how far emotional valence and/or position modulate the encoding of vocalizations vs. 

non-vocalizations within specific ROIs, we have analysed the BOLD responses within each area 

with a 3-way repeated measure ANOVA with factors Valence (Positive, Neutral, Negative), 

Lateralization (Left, Centre, Right) and Vocalization (Human-Vocalizations, Non-Vocalizations). 

The significance of main effects and interactions within individual early-stage auditory areas and 

within VA (Figs 1 and 2) provided answers for the three hypotheses we set out to test. 
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Figure 1. Activations elicited in the left hemisphere. A. Statistical analysis of the BOLD signal by means of 

a 2-way ANOVA with factors Vocalization (vocalizations, non-vocalizations) x Valence (positive, neutral, 

negative) x Lateralization (left, centre, right). The ROIs, .i. e., early-stage auditory areas and VA, are 

represented on the y-axis, the time points on the x-axis; red indicates a p-value lower or equal to 0.05 for at 

least three consecutive time points, grey a p-value lower or equal to 0.05 for isolated time-points. LH = left 

hemisphere. B. BOLD time courses for selected early-stage areas and VA, presented on the left, at the centre or 

on the right. Human vocalization categories are depicted in orange [HVP (solid line), HV0 (dashed line), HVN 

(dotted line)] non-vocalization categories in blue [NVP (solid line), NV0 (dashed line), NVN (dotted line)]. 

Full line denotes positive, interrupted line neutral and dotted line negative valence. 
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Figure 2. Activations elicited in the right hemisphere. A. Statistical analysis of the BOLD signal by means 

of a 2-way ANOVA with factors Vocalization (vocalizations, non-vocalizations) x Valence (positive, neutral, 

negative) x Lateralization (left, centre, right). The ROIs, .i. e., early-stage auditory areas and VA, are 

represented on the y-axis, the time points on the x-axis; red indicates a p-value lower or equal to 0.05 for at 

least three consecutive time points, grey a p-value lower or equal to 0.05 for isolated time-points. RH = right 

hemisphere. B. BOLD time courses for selected early-stage areas and VA, presented on the left, at the centre or 

on the right. Human vocalization categories are depicted in orange [HVP (solid line), HV0 (dashed line), HVN 

(dotted line)] non-vocalization categories in blue [NVP (solid line), NV0 (dashed line), NVN (dotted line)]. 

Full line denotes positive, interrupted line neutral and dotted line negative valence. 
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The encoding of emotional vocalizations is more strongly modulated by their position than that of 

neutral vocalizations or non-vocalizations (hypothesis i) 

The triple interaction Vocalization x Valence x Lateralization was significant in A1 and R in the left 

hemisphere and in A1, R and L3 in the right hemisphere. In left A1 the significant time window was 

22-26 s post-stimulus onset. During this time window the triple interaction was driven by two double 

interactions (Table 2). First, the interaction Vocalization x Valence was significant for stimuli 

presented on the left (but not right or at the centre). Second, the interaction Vocalizations x 

Lateralization was significant for positive (but not neutral or negative) stimuli. These interactions 

were driven by the significant main effect of Vocalization for positive stimuli presented on the left, 

vocalizations yielding stronger activation than non-vocalizations. Post-hoc comparisons revealed 

during the same time window that among the vocalizations presented on the left positive ones 

yielded significantly greater activation than neutral or negative ones. Thus, taken together these 

results highlight the pro-eminence of positive vocalizations when presented on the left. 

 

In left R the significant time window was 18-26 s post-stimulus onset. During this time window the 

triple interaction was driven by two double interactions (Table 2). First, the interaction Vocalization 

x Valence was significant for stimuli presented on the left (but not right or at the centre). Second, the 

interaction Vocalizations x Lateralization was significant for positive (but not neutral or negative) 

stimuli. These two interactions were driven by the significant main effect of Vocalization for positive 

stimuli presented on the left, vocalizations yielding stronger activation than non-vocalizations. Post-

hoc comparisons revealed during the same time window that among the vocalizations presented on 

the left positive ones yielded significantly greater activation than neutral or negative ones. Also 

positive vocalizations yielded significantly stronger activation when presented on the left than at the 

centre or on the right. Thus, taken together these results highlight the pro-eminence of positive 

vocalizations when presented on the left. 

 

In right A1 the significant time window was 20-28 s post-stimulus onset. During this time window 

the triple interaction was driven by two double interactions (Table 2). First, the interaction 

Vocalization x Valence was significant for stimuli presented on the left (but not right or at the 

centre). Second, the interaction Vocalizations x Lateralization was significant for positive (but not 

neutral or negative) stimuli. Post-hoc comparisons revealed during the same time window that 

among the vocalizations presented on the left positive ones yielded significantly greater activation 

than neutral or negative ones. Also positive vocalizations yielded significantly stronger activation 

when presented on the left than at the centre or on the right. Thus, taken together these results 

highlight the pro-eminence of positive vocalizations when presented on the left. 
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Table 2. Summary of significant triple interaction Vocalization x Valence x Lateralization and 

the ensuing double interactions and main effects in individual ROIs of the left and right 

hemispheres. For the time window of significant triple interaction within a given ROI are listed 

the related double interactions and main effects.  

 

ROI with significant triple 

interaction Vocalization x 

Valence x Lateralization 

(time window of significance) 

Significant related double 

interaction during the same 

time window 

Significant related main 

effect during the same time 

window 

Left hemisphere 

A1 (22 - 26 s) Vocalization x Valence for left Vocalization for positive on left 

(vocalizations > non-

vocalizations 

Vocalization x Lateralization 

for positive 

R (18 - 26 s) Vocalization x Valence for left Vocalization for positive on left 

(vocalizations > non-

vocalizations 

Vocalization x Lateralization 

for positive 

Right hemisphere 

A1 (20 – 28 s) Vocalization x Valence for left  

Vocalization x Lateralization 

for positive 

R (20 – 28 s) Vocalization x Valence for left Vocalization for positive on left 

(vocalizations > non-

vocalizations 

Vocalization x Lateralization 

for positive 

L3 (20 – 28 s) Vocalization x Valence for left Vocalization for positive on left 

(vocalizations > non-

vocalizations 

Vocalization for positive on 

right (vocalizations > non-

vocalizations 

Valence for non-vocalizations 

on left (neutral > positive or 

negative) 

Vocalization x Valence for 

right 

Vocalization x Lateralization 

for positive 

Valence x Lateralization for 

vocalizations 

Valence x Lateralization for 

non-vocalizations 
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In right R the significant time window was 20-28 s post-stimulus onset. During this time window the 

triple interaction was driven by two double interactions (Table 2). First, the interaction Vocalization 

x Valence was significant for stimuli presented on the left (but not right or at the centre). Second, the 

interaction Vocalizations x Lateralization was significant for positive (but not neutral or negative) 

stimuli. These interactions were driven by the significant main effect of Vocalization for positive 

stimuli presented on the left, vocalizations yielding stronger activation than non-vocalizations. Post-

hoc comparisons revealed during the same time window that among the vocalizations presented on 

the left positive ones yielded significantly greater activation than neutral or negative ones. Also 

positive vocalizations yielded significantly stronger activation when presented on the left than at the 

centre or on the right. Thus, taken together these results highlight the pro-eminence of positive 

vocalizations when presented on the left. 

 

In right L3 the significant time window was 20-28 s post-stimulus onset. During this time window 

the triple interaction was driven by three double interactions (Table 2). First, the interaction 

Vocalization x Valence was significant for stimuli presented on the left and on the right (but not at 

the centre). The latter was driven by a significant main effect of Vocalization on positive stimuli 

presented on the right, vocalizations yielding stronger activation than non-vocalizations. Second, the 

interaction Vocalization x Lateralization was significant for positive (but not neutral or negative) 

stimuli, driven by a significant main effect of vocalization on positive stimuli presented on the right 

or left (but not at the centre), vocalizations yielding stronger responses than non-vocalizations. Third, 

the interaction Valence x Lateralization was significant for vocalizations and for non-vocalizations. 

The latter was driven by a significant effect of Valence on non-vocalizations presented on the left; 

neutral non-vocalizations tended to yield stronger responses than positive or negative ones. Post-hoc 

comparisons revealed during the same time window that among the vocalizations presented on the 

left positive ones yielded significantly greater activation than negative ones. The same was the case 

among the vocalizations presented on the right, where positive ones yielded significantly greater 

activation than negative ones. Thus, taken together these results highlight the pro-eminence of 

positive vocalizations when presented on the left or on the right. 

 

In summary, the results of the triple interaction and of the ensuing double interactions and main 

effects as well as the post-hoc comparisons highlight a significant pre-eminence of the left auditory 

space for the encoding of positive vocalizations in A1 and R bilaterally. In addition, left and right, 

but not central space is favoured for positive vocalizations in right L3. 
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The encoding of emotional valence is modulated by the spatial origin of the sound (hypothesis ii) 

The interaction Valence x Lateralization was significant bilaterally in VA. In the left hemisphere the 

significant time window was 10-14 s post-stimulus onset; post-hoc analysis did not yield any 

significant main effect of Valence at any position nor main effect of Lateralization on any valence 

(Table 3). 

 

In the right hemisphere the interaction Valence x Lateralization was significant during 8-14 s plus 

24-28 s. Post-hoc comparison showed that during the latter time window the main effect of valence 

was significant for sounds presented on the left side, negative sounds yielding lower activation than 

when presented centrally or on the right side. In summary, the spatial origin of the sound modulates 

the encoding of emotional valence within VA. 

 

Table 3. Summary of significant double interaction Valence x Lateralization and the ensuing main 

effects in VA of the left and right hemispheres. For the time window of significant double interaction 

are listed the related main effects.  

 

ROI with significant double interaction 

Valence x Lateralization (time window of 

significance) 

Significant related main effect during the 

same time window 

Left hemisphere 

VA (10 - 14 s) None 

Right hemisphere 

VA (8 – 14 s) None 

VA (24 – 28 s) Valence for sounds on left (positive > negative) 

 

 

The spatial origin of the sound does not appear to impact differently the encoding of vocalizations 

vs. non-vocalizations (hypothesis iii) 

The interaction Vocalization x Lateralization did not yield any significant results in either 

hemisphere. 

 

Spatial, emotional and vocalization selectivity  

A significant main effect of Lateralization was present in the left hemisphere in A1 (during the 10-14 

s and 22-26 s time periods); in R (10-14 s and 18-36 s); and in M1 (10-14 s). The effect was driven 

by greater activation for contra- than ipsilateral stimuli.  
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Emotional valence modulates the encoding of vocalizations 

Significant interaction of Vocalization x Valence was present in either hemisphere.  In the left 

hemisphere this was the case in A1 (12-26 s); R (14-18 s); L1 (10-18 s and 22-26); L2 (12-20 s and 

24-28 s); M2 (22-26 s); and VA (4-16 s and 20-28 s). In the right hemisphere this was the case in A1 

(14-18 s); R (12-28 s); L1 (14-24 s); L2 (10-26 s); L3 (12-18 s); L4 (14-18 s); M1 (14-18 s and 22-26 

s); M3 (30-36 s); M4 (32-36 s); and VA (8-26 s). In A1, R, L1 and L2 the interactions appeared to be 

driven by the predominance of positive vocalizations and/or neutral non-vocalizations. 

 

A significant main effect of Valence was present in several areas of either hemisphere. In the left 

hemisphere this was the case A1 (18-30 s); R (20-36 s); L1 (24-36 s); L2 (12-14 s and 18-36 s); L3 

(6-12 s abd 16-36 s); M1 (16-24 s and 28-36 s); M2 (28-36 s); M4 (16-24 s and 28-36 s); and VA (6-

28 s). In the right hemisphere it was the case in A1 (20-24 s); R (24-36 s); L2 (28-32 s); L3 (6-12 s 

and 24-36 s); M1 (20-24 s); M2 (18-22 s); M4 (16-24 s and 28-36 s); and VA (8-20 s). The effect 

tended to be driven by greater activation by vocalizations with positive rather than negative or 

neutral valence and by non-vocalizations with neutral rather than positive valence. 

 

A significant main effect of Vocalization was present in either hemisphere. In the left hemisphere 

this was the case in L1 (6-22 s); L2 (6-26 s and 32-36 s); L3 (6-28 s and 32-36 s); M1 (8-12 s); and 

VA (6-28 s and 32-36 s). In the right hemisphere this was the case in L2 (6-28 s); L3 (6-26 s); and 

VA (6-28 s and 32-36 s). The effect was driven by greater activation by vocalizations than non-

vocalizations. 

 

Discussion  

Our results indicate that auditory spatial cues modulate the encoding of emotional valence in several 

early-stage auditory areas and in VA. The most striking effect is the pre-eminence of the left auditory 

space for the encoding of positive vocalizations. Furthermore, spatial cues appear to render 

emotional vocalizations more salient, as indicated by comparing our results with those of a previous 

study (Grisendi et al., 2019). The interactions of the type (human vocalizations vs. other 

environmental sounds), emotional valence and the spatial origin of the sound characterize the 

vocalization pathway within the early stage auditory areas and VA. 

 

 

Pre-eminence of the left auditory space for positive vocalizations  

The left auditory space appears to favour the encoding of positive vocalizations within A1 and R in 

the left and right hemisphere (Fig. 3). In both hemispheres neural activity elicited by positive 
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vocalizations presented on the left was higher that neural activity elicited by i) neutral or negative 

vocalizations presented at any of the three positions; or ii) non-vocalizations of any valence at any of 

the three positions. The bilateral involvement of A1 and R in favour of the left space speaks against a 

mere effect of contralateral space, which would yield stronger response to stimuli presented 

contralaterally.  

 

 

Figure 3. Processing emotional value of the auditory space. The left auditory space (in blue) is pre-eminent 

for positive vocalizations, positive vocalizations presented on the left side yielding greater activity in bilateral 

A1 and R than do neutral or negative vocalizations or any other stimuli at any of the three positions. To note 

that VA does not share the same preference for the left space. Spatial attributes modulate its activation by 

sound objects conveying positive or neutral emotional valence when presented on the right or left side (but not 

at the centre); this effect is not present for vocalizations alone. Left auditory space: in blue; right auditory 

space: in red; red lines: positive human vocalizations (HVP); black lines: positive and neutral human 

vocalizations and non-vocalizations. 

 

 

The stronger encoding of positive vocalizations presented on the left side suggests that they may be 

more salient than when presented at other positions. The pre-eminence of the left auditory space, 

which we describe here, is reminiscent of the left-ear advantage, which was reported for emotional 

dichotic listening tasks in two studies (Erhan et al., 1998; Jäncke et al., 2001). Both studies compared 

emotional vs. neutral vocalizations, but did not discriminate between positive and negative valence. 

Their results have been interpreted in terms of right hemispheric competence for emotional 
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processing (see also Gadea et al., 2011). Another series of studies used emotional valence of spoken 

words for spatial orienting of attention. Emotional word cues presented on the right side introduced 

spatial attentional bias for the following neutral sound (beep; Bertels et al., 2010). The interpretation 

of these results was influenced by the assumption that i) one-sided presentation of auditory stimuli is 

preferentially treated by the contralateral hemisphere and ii) the nature of the stimuli – verbal vs. 

emotional – tends to activate one hemisphere. Thus, the right side bias introduced by emotional 

words was eventually interpreted as prevailing influence of verbal content (Bertels et al., 2010). The 

nature of stimuli used in these studies, all verbal vocalizations, and the fact that they were presented 

mono-aurally, and not lateralized with interaural time (as here) or intensity differences, precludes 

their interpretation in terms of the emotional value of space.  

 

The left-space preference, which we observed bilaterally in A1 and R, is greater for positive 

vocalizations than other stimuli. A similar preference for the contralateral, left space was reported by 

Kryklywy and colleagues (2013) in the right auditory cortex, with stronger responses to contralateral 

positive stimuli. Since the stimuli they used consisted to 75% of human vocalizations their finding is 

compatible with our results. It is to be noted that the preference for contralateral space is not limited 

to emotionally modulated sounds. Using emotionally neutral stimuli, a series of studies documented, 

at the level of the supratemporal plane, the preference for contralateral space, which together with 

right hemispheric dominance is a key feature of auditory spatial encoding (Deouell et al., 2007; 

Stecker et al., 2015; Derey et al., 2016 p.200, 2017; McLaughlin et al., 2016; Higgins et al., 2017; 

Da Costa et al., 2018).  

 

Although compatible with evidence from previous studies, our results give a different picture of the 

emotional auditory space and its encoding within the early-stage auditory areas. We have 

documented a genuine pro-eminence of the left space for positive vocalizations and not simply a 

right hemispheric or contralateral dominance, the key observation being that left-sided positive 

vocalizations stand out within the primary auditory cortex of both hemispheres. The functional 

relevance of the emotional pro-eminence of the left auditory space needs to be investigated in future 

studies. 

 

 

 

Spatial cues make emotional vocalizations more salient 

Two of our observations suggest that spatial cues render emotional vocalizations more salient. First, 

positive vocalizations presented on the right or the left yielded in right L3 greater activation than 
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when presented centrally; vocalizations of other valence and non-vocalizations yielded smaller 

activation (Table 2). Second, the use of spatial cues appeared to enhance the discrimination of 

emotional valence in several early-stage areas. In a previous study, the same set of stimuli (human 

vocalizations and non-vocalizations of positive, neutral and negative valence), the same paradigm 

and an ANOVA based statistical analysis were used, albeit without lateralization (Grisendi et al., 

2019). The juxtaposition of the distribution of significant interactions and significant main effects in 

early-stage areas and in VA highlights striking differences, which concern almost exclusively the 

factor Valence (and not Vocalization; Fig. 4). Main effect of Vocalization highlighted in both studies 

a very similar set of areas, with vocalizations yielding greater activation than non-vocalizations. 

Main effect of Valence was strikingly dissimilar, being significant in many more areas when spatial 

cues were used. The same was observed for the interaction Vocalization x Valence, with many more 

areas being significant when spatial cues were used; it is to be noted that in both studies the 

interaction was driven by greater responses to positive vocalizations. This increased saliency when 

spatial cues are used is not due to a modulation of emotional valence by lateralization; this 

interaction was only significant in VA but not in any of the early-stage areas. 

 

The mechanisms by which spatial cues confer greater salience to emotional vocalizations is currently 

unknown. Interaural interactions during first cortical processing stages may enhance emotional 

stimuli, as does increasing intensity (Bach et al., 2008, 2009). Further study are needed to investigate 

whether the effect is associated uniquely with interaural time differences (used here) or whether 

interaural intensity differences or more complex spatial cues have the same effect.  
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Figure 4. Emotional sounds with or without spatial cues. Juxtaposition of the results from the 2-way and 3-

way ANOVAs found in the present (in light blue) and a previous study (Grisendi et al., 2019; in dark blue), 

which used the same set of stimuli, the same paradigm and an ANOVA based statistical approach. The former 

used lateralized stimuli, whereas the latter did not. In purple are indicated areas with a significant interaction or 

main effect in both studies. Whereas the main effect of Vocalizations highlights in both studies a very similar 

set of areas, the main effect of Valence and the interaction Vocalization x Valence yielded significant results in 

more areas when spatial cues where used. 

 

Voice area: vocalizations are selectively modulated by emotional valence but not spatial cues  

Our analysis clearly showed that within VA the encoding of vocalizations is modulated by emotional 

valence, as did a series of previous studies (Belin et al., 2002; Grandjean et al., 2005; Ethofer et al., 

2006, 2008, 2009, 2012; Beaucousin et al., 2007; Obleser et al., 2007, 2008; Bestelmeyer et al., 

2017; Grisendi et al., 2019). The new finding is that this clear modulation of vocalizations by 

emotional valence is not paralleled by a modulation by the spatial origin of the sound. This is 

reminiscent of the findings of Kryklywy et al. (2013), who reported that emotional valence, but not 

spatial attributes, impacts the processing within the ventral stream. Their stimuli consisted to 75% of 

human vocalizations and may have driven the effect they observed. 
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In our study spatial information did not modulate significantly the encoding of vocalizations within 

VA. However, the spatial origin impacted the activity elicited by sound objects in general. Thus, 

positive and neutral sounds; i. e. vocalizations and non-vocalizations taken together, yielded stronger 

response than negative ones when presented on the left or on the right, as compared to a presentation 

at the centre. This preference for lateral space was present in both hemispheres. 

 

Conclusions 

Previous behavioural studies (Erhan et al., 1998; Jäncke et al., 2001; Bertels et al., 2010) indicated 

that spatial origin impacts emotional processing of sounds, possibly via a preferential encoding of the 

contralateral space on the supratemporal plane (Kryklywy et al., 2013, 2018). We demonstrate here 

that there is a preference in terms of space, and not hemisphere, with a clear pre-eminence of the left 

auditory space for positive vocalizations. Positive vocalizations presented on the left side yield 

greater activity in bilateral A1 and R than do neutral or negative vocalizations or any other stimuli at 

any of the three positions. VA does not share the same preference for the left space. Spatial attributes 

modulate its activation by sound objects conveying positive or neutral emotional valence when 

presented on the right or left side (but not at the centre); this effect is not present for vocalizations 

alone. Comparison with a previous study (Grisendi et al., 2019) indicates that spatial cues may 

render emotional valence more salient within the early-stage auditory areas. 

Ethical approval 

All procedures performed were in accordance and with the 1964 Helsinki declaration and its later 

amendments or comparable ethical standards and ethical approval was obtained from the Ethical 

Committee of the Canton de Vaud (reference number 282/08).  
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Abstract 

Human vocalizations processing and their modulation by emotional valence and/or localization 

involves brain regions, such as voice area (VA) and early-stage auditory areas. Using two separate 

datasets acquired at 7T fMRI, we have investigated the functional correlations between early-stage 

auditory areas and VA as modulated by the category of sound, valence and position. The functional 

correlations between VA, primary auditory cortex (PAC) and lateral belt areas were strongly 

modulated by the category of sound, weakly by the spatial positioning and not by the affective 

content. Human vocalizations produce stronger functional correlations between VA, PAC and lateral 

belt areas, compared to non-vocal environmental sounds.  

 

Keywords 

Human vocalizations, emotions, auditory belt areas, voice area, lateralization, 7T fMRI 

 

Abbreviations 

AI primary auditory area 

HVN human vocalizations with negative emotional valence 

HVP human vocalizations with positive emotional valence 

HV0 human vocalizations with neutral emotional valence 

NVN non-vocalizations with negative emotional valence 

NVP non-vocalizations with positive emotional valence 

NV0 non-vocalizations with neutral emotional valence 

PAC primary auditory cortex 

R rostral (primary) auditory area 

VA voice area 
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Introduction 

Auditory information, and more specifically emotional sounds, is crucial in our everyday life. The 

voice area (VA) and early-stage auditory areas are part of networks responsible for the processing of 

the emotional valence of human vocalizations, and that it is based on separated sensory, emotional 

and cognitive processes, as described by Frühholz et al., (2016) and Schirmer and Kotz, (2006). A 

core network of cortical and subcortical areas (e.g., medial frontal cortex, inferior frontal gyrus, 

insula, auditory cortex, superior temporal cortex, basal ganglia, amygdala and cerebellum), is 

responsible for the processing of affective auditory information in general, and additional regions 

(e.g., hippocampus, thalamus, inferior colliculus) complete this core network for the processing of 

more specific categories of emotional sounds.  

 

Anatomical, histological and functional studies described early-stage auditory areas located on the 

supratemporal plane (Clarke and Morosan, 2012). Surrounding the primary auditory cortex (PAC), 

non-primary areas were identified histologically in post-mortem brains (Chiry et al., 2003; Clarke 

and Rivier, 1998; Hackett et al., 2001; Rivier and Clarke, 1997; Wallace et al., 2002). Definition of 

these areas for activation studies was performed based on their Talairach coordinates (van der Zwaag 

et al., 2011; Viceic et al., 2006), in combination with the definition of PAC by tonotopic mapping 

(Da Costa et al., 2015, 2018). The latter studies identified in total 10 areas: two primary, A1 and R, 

located on Heschl’s gyrus using as landmark the two mirror-reversed tonotopic maps (Da Costa et 

al., 2011); four areas on the lateral part , designated as L1, L2, L3 and L4 (from posterior to 

anterior); and four areas medially, designated M1, M2, M3 and M4 (see e.g. Da Costa et al., 2018).  

 

VA is a region located in the middle part of the superior temporal gyrus/sulcus that responds more 

strongly to human vocalizations than to any other non-vocal sounds (Belin et al., 2000). This region 

is not only selective for human vocalizations but is also sensitive to the emotional valence of the 

vocalizations (Beaucousin et al., 2007; Belin et al., 2002; Bestelmeyer et al., 2017; Ethofer et al., 

2009, 2006; Grandjean et al., 2005; Obleser et al., 2007). In addition to VA, the auditory cortex is 

modulated by the emotional value of vocalizations (Arnal et al., 2015; Lavan et al., 2017; Leitman et 

al., 2010; Wildgruber et al., 2004). More specifically, lateral early-stage auditory areas (L1, L2 and 

L3) present stronger responses to human vocalizations compared to non-vocalizations and/or these 

responses were dependent on the emotional value of the stimuli. On the other hand, emotional 

valence modulated specifically the responses of VA to human vocalizations and not to non-

vocalizations (Grisendi et al., 2019a). Finally, the processing of vocalizations by VA is modulated by 

the emotional valence, but not by the lateralization of the sounds (Grisendi et al., 2019b). 
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In a couple of recent studies, Grisendi et al., (2019a,b) use the advantages of ultra-high field fMRI at 

7 Tesla to identify individual early-stage auditory areas. Their results showed that neural responses 

within the lateral belt areas L1, L2 and L3 are modulated by vocalizations and/or emotional content. 

These areas are also known to be modulated by spatial cues (Da Costa et al., 2018). Functional 

correlations between L1, L2, L3 and VA were observed for different emotional valences (positive, 

neutral, negative) and for different sound categories (human vocalizations and environmental 

sounds; Grisendi et al., 2019a). Correlation of the BOLD signal between VA and AMY in the right 

hemisphere was observed for positive human vocalizations only. This suggests that the emotional 

information contained in human vocalizations is conveyed to VA via a dual input, in one side the 

early-stage auditory areas L1, L2 and L3 and on the other side the amygdala.  

 

In the present study, we investigated the functional correlation between VA and early-stage auditory 

areas, and their modulation by vocalization, valence and lateralization of the sounds. Based on 

previous findings, we expected (1) VA to be functionally correlated with early-stage auditory areas; 

and (2) these correlations to concern specific stimuli and conditions. These hypotheses were tested 

by looking at correlations between the BOLD signals from the above regions of interest (ROIs) for 

different conditions of vocalization, valence and lateralization.  

 

Materials and Methods 

We analyse here datasets from two previous studies Grisendi et al., (2019a,b). 

 

Study 1: Processing of emotions within AC (Grisendi et al., 2019a) 

In summary, eleven healthy, normal-hearing and French-speaking subjects participated in the study, 

and the dataset of one subject was discarded due to data acquisition problems (total number of 

subjects = 10). The experimental design consisted of one fMRI session (~60 min) during which the 

participants listened passively to human vocalizations and environmental sounds with positive, 

neutral or negative emotional valence. Auditory stimuli (Aeschlimann et al., 2008) were presented in 

blocks of eleven different sounds from the same category, with the same emotional valence. The 

experiment was composed of three runs, in which blocks were pseudo-randomized. Each fMRI run 

last 8 minutes, with first a 30-s silent “rest” condition, followed by 14 blocks of 30 s (22 s of sounds 

+ 8s of silence), and finally a 30-s silent “rest” condition.  

 

Study 2: Processing of emotions and lateralization within AC (Grisendi et al., 2019b) 

In this study, fourteen healthy, normal-hearing and French-speaking subjects participated in the 

study, and the dataset of one subject was discarded due to data acquisition problems (total number of 
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subjects = 13). The experimental design consisted of two fMRI sessions (~60 min each) during 

which the participants listened passively to human vocalizations and environmental sounds with 

positive, neutral or negative emotional valence and lateralized to the left (-60°; ITD = -0.3 ms), to the 

centre (0°) or to the right (+60°; ITD = +0.3ms). Auditory stimuli were from the same battery as for 

study 1, and were presented in blocks of eleven different sounds from the same category, with the 

same emotional valence and the same lateralization. The experiment was composed of twelve runs, 

in which blocks were pseudo-randomized. Each fMRI run last 6 minutes, with first a 20-s silent 

“rest” condition, followed by 9 blocks of 36 s (22 s of sounds + 14s of silence), and finally a 20-s 

silent “rest” condition. 

 

MRI acquisitions 

MRI data acquisition was performed on a 7-Tesla MRI scanner (Siemens MAGNETOM scanner, 

Siemens Medical Solutions) with a 8-channel head rf-coil, and a 32-channel head rf-coil for the first 

and second study, respectively.  

 

ROIs definition 

In addition to the emotional sounds runs, a tonotopic mapping paradigm (Da Costa et al., 2011) and a 

voice localizer (Pernet et al., 2015; only for study 2) were implemented to define our ROIs. The 

tonotopic mapping was used to identify individual primary auditory areas (A1 and R) and the belt 

areas (L1, L2, L3, L4, M1, M2, M3 and M4), as previously described in Da Costa et al., (2015, 

2018), in both studies. VA was defined in different ways between the two studies. In the first study, 

the contrast “human vocalizations vs. non-vocalizations” was used to identify the VA of each 

subject, while in the second study the voice localizer was used to identify this region. The voice 

localizer was composed of human vocalizations and non-vocalizations from a battery different from 

the one used in the main experiment. 

 

Correlation analysis 

For both datasets, individual BOLD time courses for each ROI were extracted using BrainVoyager 

(BrainVoyager v20.6, Brain Innovation, Maastricht, Netherlands) and analysed into MATLAB 

(R2015b, The MathWorks, Inc., Natick, Massachusetts, United States). Correlations between the 

BOLD signals of VA, A1 and R, and belt auditory areas (L1, L2, L3, L4, M1, M2, M3 and M4) were 

performed for human vocalizations and non-vocalizations with modulation of valence (negative, 

neutral and positive) and lateralization (left, centre and right). Only significant correlations (p<0.01 

and adjusted R2 >0.6) were taken into account for further analyses. These significant  correlations 

were represented in heatmaps illustrating the adjusted-R2 correlation factor. Heatmaps were used 
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only to descriptive purpose, as a visual representation of the strength of functional correlations 

between two ROIs in a color-coded manner. We finally performed two separate ANOVAs for each 

study on the adjusted R2 correlation factor computed between VA, A1 and R, the lateral auditory 

areas (L1, L2, L3 and L4) and the medial auditory areas (M1, M2, M3 and M4): a 2-way ANOVA  

(for study 1) with Vocalization (human-vocalizations, non-vocalizations) x Valence (negative, 

neutral, positive); and a 3-way ANOVA (for study 2) with Vocalization (human-vocalizations, non-

vocalizations) x Valence (negative, neutral, positive) x Lateralization (left, centre, right).  

 

Results 

Study 1: Processing of emotions within AC 

In the first study (Grisendi et al., 2019a), the heatmaps (Figure 1-2) indicated that the correlations 

between the different regions were stronger in the right hemisphere than in the left hemisphere, as 

well as for the non-vocalizations compared to the human vocalizations. The strongest correlations 

were found between the regions of A1 and R and the lateral belt areas (L1, L2 and L3 especially), as 

well as with VA but only for the human vocalizations. The region M4 is less correlated with the 

other regions in the left hemisphere compared to the right one. There is also a clear dissociation 

between the functional correlations of the lateral and medial belt areas. Indeed, A1, R and VA, for 

human vocalizations only, are strongly correlated with the lateral regions, but only sparsely 

correlated with the medial belt areas.  

 

The 2-way ANOVA: Vocalization (human vocalizations, non-vocalizations) x Valence (negative, 

neutral, positive) revealed a main effect of vocalization in the left hemisphere between VA, A1 and 

R, and lateral belt areas (L1, L2 and L3), and between VA and M1 in the right hemisphere (Table 1 

and 2). This effect is due to stronger correlations between VA and early-stage auditory areas for 

human vocalizations compared to non-vocalizations (Figure 9 and 10). A main effect of valence was 

found between VA and A1 in the left hemisphere, and between VA and M1 in the right hemisphere. 

The former might be driven by stronger correlations between VA and A1 for the positive and neutral 

stimuli compared to the negative ones. 
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Figure 1: Heatmaps study 1 left hemisphere. Heatmaps for the data of the study 1 representing the 

correlations (adjusted R2) between the BOLD signals of early-stage auditory areas A1, R, L1, L2, L3, L4, M1, 

M2, M3 and M4 and VA during the presentation of human vocalizations (left column) and non-vocalizations 

(right column) with negative, neutral and positive valence (top, middle and bottom rows, respectively). The 

color code represents the strength of the correlation (between [0.6 – 1]).The NaN values represent correlations 

that are statistically non-significant (p > 0.01 and/or adjusted R2 < 0.6). 
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Figure 2: Heatmaps study 1 right hemisphere. Heatmaps for the data of the study 1 representing the 

correlations (adjusted R2) between the BOLD signals of early-stage auditory areas A1, R, L1, L2, L3, L4, M1, 

M2, M3 and M4 and VA during the presentation of human vocalizations (left column) and non-vocalizations 

(right column) with negative, neutral and positive valence (top, middle and bottom rows, respectively). The 

color code represents the strength of the correlation (between [0.6 – 1]).The NaN values represent correlations 

that are statistically non-significant (p > 0.01 and/or adjusted R2 < 0.6). 
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LH Study A1 R L1 L2 L3 L4 M1 M2 M3 M4

a 0.0001 0.0139 0.0401 0.0182 0.0054 1.0000 0.3229 0.2724 0.3357 0.4226

b 0.0017 0.0012 0.0043 0.0030 0.0044 0.0094 0.0011 0.0028 0.0012 0.5165

a 0.0016 0.5000 0.7137 0.2072 0.5000 1.0000 0.7775 0.4666 0.6101 0.5000

b 0.2241 0.2950 0.1510 0.3589 0.4608 0.8128 0.1188 0.1315 0.0686 0.3348

a

b 0.6277 0.6012 0.4797 0.6538 0.3678 0.7762 0.7476 0.4500 0.4767 0.3644

a 0.1256 0.3125 0.4821 0.4129 0.4571 1.0000 0.3985 0.3496 0.7453 0.3219

b 0.2071 0.2962 0.3148 0.3804 0.4425 0.5276 0.1056 0.1118 0.0986 0.2455

a

b 0.5389 0.5285 0.9759 0.6162 0.3498 0.6045 0.9500 0.5723 0.3028 0.0742

a

b 0.3275 0.3494 0.4294 0.3845 0.3770 0.6396 0.6127 0.5516 0.5576 0.9144

a

b 0.6512 0.6423 0.7541 0.6689 0.5749 0.6412 0.6012 0.3590 0.6025 0.4782
Inter voc x val x lat

Main effect of voc

Main effect of val

Main effect of lat

Inter voc x val

Inter voc x lat

Inter val x lat

 

Table 1: Results for the ANOVAs – Left hemisphere. P-values for the 2-way and 3-way ANOVAs on the 

adjusted-R2 correlation factor computed between VA and the early-stage auditory areas A1, R, L1, L2, L3, L4, 

M1, M2, M3 and M4. The p-values lower than 0.05 are highlighted in green. The study labelled “a” correspond 

to Grisendi et al., 2019a, while the study “b” correspond to Grisendi et al., 2019b. 

 

 

RH Study A1 R L1 L2 L3 L4 M1 M2 M3 M4

a 0.0995 0.1170 0.2241 0.0608 0.1231 0.4936 0.0003 0.0593 0.0815 0.3686

b 0.0007 0.0018 0.0036 0.0026 0.0129 0.0205 0.4627 0.0340 0.0255 0.0254

a 0.6707 0.9906 0.4342 0.6301 0.5796 0.9227 0.0069 0.5771 0.5000 0.9533

b 0.2334 0.4745 0.4991 0.8002 0.9455 0.7043 0.9962 0.2185 0.4500 0.8361

a

b 0.0377 0.0568 0.2676 0.1019 0.2738 0.4376 0.5619 0.0618 0.1359 0.5667

a 0.5743 0.8753 0.4598 0.5219 0.7628 0.8621 0.1365 0.3486 0.7496 0.5493

b 0.1406 0.3203 0.2874 0.5765 0.8876 0.8116 0.6747 0.4086 0.8554 0.6171

a

b 0.0354 0.0511 0.2156 0.0873 0.3287 0.5134 0.2791 0.0522 0.0121 0.0455

a

b 0.2672 0.4524 0.2999 0.6134 0.6743 0.3785 0.7898 0.2518 0.1871 0.4370

a

b 0.0687 0.1952 0.3542 0.4321 0.6584 0.5364 0.5012 0.3388 0.3845 0.3762

Inter val x lat

Inter voc x val x lat

Main effect of voc

Main effect of val

Main effect of lat

Inter voc x val

Inter voc x lat

 

Table 2: Results for the ANOVAs – Right hemisphere. P-values for the 2-way and 3-way ANOVAs on the 

adjusted-R2 correlation factor computed between VA and the early-stage auditory areas A1, R, L1, L2, L3, L4, 

M1, M2, M3 and M4. The p-values lower than 0.05 are highlighted in green. The study labelled “a” correspond 

to Grisendi et al., 2019a, while the study “b” correspond to Grisendi et al., 2019b. 

 

 

Study 2: Processing of emotions and lateralization within AC 

In the second study (Grisendi et al., 2019b), the heatmaps (Figure 3-8) revealed that all our ROIs 

were globally correlated in all conditions. More specifically the correlations between the different 

regions were stronger in the left hemisphere than in the right hemisphere. The primary auditory areas 

(A1 and R) were strongly functionally correlated with the lateral belt areas (L1, L2 and L3 

especially), as well as with VA but only for the human vocalizations. The correlations between M4 

and all other regions were weaker than between the other regions, and this effect was greater for the 
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vocalizations compared to the non-vocalizations as well as for the left, and for centered presentations 

compared to the right presentations.  

 

 

Figure 3: Heatmaps study 2 left hemisphere positive stimuli. Heatmaps for the data of the study 2 

representing the correlations (adjusted R2) between the BOLD signals of early-stage auditory areas A1, R, L1, 

L2, L3, L4, M1, M2, M3 and M4 and VA during the presentation of positive human vocalizations (left 

column) and positive non-vocalizations (right column) with left, centre or right lateralization (top, middle and 

bottom rows, respectively). The color code represents the strength of the correlation (between [0.6 – 1]). 
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Figure 4: Heatmaps study 2 left hemisphere neutral stimuli. Heatmaps for the data of the study 2 

representing the correlations (adjusted R2) between the BOLD signals of early-stage auditory areas A1, R, L1, 

L2, L3, L4, M1, M2, M3 and M4 and VA during the presentation of neutral human vocalizations (left column) 

and neutral non-vocalizations (right column) with left, centre or right lateralization (top, middle and bottom 

rows, respectively). The color code represents the strength of the correlation (between [0.6 – 1]). 
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Figure 5: Heatmaps study 2 left hemisphere negative stimuli. Heatmaps for the data of the study 2 

representing the correlations (adjusted R2) between the BOLD signals of early-stage auditory areas A1, R, L1, 

L2, L3, L4, M1, M2, M3 and M4 and VA during the presentation of negative human vocalizations (left 

column) and negative non-vocalizations (right column) with left, centre or right lateralization (top, middle and 

bottom rows, respectively). The color code represents the strength of the correlation (between [0.6 – 1]). 
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Figure 6: Heatmaps study 2 right hemisphere positive stimuli. Heatmaps for the data of the study 2 

representing the correlations (adjusted R2) between the BOLD signals of early-stage auditory areas A1, R, L1, 

L2, L3, L4, M1, M2, M3 and M4 and VA during the presentation of positive human vocalizations (left 

column) and positive non-vocalizations (right column) with left, centre or right lateralization (top, middle and 

bottom rows, respectively). The color code represents the strength of the correlation (between [0.6 – 1]). 

 



 

  
121 

 

Figure 7: Heatmpas study 2 right hemisphere neutral stimuli. Heatmaps for the data of the study 2 

representing the correlations (adjusted R2) between the BOLD signals of early-stage auditory areas A1, R, L1, 

L2, L3, L4, M1, M2, M3 and M4 and VA during the presentation of neutral human vocalizations (left column) 

and neutral non-vocalizations (right column) with left, centre or right lateralization (top, middle and bottom 

rows, respectively). The color code represents the strength of the correlation (between [0.6 – 1]). 
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Figure 8: Heatmaps study 2 right hemisphere negative stimuli. Heatmaps for the data of the study 2 

representing the correlations (adjusted R2) between the BOLD signals of early-stage auditory areas A1, R, L1, 

L2, L3, L4, M1, M2, M3 and M4 and VA during the presentation of negative human vocalizations (left 

column) and negative non-vocalizations (right column) with left, centre or right lateralization (top, middle and 

bottom rows, respectively). The color code represents the strength of the correlation (between [0.6 – 1]). 

 

 

The 3-way ANOVA: Vocalization (human vocalizations, non-vocalizations) x Valence (negative, 

neutral, positive) x Lateralization (left, centre, right) revealed a main effect of vocalization bilaterally 

between VA and all the ROIs. This effect was stronger between VA and, A1 and R, than with the 
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lateral areas (L1, L2, L3 and L4). This effect was due to stronger correlations between VA and early-

stage auditory areas for human vocalizations compared to non-vocalizations (Figure 9 and 10). This 

bias was present in both hemisphere, for all valences and lateralizations (Figure 3-8). A main effect 

of lateralization was found between VA and A1 in the right hemisphere, as well as an interaction 

Vocalization x Lateralization between the same regions. The heatmaps revealed that the main effect 

of lateralization was driven mainly by the non-vocalizations and not by the human vocalizations, that 

might explain the interaction Vocalization x Lateralization. For the positive and neutral non-

vocalizations, the strength of the correlation between VA and A1 was lower for ipsilateral 

presentations than for centre, and bigger for contralateral presentations (Figure 6 and 7). For the 

negative non-vocalizations, the correlation was stronger for the centre stimuli compared to the 

lateralized ones (Figure 8).  

 

 

Figure 9: Significant results for the main effect of Vocalization – Left hemisphere. Bar plot representing 

the mean adjusted-R2 between VA and early-stage auditory areas, for the correlations with a significant p-value 

for the main effect of vocalizations (2-way and 3-way ANOVAs). The sound categories are grouped in human-

vocalizations (HV; positive, negative and neutral) or non-vocalizations (NV; positive, negative and neutral). 

The error bars represent the standard deviation across subjects.  
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Figure 10: Significant results for the main effect of Vocalization – Right hemisphere. Bar plot 

representing the mean adjusted-R2 between VA and early-stage auditory areas, for the correlations with a 

significant p-value for the main effect of vocalizations (2-way and 3-way ANOVAs). The sound categories are 

grouped in human-vocalizations (HV; positive, negative and neutral) or non-vocalizations (NV; positive, 

negative and neutral). The error bars represent the standard deviation across subjects. 

 

 

Comparison study 1 vs. study 2 

Comparing both studies, we observed stronger correlations in the context of a spatial paradigm 

compared to a non-lateralized experiment. This increased strength was consistent through every type 

of sounds and valence. The statistical analyses revealed that the same set of areas exhibited a main 

effect of vocalization in both studies (e.g., A1, R, L1, L2 and L3 in the left hemisphere), but that 

additional regions are engaged with lateralized sounds.  

 

Discussion 

Our results demonstrated that the correlation of the BOLD signal between VA and individual early-

stage auditory areas varied across condition.  With human vocalizations stimuli, VA was strongly 

correlated with regions of PAC and the belt areas, which was not the case for the non-vocalization 

sounds. Our correlations were in line with functional connectivity results showing an increased 

connectivity between the regions involved in voice processing for vocal sounds compared to non-

vocal sounds (Aglieri et al., 2018). They also described stronger coupling within the left hemisphere 

than the right hemisphere, as we also reported when using lateralized sounds. However, this left 

hemispheric dominance in case of lateralized sounds compared with the right hemispheric 

dominance in case of non-spatial auditory stimuli was a dissimilarity between both studies. The other 

important point to keep in mind is the big difference in term of strength of correlations. The 
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correlations between our ROIs in the study 2 (with spatial modulation) were stronger than the 

correlations for the same ROIs in the study 1. This difference could not be only due to the spatial 

context, as a number of characteristics were different between both studies. Indeed, in the study 2, 

the number of subject was increased (13 vs. 10), the scanner coil has a larger number of channels (32 

vs. 8), and the VA was defined by mean of a voice localizer. The comparison between the results of 

study 1 and 2 were descriptive and further investigations would be necessary to infer the impact of 

using lateralized sounds on the functional correlations between VA and early-stage auditory areas.    

The connections between VA and the lateral belt areas were already demonstrated in diffusion 

spectrum imaging or functional connectivity studies (Cammoun et al., 2015; Pernet et al., 2015). The 

hierarchical organization of the auditory cortex was established by various studies, where PAC was 

mainly connected to the surrounding belt areas, which were in turn connected to the parabelt areas 

(Cammoun et al., 2015; Hackett and Kaas, 2004; LeDoux, 2000). However, their findings limited the 

connections of VA to the lateral belt areas and not to PAC. The strong functional correlations 

between VA and PAC may thus be the result of two-step connection between these two regions. 

Only one previous study described the functional connectivity between PAC with other auditory 

areas in an emotional context (Koelsch et al., 2018). Using a paradigm with emotional music, their 

results highlighted a functional connectivity network between regions of auditory association cortex 

with extra-auditory regions (e.g., limbic, somatosensory, visual, attentional), in contrast with a 

second network consisting of intra-auditory regions. However, the low spatial resolution (3mm 

isotropic) used in their study did not allow them to draw a more precise model in the auditory cortex. 

Another study proposed a dissociation of the connectivity of the STS within the dual-stream model 

(Erickson et al., 2017). Their findings demonstrated that the anterior regions of the STS were more 

connected with the ventral stream, while the posterior areas were more connected with the dorsal 

auditory pathway. 

 

Previous studies suggested a model of dual input to VA, from the lateral belt areas and from the 

amygdala (Schirmer and Gunter, 2017; Grisendi et al., 2019a), this could not be entirely confirmed 

in the present study as the amygdala was not part of our analysis. In Grisendi et al., (2019b), the 

amygdala was not sensible to the spatial cues used. An interesting follow-up study would integrate 

extra-auditory regions such as amygdala or frontal areas in the analysis. Moreover, in the present 

study we only investigated intra-hemispheric correlations, as our hypotheses were based on the 

processing pathways located in the same hemisphere, thus to infer any inter-hemispheric effects, 

future experiments could investigate evidence for interhemispheric connections within the auditory 

cortex, as well as between the auditory cortex and other areas of the auditory processing stream 

(Budinger and Heil, 2006; Kaas and Hackett, 2005).  
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Conclusions 

The present exploratory study highlighted a modulation of the coupling of VA and early-stage 

auditory areas in function of the category of sound. Human vocalizations induce stronger 

correlations between VA, PAC and lateral belt areas. Thus, the functional correlations between the 

auditory areas was not restricted to correlations between PAC and belt areas or between belt areas 

and parabelt areas, but comprised also strong functional correlations between PAC and VA for the 

specific processing of human vocalizations.  
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