
 

Optimal scientific production over the life cycle

Journal Pre-proof

Optimal scientific production over the life cycle

G. Feichtinger, D. Grass, P.M. Kort

PII: S0165-1889(18)30278-1
DOI: https://doi.org/10.1016/j.jedc.2019.103752
Reference: DYNCON 103752

To appear in: Journal of Economic Dynamics & Control

Received date: 3 September 2018
Revised date: 24 August 2019
Accepted date: 1 September 2019

Please cite this article as: G. Feichtinger, D. Grass, P.M. Kort, Optimal scientific production over the life
cycle, Journal of Economic Dynamics & Control (2019), doi: https://doi.org/10.1016/j.jedc.2019.103752

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition
of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of
record. This version will undergo additional copyediting, typesetting and review before it is published
in its final form, but we are providing this version to give early visibility of the article. Please note that,
during the production process, errors may be discovered which could affect the content, and all legal
disclaimers that apply to the journal pertain.

© 2019 Published by Elsevier B.V.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by International Institute for Applied Systems Analysis (IIASA)

https://core.ac.uk/display/228380042?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1016/j.jedc.2019.103752
https://doi.org/10.1016/j.jedc.2019.103752


Optimal scientific production over the life cycle

G. Feichtingera, D. Grassb,∗, P.M. Kortc

aORCOS, Institute of Statistics and Mathematical Methods in Economics, Vienna University of Technology, A-1040
Vienna, Austria

bIIASA, International Institute for Applied Systems Analysis, Schlossplatz 1. A-2361 Laxenburg, Austria
cDepartment of Econometrics and Operations Research &

CentER, Tilburg University Department of Economics, University of Antwerp

Abstract

The paper develops an optimization model of the career of a scientist. Recognizing that research
efforts and networking get more efficient if the scientist is more knowledgeable, history dependent
solutions are developed. We give a theoretical underpinning of the four different research patterns
detected in Way et al. (2017, Proceedings of the National Academy of Sciences). If the scientist does
not bother about his reputation at the end of his career, we show that a sufficient education level
is needed for the scientist to develop a typical research pattern where productivity increases in the
beginning of his career, while it declines towards retirement. If the education level is not sufficient, a
fading research pattern will result where productivity declines over time. On the other hand, when
the scientist appreciates to have a good reputation at the end of his career, sufficient education will
result in increasing productivity over the career lifetime, preventing a midlife slump.

Keywords: Optimal control, research patterns, Skiba, age-dependent scientific production,
networking: initial knowledge

1. Introduction

The publications of a scientist over his/her career are usually not evenly spaced in time. The
main idea is that productivity patterns quite often show an intuitively plausible time course: scientific
creativity tends to rise rapidly to a peak and then gradually declines. There are many studies of
career paths of creative people since the famous statistician Quételet (1835) started pertinent research
almost 200 years ago. Typical life cycle patterns are not only observed in academia, but also in artistic
production, in criminal behavior and other fields.

Way et al. (2017) provide a readable introductory survey into age patterns of scientific production.
Using a large data set originating in computer science departments in the U.S. and Canada, these
authors show that the conventional narrative of a steeply increasing and then gradually declining
production trajectory is not generally true. They identify a much richer diversity of production
patterns. One important purpose of the present paper is to explain how such a diversity might come
about. While virtually all models dealing with the dynamics of scientific production are descriptive
(see, e.g., Rinaldi et al., 2000; Rinaldi and Amigoni, 2000), in what follows we propose a normative
approach.

We assume that productivity of a scientist depends on the scientist’s knowledge and his reputation.
A scientist invests in his human capital, or knowledge, by working behind the desk, reading books and
papers, developing new ideas, etc. Once a certain stock of knowledge has been built up, the scholar
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can fruitfully work on his reputation. Investing in the stock of reputation consists of presenting at
conferences, contacting colleagues, networking at receptions, etc. These efforts can be summarized
as networking investment. The output of a scientist is publishing papers. Necessary for that is the
accumulation of a sufficient stock of knowledge. On the other hand, a scientist’s productivity also
depends on his reputation in the sense that reputation helps to find better coauthors and to get more
informative about to which journals one should submit his papers in order to get more successful.

The aim of the scientist is to maximize the discounted stream of publications over time taking
into account the costly investments both in knowledge as well as in reputation. The dynamics of the
system is given by two ordinary differential equations describing the impact of investment in knowledge
and networking on the stocks of knowledge and reputation, respectively. An important feature of the
model is that the efficiency of both investment in human capital and networking investment depends
on the stock of knowledge. The larger the scientist’s knowledge the more effective his investment in
research is. Also the networking investment will be more effective if a scientist performs networking
while exposing more knowledge about relevant research topics.

Solving the resulting optimal control model by using Pontryagin’s maximum principle shows that
the shape of the optimal paths depends crucially on the initial situation. If the stock of knowledge is
initially too small, it turns out that the researcher’s career will not be very productive. If, however, a
certain human capital endowment (the so-called Skiba threshold) is exceeded initially, the career will
flourish. A large stock of knowledge fosters the investment in networking, making the leverage effect
of the stock of reputation work. Besides the case of an infinite planning horizon, the case of a given
finite end time is considered. Various terminal conditions (ranging from ’there are no pockets in a
shroud’ until ’the reputation in the posterity is quite important’) will lead to different scientific career
patterns.

Literature review

In an old, but still readable survey paper on the economics of science, Stephan (1996) referred
to the extreme inequality of scientific productivity. Temporal patterns of scientific productivity vary
substantially not only across individuals but also for each researcher over time. Some individuals
remain productive throughout their career. Others who show early promise become deadwood after
some time: Some authors publish papers like a well-oiled machine, while others produce at an erratic
rate (Goodwin and Sauer, 1995).

Typically, an initial rise of creative productivity is followed by an eventual decline. Both the
aging process as well as human capital models predict a hump-shaped productivity pattern over the
life cycle. There is however, an obvious asymmetry in the distribution of research productivity over
the life cycle. While for most of the researchers productivity rises sharply in the early stages of the
career, its decline is rather slowly, of which Figure 1 forms a nice illustration. Almost one century
ago the famous demographer and mathematician Lotka (1926) stressed the highly skewed nature of
scientific publications. Studying nineteenth century physics journals, he observed that approximately
six percent of publishing scientists produced half of all papers. Inequality in creative research between
scientists at a given time can be explained by different motivation and abilities. There is, however
a second kind of inequality in productivity between scientists, namely those of a cohort of scientists
over time.
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(a) Age versus creative production rate for Russians only,
in science and mathematics

(b) Solid line: age versus creative production rate for En-
glishmen only, in science and mathematics. Broken line,
same as in panel (a).

Figure 1: Age vs. creative production rate for Russians only, in science and mathematics. (Source: H.C. Lehman, Men’s
creative production rate at different ages and in different countries, The Scientific Monthly, May 1954, 321-326).

Stephan (1996) mentions a few studies illustrating this dynamic inequality. Besides different
capacity and efficiency of scientists, she refers to some form of feedback mechanism denoted by ’the
winner takes all’. Past success in research usually acts as leverage for future productivity. Scientists
of considerable reputation have a ’cumulative advantage’ in the sense that they will accrue greater
increments of recognition for their contributions. This peculiar fact has also been denoted as Matthew
Effect in science. Essentially it says ’Once a Nobel Laureate, always a Nobel Laureate’. The Gospel
According to St. Matthew puts it this way: ’the Matthew effect consists in the accruing of greater
increments of recognition for particular scientific contributions to scientists of considerable repute
and the withholding of such recognition from scientists who have not yet made their mark’ (compare
Lehman, 1954; Merton, 1968). Our model accounts for this effect due to the fact that the stock of
reputation has a positive effect on the researcher’s output.

Faria and McAdam (2015) show that tenure and promotion of academic specialists are character-
ized by a bang-bang solution in which the scholar shifts from maximum to minimum effort levels and
productivity depending on incentives and impatience. Yegorov et al. (2016) explain the differences in
payoffs to talent by analyzing the impact of the initial stock of human capital (which is a productive
capital) as well as his or her initial market access (or bargaining powers) within an optimal control
framework. McDowell (1982) considers varying learning behavior of professors over their career which
may be explained as response to the durability of knowledge. An optimal control model is analyzed
but also evidence of obsolescence of knowledge by providing literature decay rates is given. Symonds
et al. (2006) show discrepancies in the publication rate between women and men appearing early in
their careers.

El Ouardighi et al. (2013) study by means of an optimal control model how individual investments
into research and teaching skills subject to a fixed time budget can affect academic careers. Seidl
et al. (2016) extend their approach by considering the option to leave academia. To do so, they
compare, similar to the approach analyzed in Caulkins et al. (2015), solutions with a free end time
(i.e. solutions, where it is optimal to leave academia) to infinite time horizon solutions (i.e. solutions,
where it is optimal to stay in academia). They find that the optimal long-run career strategy can be
history-dependent, i.e. it depends on the initial skills in research and teaching.

Since the early work of Becker (1962), economists have studied the question how behavior varies
over the life cycle in occupations where human capital plays an important role. These models typically
produce a peaked profile. First, investment in human capital increases, but at some point, due
to finiteness of life, it starts declining. While all life-cycle models for scientists deal with efficient
allocation of research time, they differ in the objective functionals of the scientists. Usually it is not
the income stream alone which is maximized, but a utility function including among other things, the
research output. Levin and Stephan (1991) provide an interesting ansatz in that direction, where our
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model can be seen as an extension of the Levin-Stephan model. Simonton (1989, 1997) develops a
simple three-state model explaining both longitudinal and cross-sectional variations in the scientific
output.

Reviewing life-cycle models until mid of the nineties, Stephan (1996) comes to the conclusion that

“the human capital approach does not provide the cornerstone on which we should model
the behavior of scientists.”

It does not provide an explanation of why the productivity of a cohort of scientists is unequal over
time. The author concludes further

“that the production of scientific knowledge is far more complex than the human capital
model assumes and that these complexities have a great deal to say about patterns that
evolve over the life cycle.”

Our model tries just to take this aspect into account. In particular, by explicitly considering the
reputation of a scientist we are able to describe unequal age patterns of scientific production.

Kanazawa (2003) refers to the similarity of the age-pattern and scientific creativity and those of
crime. While this might be seen as curiosity we mention the fact that many human behavioral aspects
exhibit a one-peaked right-skew age-pattern: both the age-specific first marriage intensity as well as
fertility provide typical demographic examples. In his Handbook of Genius, Simonton (2014) provides
a rich collection of interesting contributions to creativity in a broader sense. Specifically, see Jones
et al. (2014).

The paper is organized as follows. In Section 2 the model is presented including some basic
analysis by application of Pontryagin’s maximum principle. In Section 3 we show among other things
the existence of multiple equilibria whose basins of attraction are separated by Skiba curves (Grass
et al., 2008), i.e. the effect of initial knowledge is considered by developing history-dependent optimal
trajectories. Section 4 shows how the four career patterns recently identified by Way et al. (2017)
can be generated as optimal trajectories for appropriate parameter values. In particular, the slump
of life satisfaction (’mid-life crisis’) is discussed in this framework (see Schwandt, 2016a,b). Section 5
concludes the paper.

2. Model

For a scientist investing in knowledge, K, is the major activity. Such knowledge investments, I,
consists of, e.g., working behind the desk, including developing new ideas, making calculations, and
reading. In addition, the scientist has the option to establish a reputation, R, by networking, N ,
which one does, e.g., by making presentations at conferences, talking to colleagues, visiting receptions,
inviting colleagues, and writing emails.

The output of a scientist is publishing papers, P . A necessary condition to do so is having built
up a stock of knowledge being strictly positive. Building up reputation can work as a leverage with
respect to productivity. To model this we introduce the scientific production function

P = P (K,R) = Kα(R+ 1)β, (1)

with α and β denoting positive constants smaller than one. The functional form reflects that one can
be productive without working on reputation.

We consider a representative scientist, who has the aim to maximize the discounted stream of
his scientific publications plus the utility arising from investing in knowledge and networking. An
important feature of our model is the fact that doing research and networking usually create utility
for a scientist as long as it is done ’to a reasonable extent.’ Only if I and N exceed some thresholds,
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these activities are connected with disutilities, i.e. they must be seen as costly. In mathematical terms
the following optimization model results:

max
I(·),N(·)

∫ T

0
e−rt (P (K(t), R(t))− C1(I(t))− C2(N(t))) dt+ e−rT (κ1K(T ) + κ2R(T )) (2a)

s.t. K̇(t) = g(K(t))I(t)− δ1K(t), t ∈ [0, T 〉 (2b)

Ṙ(t) = h(K(t))N(t)− δ2R(t), t ∈ [0, T 〉 (2c)

K(0) = K0 ≥ 0, R(0) = R0 ≥ 0 (2d)

I(t) ≥ 0, N(t)) ≥ 0, t ∈ [0, T 〉. (2e)

with

[0, T 〉 :=

{
[0, T ] if T <∞
[0,∞) otherwise.

Eqs. (2b) and (2c) describe the accumulation of knowledge and reputation dependent on research and
network activities, respectively. The functions g(·), h(·) are assumed to be convex-concave (S-shaped)
and C1,2(·) are linear-quadratic. Specifically we choose

g(K) :=
a(l +Kθ)

1 +Kθ
(2f)

h(K) :=
eKσ

1 +Kσ
(2g)

C1(I) := d1I
2 − c1I and C2(N) := d2N

2 − c2N, (2h)

where g(K) is an increasing function reflecting that investing in knowledge is more fruitful if one
has already built up some knowledge. Also, working on reputation is much more effective if one is
knowledgeable, so that h(K) is an increasing function as well. This is because when being more
knowledgeable the scientist makes a good impression when presenting his research, talking to other
researchers, writing emails and so on. Note that the functional forms C1(I) and C2(N) are such that
the scientist enjoys positive marginal utility from knowledge investment and networking as long as I
and N are not too large.

Concerning the parameter κ2, one possibility is to take the salvage value to be equal to zero
(κ2 = 0). One could also argue that taking a salvage value into account is reasonable to reflect
that the scientist’s reputation at the end of his career should be valued positively. That would mean
formulating a salvage value being increasing in R, which is achieved by assuming κ2 to be positive. To
ease the full appreciation of the model generality, Table 1 gives an exhaustive overview of the model
parameters and their meaning.

The model as such is interpretable in a more general sense. It does not only hold for the career
of a scientist, but also for an artist, an office worker, a football player, and so on. It also holds for a
startup like some “Silicon Valley” firm that first develops an idea, then works to extend it (I and K),
but then starts the networking process to find venture capitalists, attracting promising people, etc.
(N and R).

We solve the model by applying Pontryagin’s maximum principle (see, e.g. Grass et al., 2008).
This method starts out with setting up the current-value Hamiltonian Eq. (3a) and its derivatives
with respect to the states Eqs. (3b) and (3c) and controls Eqs. (3d) and (3e)

H = Kα(R+ 1)β − d1I2 + c1I − d2N2 + c2N + λ1

(
a(l +Kθ)

1 +Kθ
I − δ1K

)
+

λ2

(
eKσ

1 +Kσ
N − δ2R

)
,

(3a)
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r > 0 discount rate
a > 0 parameter governing the speed of knowledge accumulation
e > 0 parameter governing the speed of reputation accumulation

0 ≤ l ≤ 1 parameter influencing the speed of knowledge accumulation
θ ≥ 1 parameter determining the shape of the knowledge accumulation function
σ ≥ 1 parameter determining the shape of the reputation accumulation function
δ1 > 0 rate of forgetfulness of knowledge
δ2 > 0 depreciation rate of reputation

0 ≤ α ≤ 1 elasticity coefficient of knowledge investment
0 ≤ β ≤ 1 elasticity coefficient of reputation by networking
c1 > 0 parameter describing how much knowledge investment adds to utility
c2 > 0 parameter describing how much networking adds to utility
d1 > 0 parameter describing how much knowledge investment adds to disutility
d2 > 0 parameter describing how much networking adds to disutility
κ1 > 0 salvage value parameter measuring the intellectual ambition
κ2 > 0 salvage value parameter measuring the reputational ambition

Table 1: Overview of model parameters and their meaning.

from which we obtain that

∂KH = αKα−1(R+ 1)β + λ1

(
aθKθ−1(1− l)

(1 +Kθ)2
I − δ1

)
+ λ2

eσKσ−1

(1 +Kσ)2
N (3b)

∂RH = βKα(R+ 1)β−1 − λ2δ2 (3c)

∂IH = c1 − 2d1I + λ1
a(l +Kθ)

1 +Kθ
(3d)

∂NH = c2 − 2d2N + λ2
eKσ

1 +Kσ
. (3e)

We only have to consider the interior control solutions since boundary solutions, i.e. I = 0 or N = 0,
will not occur due to the linear-quadratic cost functions Eq. (2h). Therefore, application of the max-
imum principle generates the following necessary optimality conditions by setting Eqs. (3d) and (3e)
to zero:

I∗ =
1

2d1

(
c1 + λ1

a(l +Kθ)

1 +Kθ

)
(4a)

N∗ =
1

2d2

(
c2 + λ2

eKσ

1 +Kσ

)
. (4b)

Plugging the expressions for the controls Eq. (4) into the state equations Eqs. (2b) and (2c) and the
derivatives Eqs. (3b) and (3c) into the costate equations yields the canonical system:

K̇(t) =
aK(t)θ

1 +K(t)θ
I∗(t)− δ1K(t) (5a)

Ṙ(t) =
eK(t)σ

1 +K(t)σ
N∗(t)− δ2R(t) (5b)

λ̇1(t) = rλ1(t)− ∂KH(t) (5c)

λ̇2(t) = rλ2(t)− ∂RH(t). (5d)

This dynamical system cannot be analytically treated and thus allows only a numerical analysis, the
outcome of which we present in the next two sections.
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3. When does the initial knowledge level matter?

As argued in the Introduction, knowledge investments and networking are more effective if the
knowledge level of the scientist is high. For this reason his initial knowledge level, which the scientist
developed during his studies preceding his career, can be a crucial factor for career development. So,
the question in particular is whether it is realistic to pursue a scientific career in case of a too low
initial knowledge level. In this light the next proposition provides information, because it defines
scenarios under which a scientific career will not be fruitful in the sense that the long run equilibrium
prescribes that both the level of knowledge as well as scientific reputation will vanish.

Proposition 1. The equilibrium at the origin exists for all θ > 1 and σ ≥ 1. For θ = 1 this equilibrium
exists if and only if

δ1 −
ac1
2d1

> 0. (6)

Proof. Appendix A.

We have chosen the parameter values specified in Table 2 as the base case. Specifically we set
θ = σ = 1, and therefore the equilibrium at the origin only exists if expression (6) is satisfied.

r a e l θ σ δ1 δ2 α β c1 c2 d1 d2 κ1 κ2
0.04 0.5 0.5 0 1 1 0.2 0.1 0.8 0.5 1 1 ∗ 1 0 ∗

Table 2: The specified parameter values for the (Skiba) base case.

For the numerical analysis of the canonical system Eq. (5) we applied a boundary value problem
(BVP) approach combined with a continuation strategy, as presented in Grass (2012). For the actual
calculations OCMat was used, a MATLAB package that is in constant development by one of the
authors.1

1The actual version can be received from the authors. An older version can be downloaded from http://orcos.

tuwien.ac.at/research/ocmat_software.
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(a) Bifurcation diagram (d1)
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(b) Bifurcation diagram (d1)

Figure 2: Bifurcation diagram for parameter d1. For the region in-between the dashed lines Skiba solutions exist,
whereas outside this region the long run equilibrium is unique. For the numerical treatment of the equilibrium at the
origin we introduce a small value τ (see Appendix A.1). This explains the discrepancy in the positive values shown in
the bifurcation diagram and the exact value zero.
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(a) Base case d1 = 0.5, κ2 = 0 and 10
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(b) d1 = 3, κ2 = 0 and 10

Figure 3: Solution for the base case with different parameter values d1. The blue curves correspond to the finite time
horizon solutions with T = 50. The solid curves correspond to κ2 = 0 and the dashed curves to κ2 = 10. The gray curves
depict the infinite time horizon solutions. The crosses denote the initial states of the solution paths. An equilibrium (of
the infinite time horizon problem) is depicted by a dot.

8

                  



0 0.1 0.2 0.3 0.4 0.5 0.6
0

0.2

0.4

0.6

0.8

1

1.2

K

R

(a) Skiba case d1 = 2.8 and T =∞.
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(b) Skiba case d1 = 2.8, κ2 = 10 and T = 50.
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(c) Skiba point (K̃, 0) for varying κ2.
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(d) Skiba point (K̃, 0) for varying T .

Figure 4: In (a) the Skiba case for the infinite time horizon problem is depicted. The crosses denote the initial states, an
equilibrium is represented by a dot. The Skiba curve is given by the red curve. In panel (b) the Skiba solutions for the
finite (colored) and infinite time horizon (gray) are depicted. The dashed-dotted curves show the Skiba-curves. Panel
(c) shows the change of the Skiba value for K with fixed R = 0 and varying κ2 (red) curve. The dashed lines enclose the
region of initial K values, where two different solutions exist. Panel (d) shows that a Skiba solution for the finite time
horizon only exists for a large enough time horizon, in the actual case T ≥ 29.73. Moreover, the according Skiba point
increases for larger values of T , which is consistent with (b), where the Skiba point of the infinite time horizon problem
lies to the right of K̃.

Figure 2 shows bifurcation diagrams regarding the possible steady state values of knowledge, K,
and reputation, R. The inverted S-shaped curves represent the location of the steady state. The
meaning of the two vertically shaped dashed lines is that for values of d1 that fall in between these
dashed lines optimal trajectories exist that either converge to the upper or the lower steady state.
Here the basins of attraction of the two steady states is separated by a Skiba curve, which is further
explained after presenting Figure 4. To the right of this area the optimal trajectory converges to the
origin, and to the left always convergence to the upper steady state occurs. Hence, the bifurcation
parameter is d1, where an increase of this value raises the cost of investment in knowledge. We first
observe that Figure 2 confirms Eq. (6), from which we obtain that for d1 ≤ 1.25 the equilibrium at the
origin does not exist, whereas for d1 > 1.25 this equilibrium exists. In particular, the parameter d1
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specifies how fast marginal utility of the scientist declines, once he decides to invest more in knowledge.
A large value of d1 thus implies it is costly to increase knowledge fast. Therefore, only convergence to
the small steady state takes place in such a case, as can be inferred from Figure 2.

An important implication of Figure 2 is that the parameter d1 is crucial for the long run outcome of
the model. What academic institutions could learn from this is that it pays off when it finds methods
to reduce the disutility of performing knowledge investments, or, in other words, doing research. In
particular, if the academic institution succeeds in reducing d1 that much that its value is lower than the
value corresponding to the location of the left dashed vertical line, the scientist will keep on increasing
knowledge and will have an active research career throughout his academic life. Methods to reduce
d1 could be, for instance, providing enough office space, or reducing teaching load and administrative
duties so that the researcher can do research without feeling the stress of having too many deadlines.

Figure 3b shows optimal trajectories for a large value of d1, and indeed they end up at the origin.
A small d1 means that the scientist is so clever that it is relatively easy to create knowledge. Figure 3a
depicts trajectories ending up at the larger steady state, where, indeed, the value for d1 is relatively
low. A positive κ2 indicates that at the horizon date reputation is positively valued. The corresponding
trajectories therefore end up at larger values of reputation in both Figure 3, where in Figure 3a this
happens at the expense of the final value of knowledge that is lower there.

For intermediate levels of d1 we have a situation with multiple equilibria as Figure 2 shows.
Figure 4a depicts the solution of the model if we take an infinite horizon date. Different trajectories
are considered starting out from different initial situations. The most reasonable initial situation is
such that the reputation of a researcher is low initially, so then R(0) should be small, i.e. close to zero.
Before the career starts, it is very seldom the researcher has build up a network by then. The initial
knowledge level K(0) should also be relatively small, but note that the scientist starts his scientific
career after his studies. During his studies the scientist has built up some knowledge, so K(0) need
not be too close to zero.

In Figure 4a a Skiba curve occurs, separating the regions of attraction of the smaller and the larger
equilibrium. To the left of the curve we have initial states from which the optimal trajectory ends up
at the equilibrium at the origin, and to the right the optimal trajectories converge to the equilibrium
with positive knowledge and reputation values. The Skiba phenomenon is caused by the control-state
interaction term Ig(K) in the state equation for knowledge. This term makes that investment in
knowledge especially pays off when knowledge is large. Hence, therefore the scientist does not invest
enough in knowledge to let it increase when the knowledge level is low.

Since, as argued above, typically R(0) is close to zero, the point where the Skiba curve intersects
with the K-axis is very relevant, since it determines a threshold value for K(0), denoted by K̃. The
meaning of the threshold value is that for initial knowledge levels above K̃ the scientist goes for a
scientific career that let him end at the upper steady state. If, however, the initial knowledge level is
such that it falls below K̃, the researcher under consideration will invest more time in other activities
than research like, for instance, teaching or administration. The result is that he ends up in the
equilibrium at the origin.

Considering the different trajectories we observe that when knowledge K is low relative to R, the
scientist does not invest too much in networking so that it loses reputation value. On the other hand,
the scientist substantially invests in reputation in situations where the knowledge is relatively large.
We conclude that R runs after K: R increases (decreases) when it is small (large) compared to K.
The intuition for such behavior is that it especially pays to invest in networking when the knowledge
is large, i.e. the reputation investment effectivity function h(K) is increasing in knowledge K.

In reality a scientist has no infinite life so it makes most sense to consider a finite time model.
Figure 4b shows trajectories where the scientific career encompasses 50 years. The objective function
includes a salvage value, which is such that at the end of the scientific life reputation is positively
valued. Like with the infinite time solution, also here a Skiba curve can be detected, implying that a
sufficiently large initial knowledge level is required to build up a scientific career. Figure 4b shows that
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the finite time Skiba curve lies to the left of the infinite time one, where having finite time reduces
K̃ from about 0.42 to 0.26. Hence, in more cases it is optimal to build up a scientific career in finite
time. This is because of the relatively high valuation of reputation at the end of the scientific lifetime.
The latter also causes that the two trajectories to the right of the Skiba curve have in common that
at a final time interval reputation increases while knowledge decreases.

The phase portrait in Figure 4b contains two manifolds of end-states that are depicted as black
curves. These manifolds are the finite time counterparts to the two equilibria of the infinite time
problem in Figure 4a. The manifold corresponding to the low equilibrium is very closely located to
the R-axis. The second manifold has substantially positive knowledge values. The location on such
a manifold where a particular trajectory will end, depends on the initial values of knowledge and
reputation. The shape of the Skiba curve is such that it intersects the K-axis, while it approaches the
R-axis asymptotically. This implies that it is not optimal to build up a scientific career if initially the
scientist has zero knowledge and very high reputation, which is quite unlikely of course. The reason
is that investments in both knowledge and reputation are not effective with zero knowledge.

Figure 4d shows that the threshold K̃ increases with the horizon date. This implies that if the
scientific career lasts for a longer time, a higher initial knowledge level is needed for building up
a fruitful scientific career. The reason is that under this parametrization, the scientist very much
appreciates to have a high scientific reputation at the end of his career. The earlier this event takes
place the higher the incentive to increase reputation and thus the more attractive it is to invest in a
scientific career. The history dependent equilibria separated by the Skiba curve, only exist for values
of T larger than 30 years. For smaller T building up a scientific career is more attractive, which
explains that for T small enough only convergence to the larger steady state will occur. We conclude
that there could be a negative effect of delaying the pension date; if the horizon date lies to far into
the future, the scientist could be demotivated to keep on being an active researcher.

That, if the scientist has a higher reputational ambition (i.e. κ2), the scientist has a larger incentive
to build up a scientific career, is confirmed in Figure 4c. We see that for a larger value of κ2 the
threshold is lower, implying that a lower initial knowledge level is needed for starting a trajectory
that converges to the larger equilibrium. Moreover, for κ2 small enough only the smaller steady state
exists so that the scientist will not invest too much in a scientific career resulting in convergence to
the origin, whatever his initial knowledge level is.

0 0.1 0.2 0.3 0.4 0.5 0.6
0

0.2

0.4
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0.8
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1.2

K

R

Figure 5: Finite time solution with zero salvage value and d1 = 2.8.

Figure 5 shows what happens if the scientist does not care about his reputation at the end of
his career, thus when there is no salvage value. Here the scientist is of the opinion that ’there are
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no pockets in a shroud’, so that he assigns no positive value to his reputation at the end of the
scientific life. We see that this results in trajectories where the scientist is not interested in building
up knowledge, whereas investments in reputation, i.e. networking, will be stopped when the scientist
reaches the end of his career.

Figure 5 also confirms that the firm invests in networking when the scientist’s knowledge level is
high. This makes sense because, since h(K) is an increasing function, the marginal effect of network
investment on reputation increases in knowledge. The implication is that at the start of a typical
academic career, where the scientist has a relatively limited initial knowledge level, he will begin with
investing in knowledge. Later on, when the scientist’s knowledge level has become sufficiently high, a
new phase of the career will start in which the scientist will also invest substantially in networking.

4. Optimal patterns of scientific production

Using data of computer science departments in North-America, Way et al. (2017) identify four pat-
terns of individuals’ scientific productivity, see Figure 6. For simplicity, the authors restrict themselves
to two stages in the productivity cycle. They use a piecewise linear model

f(t) =

{
b+m1t 0 ≤ t ≤ t∗
b+m1t

∗ +m2(t− t∗) t > t∗
(7)

to describe two phases of scientific research. By denoting the slopes of the two phases by m1 and m2,
they are able to depict the four cases in the four quadrants Qi of the (m1 m2)-plane (i = 1, . . . , 4).

Figure 6: Distribution of individuals’ productivity trajectory parameters. Diverse trends in the individual productivity
fall into four quadrants based on their slopes m1 and m2 in the piecewise linear model Eq. (7). Plots show example
publication trajectories to illustrate general characteristics of each quadrant. (Source: Way et al., 2017).

Clearly, among the four patterns sketched in Figure 6, the most frequent productivity pattern
corresponds to Q4 (positive m1, negative m2). However, as Way et al. (2017) claim, rising productivity
followed by a declining publication activity is by no means universal. The aim of this section is to
illustrate that for each of the four patterns shown in Figure 6, a parameter scenario can be developed
for which our model generates a solution characterizing the associated pattern. All regimes are based
on the parameter values depicted in Table 3. To develop the different productivity patterns we vary
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three different parameters, namely d1, indicating the disutility part of knowledge investments, κ1,
being the unit value of knowledge at the end of the scientist’s career, and κ2, being the unit value of
reputation at the horizon date. Table 4 gives an overview of their values in the different regimes.

l θ d1 κ1 κ2
0.25 2 ∗ ∗ ∗

Table 3: The parameter values that changed compared with Table 2.

Regime d1 κ1 κ2
Q4(typical) 3 0 0

Q3(fading) 6 0 0

Q2(slump) 5 20 5

Q1(busy) 5 30 5

Table 4: d1: how much knowledge investment adds to disutility, κ1: measure of intellectual ambition, κ2: measure of
reputational ambition, in the four different regimes.

In what follows we treat the four regimes of Figure 6 in a clockwise manner, starting with the most
common life cycle patternQ4. Figure 7 illustrates the case of a first increasing and then decreasing path
of scientific productivity, called the typical case, see also Figure 1 in the Introduction. In the typical
case the scientist starts off investing in his career, resulting in a steady increase of his productivity.
Furthermore a typical scientist’s intellectual and reputational ambition is relatively low, or, to put in
other words the salvage value is zero. This is the reason that at the end of his career he gradually
builds off his activities, continuously approaching retirement.
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Figure 7: Typical case. Scientific productivity over age. Case of first increasing and then decreasing productivity. The
basic parameters are given in Table 3, the varying parameters are specified as κ1 = 0 and d1 = 3. The initial state values
are K(0) = 0.5 and R(0) = 0.

The pattern Q3 depicted in Figure 8 is another distribution which is familiar, called the fading
case. In the beginning of his career the scientist produces still at a reasonable level, based on the
knowledge he obtained during his studies. After getting tenure, the publication rate decreases, con-
verging to zero productivity at the end of his career. Besides having a relatively low intellectual
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and reputational ambition, the fading scientist also experiences heavy disutilities from investing in
knowledge (d1 relatively large), so he gradually reduces his research activities over time.
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Figure 8: Fading case. Scientific productivity over age. Case of decreasing productivity. The basic parameters are given
in Table 3, the varying parameters are specified as κ1 = 0 and d1 = 6. The initial state values are K(0) = 0.5 and
R(0) = 0.

The next productivity distribution, Q2, shows a slump somewhere in the middle of the career
(Figure 9). This can typically be caused by a slump of life satisfaction (’midlife crisis’), as discussed
in Schwandt (2016a). Towards the end of his career, the “slump” scientist resumes research activities.
The reason is that, due to his rather large intellectual and reputational ambition, he wants to be
remembered because of his knowledge and being a researcher with high reputation. This is reflected
in a positive salvage value being increasing in both the final values of knowledge and reputation.
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Figure 9: Slump case. Scientific productivity over age. Case of first decreasing and then increasing productivity. The
basic parameters are given in Table 3, the varying parameters are specified as κ1 = 20 and κ2 = 5 and d1 = 5. The
initial state values are K(0) = 0.5 and R(0) = 0.

The last regime, Q1, describes the ’late researcher’, called the busy case. While at the beginning
he produces few papers, he gradually gets his career going, as illustrated in Figure 10. Towards the
end he accelerates research intensity because he highly values being knowledgeable and having a high
reputation at the end of his career. This is reflected in the relatively high values of the intellectual
ambition parameter κ1 and the reputational ambition parameter κ2.
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Figure 10: Busy case. Scientific productivity over age. Case of increasing productivity. The basic parameters are given in
Table 3, the varying parameters are specified as κ1 = 30 and κ2 = 5 and d1 = 5. The initial state values are K(0) = 0.5
and R(0) = 0.

The importance of the initial knowledge level regarding research patterns.

Education matters, especially in how a researcher starts a career. This already became apparent
in Section 3 where in several cases a Skiba curve separated career patterns starting out with a high
initial knowledge level resulting in an active career and a relatively low initial knowledge level being
not enough to become a productive researcher. At the end of Section 4 we show how the “Skiba
approach” sheds light on how a researcher chooses between the different research patterns.

First, consider the two patterns where the researcher has a limited intellectual and reputational
ambition, namely the typical and the fading pattern. Just a little bit more knowledge can result in a
typical career, rather than a fading one, where the typical researcher is far more productive. Based
on the parameter values of Table 5, Figure 11 illustrates this fact where the two depicted trajectories
start out from the threshold value K̃ = 0.5. Here the typical pattern results for any K(0) > K̃,
whereas a fading career is the result of having K(0) < K̃.

r a e l θ σ δ1 δ2 α β c1 c2 d1 d2 κ1 κ2
0.04 0.5 0.5 0.25 2 1 0.2 0.1 0.8 0.5 1 1 4.6198 1 0 0

Table 5: The specified parameter values for Figure 11.
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Figure 11: A Skiba solution exhibiting the two regimes Q3 and Q4 for K(0) = 0.5 and R(0) = 0. For the parameter
values see Table 5.

Second, we compare the patterns where a high value is assigned to being knowledgeable with high
reputation at the end of the career, namely slump and busy. For such a researcher a slump can be
avoided if he is well educated. In particular, Figure 12, being based on the parameter scenario of
Table 6, again has a threshold value of K̃ = 0.5, which implies that for K(0) > 0.5 it is optimal
to start a busy career with increasing research productivity. Knowledge investments and networking
are highly effective if the researcher possesses a lot of knowledge, which explains increasing activities
during the life of the busy researcher. However, in all other cases, thus where education did not result
in a high enough initial knowledge level, a slump in the career cannot be avoided.

r a e l θ σ δ1 δ2 α β c1 c2 d1 d2 κ1 κ2
0.04 0.5 0.5 0.25 2 1 0.2 0.1 0.8 0.5 1 1 5.254 1 20 5

Table 6: The specified parameter values for Figure 12.
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Figure 12: A Skiba solution exhibiting the two regimes Q1 and Q2 for K(0) = 0.5 and R(0) = 0. For the parameter
values see Table 6.
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5. Conclusion

While there exist many papers describing the life cycle behavior of scientific production, in our
normative approach we focus on the optimal way in which different age-patterns of publication output
comes about. Since the empirical research in Way et al. (2017) we know that among others four differ-
ent patterns of scientific productivity can be discerned. In particular, regarding the productivity of the
scientist during his scientific life, we can identify patterns called typical (increasing and then decreasing
productivity), fading (decreasing productivity), slump (decreasing and then increasing productivity),
and busy (increasing productivity). The present paper aims to provide a theoretical foundation for
this empirical research. To do so, we design an optimization model of the representative scientist. The
scientist derives positive utility from publishing papers and from activities like performing research,
which we denote by ’investing in knowledge’, and networking. However, working too hard causes a
disutility, i.e. too large investments in knowledge and networking are costly.

We show that typical and fading patterns typically arise in scenarios where the scientist has a
limited intellectual and reputational ambition. In such a case the scientist will choose for a typical
pattern if the disutility for hard working is not too high. Here it could help that during his studies
the scientist obtained a lot of knowledge. This is because, if the scientist starts his career being
knowledgeable, investments in knowledge and networking become more efficient.

If the scientist does assign a substantial positive value to being regarded as knowledgeable with a
high reputation at the end of his career, the patterns slump and busy come into the picture. We show
that a slump pattern, where the scientist is not very productive halfway his career, can be avoided
by high quality education. Again, starting the career with a lot of knowledge make investments in
knowledge and networking efficient. This raises productivity along the lifetime, resulting in the busy
pattern.

Besides the knowledge at the beginning of the career, also the long term intellectual and reputa-
tional ambition of the scientist turns out to be of crucial importance. If the academic institution is able
to feed these ambitions of its scientists, then patterns like slump and busy will prevail in its institute
instead of scientific careers emphasizing typical and fading patterns. Feeding intellectual and repu-
tational ambitions could be achieved by, for instance, introducing rewards for scientific publications,
clear promotion criteria based on scientific publications, providing interesting seminar programs, and
reserving enough funds for visiting conferences.

Trying to capture a problem in a model by definition means some real life aspects are left out. We
did capture that an increase of the scientist’s knowledge results in more efficient research activities.
What also could have been included is that performing research benefits from the scientist’s reputation.
If the scientist get stuck somewhere, it is easier to ask a distinguished colleague for help if the scientist
himself is of high reputation. Moreover, competition between scientists could affect the age patterns,
which was also not taken into account in the present paper.

Also, as we have it now the model is autonomous. Another realistic extension would be that the
efficiency of accumulating knowledge and reputation explicitly depends on timing, so that effects of
aging and learning can be taken into account.
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A. Proof of Proposition 1

For the following analysis we assume l = 0. For K = 0 the term Kα−1(R + 1)β becomes singular
and hence we have to handle a diverging costate λ1. Hence, to prove that the equilibrium at the origin
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satisfies the necessary optimality conditions we need to check for which conditions the transversality
condition

lim
t→∞

e−rtK(t)λ1(t) = 0 (A.1)

holds. The transversality condition

lim
t→∞

e−rtR(t)λ2(t) = 0

is trivially satisfied, since the equilibrium value for λ̂2 = 0 at R̂.
Near the origin and for θ > 1 the state dynamics is mainly driven by the linear term and we

approximately find

K(t) = e−δ1tK(0) (A.2a)

R(t) = e−δ2tR(0). (A.2b)

Thus, for (K(0), R(0)) small enough the solution converges to the origin. Next we prove Eq. (A.1).
Plugging Eq. (A.2a) into the costate equation yields

λ̇1(t) = (r + δ1)λ1(t)− ϕ1 e−(δ1(α−1)+δ2β)t

with

ϕ1 := αK(0)α−1(R(0) + 1)β.

Solving the ODE we find

λ1(t) = e(r+δ1)t λ1(0)− ϕ1 e(r+δ1)t
∫ t

0
e−(r+δ1+δ1(α−1)+δ2β)s ds

= e(r+δ1)t λ1(0) +
ϕ1 e(r+δ1)t

r + δ1α+ δ2β

(
e−(r+δ1α+δ2β)t−1

)

Hence the transversality condition is satisfied if the following condition holds

lim
t→∞

e−rtK(t)λ1(t) = lim
t→∞

e−rt e−δ1t e(r+δ1)t

(
λ1(0) +

ϕ1

(
e−(r+δ1α+δ2β)t−1

)

r + δ1α+ δ2β

)

= λ1(0)− ϕ1

r + δ1α+ δ2β
= 0.

Finally the corresponding time path is

λ1(t) =
ϕ1 e−(δ1(α−1)+δ2β)t

r + δ1α+ δ2β
.

Plugging the state and costate paths into the expressions for the controls yield

lim
t→∞

I∗(t) =
c1

2d1
and lim

t→∞
N∗(t) =

c2
2d2

(A.2c)

since

lim
t→∞

K(t)θλ1(t) = lim
t→∞

e−(δ1θ+δ1(α−1)+δ2β)t = 0

lim
t→∞

R(t)σλ2(t) = 0.

Finally we consider the case θ = σ = 1. We note that the controls are continuous and for d1 > 0 and
d2 > 0 bounded. Thus, the limits limt→∞N∗(t) = N̄ and limt→∞ I∗(t) = Ī exist. Then for t large
enough the state dynamics for K can be written as

K̇(t) = aĪK(t)− δ1K(t) =
(
aĪ − δ1

)
K(t) = −ξK(t)
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with

ξ := δ1 − aĪK(t)

where the higher order terms of the Taylor Series of

1

1 + x
= 1− x+

x2

2
+ . . .

were omitted. Subsequently we assume ξ > 0. Then we find structurally the same equation as
Eq. (A.2a), namely

K(t) = e−ξtK(0) (A.3)

and proceed analogously. Moreover from Eq. (A.2c) we find

Ī =
c1

2d1
and N̄ =

c2
2d2

.

Thus, we proved that the equilibrium at the origin exists for all θ > 1 and σ ≥ 1. For θ = 1 this
equilibrium exists if and only if the parameters satisfy

ξ = δ1 − aĪ = δ1 −
ac1
2d1

> 0. (A.4)

A.1. Numerical treatment

For the numerical treatment of the equilibrium at the origin we introduce a parameter τ � 1 in
the first state dynamics, yielding

K̇(t) = τ + g(K(t))I(t)− δ1K(t), t ∈ [0, T 〉. (A.5a)

Due to this adaptation the equilibrium at the origin is shifted away from zero in K and therefore
avoids the divergence of the λ1 costate.
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