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A simulation study of aggregation mediated by pro-
duction of cohesive molecules†

Gavin Melaugh,∗a Davide Marenduzzo,a Alexander Morozov,a Rosalind J. Allen,a

Mechanical interactions between biological cells can be mediated by secreted products. Here, we
investigate how such a scenario could affect the cells’ collective behaviour. We show that if the
concentration field of secreted products around a cell can be considered to be in steady state,
this scenario can be mapped onto an effective attractive interaction that depends on the local
cell density. Using a field-theory approach, this density-dependent attraction gives rise to a cubic
term in the Landau-Ginzburg free energy density. In continuum field simulations this can lead to
"nucleation-like" appearance of homogeneous clusters in the spinodal phase separation regime.
Implementing the density-dependent cohesive attraction in Brownian dynamics simulations of a
particle-based model gives rise to similar “spinodal nucleation” phase separation behaviour.

Introduction

Living cells can secrete a plethora of molecules that allow them
to interact with nearby cells. Secreted molecules can act as sig-
nals affecting gene expression (as in quorum sensing1,2) or motil-
ity (as in chemotaxis3). They can also, directly or indirectly, af-
fect mechanical interactions between cells. For example, secreted
proteins and polysaccharides influence cell-cell cohesion and cell
clustering4 in processes ranging from morphogenesis in human
tissue5 to fruiting body formation in spore-forming bacteria6. In
the assembly of bacterial biofilms on surfaces, polymer produc-
tion plays an important role in mediating cohesive interactions7,8.
Many bacteria also form aggregates in liquid suspension9–11, with
significant industrial12,13 and clinical14–16 implications. For the
bacterium Pseudomonas aeruginosa, the secretion of DNA9 and
polysaccharides17 have been found to be important for aggregate
formation.

A system of living cells that actively secrete a cohesion-
influencing chemical agent (be it a polymer or signal molecule) is
clearly out of equilibrium. Yet, even for out-of-equilibrium living
organisms, useful mappings can often be made to key concepts
in soft matter and statistical physics18–27. Importantly, the case
we investigate here, in which the cohesion-inducing agent is ac-
tively produced, is quite different to “passive” scenarios in which a
cohesion-inducing agent (e.g. a polymer) is added to a system of

a SUPA, School of Physics and Astronomy, University of Edinburgh, Edinburgh, United
Kingdom, EH9 3FD. Tel: +44 (0) 131 651 3456.
E-mail: g.melaugh@ed.ac.uk
† Electronic Supplementary Information (ESI) available: [For movies, and details on
simulation methods, systems at different area fraction, structure factors, and phase
diagrams for continuum model.]. See DOI: 10.1039/cXsm00000x/

cells or colloidal particles24,28–32. In the latter cases, the polymer
concentration is conserved; in the case that we consider here, the
cohesive agent is constantly produced and degraded, and hence
is not conserved.

In this paper, we investigate the collective behaviour of a sys-
tem of aggregating particles secreting a cohesion-inducing agent.
We follow previous studies in active matter physics19,21–24,26, by
considering aggregation as a phase separation process, albeit here
our focus is on cell-cell cohesion and not activity arising from
cellular motility. First, we formulate a mathematical model that
shows that a system of particles producing a cohesion-inducing
agent under steady-state conditions can be coarse-grained via an
effective attractive interaction that depends on the local parti-
cle density. Taking a field-theory approach, this density depen-
dence gives rise to a cubic term in the Landau-Ginzburg free
energy that alters the thermodynamic landscape in comparison
to that of a standard, density-independent model. Computer
simulations of the Cahn-Hilliard equation also show different
dynamics during early-stage phase separation for the density-
dependent versus density-independent systems. Specifically, for
the density-dependent system we observe "nucleation-like" ap-
pearance of homogeneous particle clusters in the spinodal de-
composition regime. Similar emergent behaviour arises when
the density-dependent cohesion is implemented in particle-based
Brownian Dynamics simulations.

Mathematical Model

To motivate the use of an effective attractive interaction to model
systems of particles secreting a cohesion-inducing agent, we first
study a simple diffusion problem. We consider the secretion of a
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Fig. 1 Schematic illustration of cohesion-inducing agents (red disks)
emanating from a source particle of radius δ (green). At the particle’s
surface, the flux of the cohesion-inducing agent is fixed according to Eq.
(2); this boundary condition imposes a diffusive flux of cohesive agent
away from the source.

cohesion-inducing chemical agent by a spherical source particle
of radius δ such as that depicted in Fig. 1. We assume that the
cohesion-inducing agent has diffusion constant D and degrades
at rate kd . The time evolution of its concentration field, c(r′, t),
at radial distance r′ > δ from the centre of the source particle
is given by the following reaction-diffusion equation in spherical
coordinates

∂c(r′, t)
∂ t

=−kdc+D∇
2c. (1)

We solve this equation in the steady-state by requiring that its so-
lution is finite at infinity, and that it satisfies the following bound-
ary condition

−D∂r′c|r′=δ = w, (2)

where w is the flux of the cohesion-inducing agent through the
surface of the particle. The solution is then given by

c(r′) =
wδ 2

D
1

1+δ
√

kd/D

exp(−
√

kd/D(r′−δ ))

r′
. (3)

Consider now a collection of N such sources located at posi-
tions (r1,r2, ...rN) in a volume V . The total concentration of
the cohesion-inducing agent at a location R, sufficiently far away
from the sources, can be approximated by

N

∑
i=1

c(|R− ri|), (4)

where c(r′) is given by Eq. (3), and we neglected interactions
between the sources, implying the dilute limit. The ensemble
average over uniformly distributed positions of the sources finally

gives

c̄ =
1

V N

∫
dr1 . . .drN

N

∑
i=1

c(|R− ri|)

=

(
4πδ 2w

)
ρ

kd

eα

1+α
, (5)

where ρ = N/V is the particle number density, and α = δ
√

kd/D.
The ratio α compares the timescale for the cohesion-inducing
agent to diffuse the size of the source particle, to the timescale
of its degradation, and is assumed to be small in our steady-state
regime33. With this is mind, Eq. (5) shows that the concentra-
tion of cohesion-inducing agents is a linear function of the particle
number density ρ 33, and therefore we can expect cohesive inter-
actions, which are mediated by these agents, to be a linear func-
tion of the local particle density (provided we are in the regime
where the agent concentration can be considered to be in steady
state). We also note that 4πδ 2w is the total amount of agent being
secreted through the surface per unit time, and thus the prefactor
in Eq. (5) is the ratio of the production rate to the degradation
rate.

We now take a further step and assume that the cohesion-
inducing agents can be treated in a coarse-grained manner, as an
effective interaction between the particles. We suppose that the
agents produce attractive forces between the particles, and that
the degree of attraction is proportional to the local concentration
of cohesive agents. Following our analysis above (in particular
Eq. (5)), this in turn implies that the degree of attraction de-
pends on the local density of the particles themselves. Hence, our
system can be modelled as a collection of particles interacting via
a density-dependent attractive potential.

In soft matter physics, the concept of a density-dependent po-
tential is not new: for example, density-dependent effective pair
potentials arise when treating polymers as soft colloids, and when
treating a two-component mixture as an effective one-component
system, as in the Asakura-Oosawa model for polymer-colloid mix-
tures34. It is well known that naive application of potentials that
depend on the global particle density can lead to problems such
as a lack of consistency between virial and compressibility routes
to the equation of state34. This problem appears to be allevi-
ated in the case of interactions that depend on the local density,
like those we consider here34,35. Moreover, our model represents
a non-equilibrium system, in which cohesive agents are contin-
uously produced - for such a system we would not necessarily
expect the rules of equilibrium thermodynamics to be obeyed.

We also note that in a real system of interacting biological cells,
many other factors may be at play, including motility and cell
growth and division. For the sake of simplicity, these factors are
neglected here.

Free-energy formalism

We consider the aggregation of our agent-secreting particles as
a phase separation process, in which a homogeneous suspen-
sion of particles come together to form condensed phase regions
of higher density (aggregates). We address this via a Landau-
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Fig. 2 Homogeneous part of the Landau-Ginzburg free energy density and the associated phase diagrams. (a) Free energy density, f (ξ ), for various
values of the critical parameter, a, in the density-independent system (Eq. (6)). Note that the point ξ = 0 undergoes a continuous transition from a
minimum to a maximum as a decreases through a = 0. Thus, this free energy density would produce a second-order phase transition in a system
where the order parameter was not globally conserved. (b) Free energy, f (ξ ), for various values of the critical parameter, b, in the density-dependent
system (Eq. (11)). Note the emergence of a secondary minimum at ξ ≥ 0 as b decreases. Upon decreasing through b∼−0.237, where two free energy
minima appear, the system would undergo a first-order phase transition if the order parameter were not globally conserved. (c) and (d) Phase diagrams
generated by applying the common-tangent construction to the density-independent (c) and density-dependent (d) free energy profiles (see the ESI†

for details). The black solid and dashed lines denote the binodal and spinodal coexistence lines respectively. Red arrows represent constant density
quenches to the points (ξ = 0.07,a =−1.0, and ξ = 0.07,b =−0.5)) within the coexistence regions of (c) and (d) respectively, as discussed in the text.
Green arrows represent constant density quenches to the points (ξ = 0.3,a =−1.0, and ξ = 0.3,b =−0.5)) within the coexistence regions of (c) and (d)
respectively.

Ginzburg-like free energy formalism36. We first review this for-
malism for particles interacting via density-independent interac-
tions, then discuss how it changes when the interaction depends
on the local particle density.

Density-independent interactions The canonical Landau-
Ginzburg free energy density is usually expressed as an expansion
of an order parameter field, ξ , about some critical value ξc. For
the purposes of this work, ξ is a measure of the local particle den-
sity, defined such that ξc = 0. The free energy density can then be
expressed as

f (ξ (x)) =
a
2

ξ
2 +

c
4

ξ
4 +

κ

2
(∇ξ )2 . (6)

In Landau-Ginzburg theory, the phenomenological coefficients
a and c often depend on the temperature. The coefficient a,
which is a function of the deviation of the system temperature
and the critical temperature (T − Tc), is the critical parameter
that governs the transition between the disordered and ordered
states. In our model, however, we will not consider this tem-
perature dependence explicitly. Rather, in our Landau-like free
energy density, Eq. (6), we consider the ξ 2 term as an effec-

tive two-body interaction in which the critical parameter a gov-
erns the transition between the disordered state in which en-
tropic/repulsive interactions dominate, and the ordered state in
which enthalpic/cohesive interactions dominate (Fig. 2(a)). Thus
in our model a encapsulates a tradeoff between repulsive (ψ) and
cohesive (υ) contributions, such that a = υ−ψ (analogous to the
quadratic coefficient in the Bragg-Williams approximation for the
Ising model37). We fix ψ arbitrarily to −0.05 so that the phase
transition is governed by the value of υ , which represents the
strength of the cohesive interactions. The quartic term in Eq. (6)
ensures that the equilibrium state has a bounded value of ξ , and
thus must have a positive coefficient c > 0. The square gradient
term imposes a free energy cost for any non-uniformity in ξ , and
thus κ, which is related to the surface tension, must be positive.
Note that we omit a positive cubic term in Eq. (6), which is al-
lowed by symmetry but would not affect our results, to facilitate
numerical comparison to the density-dependent case described
below.

For positive values of the parameter a, the free energy density,
Eq. (6), has a single minimum at ξ = 0. In contrast, for neg-
ative values of a, Eq. (6) has two minima at ±

√
c/2a. For the
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Fig. 3 Free-energy governing low and high density quenches in the
density-dependent and -independent systems. (a) Free energy densities
of the density dependent system, b = −0.5, and its density-independent
counterpart with a = −1.0. There is a small free energy barrier in the
density-dependent system at small ξ (red curve). The black vertical line
corresponds to the lower quench density, ξ = 0.07, which lies to the left
of the barrier. Note that there is no barrier in the density-dependent case
(blue curve). (b) The barrier is not evident when the free energy is plot-
ted over larger ξ values. The black vertical line at ξ = 0.3 (higher quench
density) lies to the right of the barrier in the density-dependent system. It
provides a guide with which to visualise the curvature at the global den-
sity ξ0. The curvature (second derivative) of the free energy density at ξ0
is −0.1825 in the density-dependent case, and −0.9325 for the density-
independent case: i.e. it is less negative in the density-dependent sys-
tem.

model represented by Eq. (6) to be physically realistic, the con-
dition of positive density, ξ ≥ 0, has to be imposed throughout,
ruling out any equilibrium phase with ξ < 0. Figure 2(a) shows
the homogeneous part of the free energy density (Eq. (6)); the
region shaded red is inaccesssible because it does not meet the
condition ξ ≥ 0. The continuous transition from a state whereby
ξ = 0 is the global minimum of the free energy density to a state
where the global minimum is a positive finite value, ξ =

√
c/2a,

is a signature of the fact that this free energy density would pro-
duce a second-order phase transition in a system where the order
parameter is not globally conserved.

Density-dependent interactions For particles that secrete a
cohesion-inducing agent, we expect the cohesive interactions be-
tween particles to increase linearly with the local particle density
(Eqs. (1) to (5)). If we consider the local particle density, ξ , in
our Landau construction to be proportional to the density, ρ, in
Eq. (5), then we can express the attractive (enthalpic) parameter,
υ , as

υ ∝ c(x) = Kξ , (7)

where K is proportional to the ratio of the production and degra-
dation rate (4πδ 2w/kd) in Eq. (5). More specifically, we choose

to write
υ =

2
3

υ0Kξ , (8)

where we have introduced an arbitrary (constant) prefactor, υ0,
to ensure the correct units of energy per unit volume (or area in
2D), and the factor of 2/3 ensures that the resulting free energy
density will have a factor of 1/3 in the cubic term as standard.
Substituting Eq. (8) into the standard free-energy density expres-
sion, Eq. (6), and using a = υ−ψ, gives

f (ξ (x)) =
1
2
(

2
3

υ0Kξ −ψ)ξ 2 +
c
4

ξ
4 +

κ

2
(∇ξ )2 . (9)

Expanding the first term in Eq. (9) gives

f (ξ (x)) =−ψ

2
ξ

2 +
1
3

υ0Kξ
3 +

c
4

ξ
4 +

κ

2
(∇ξ )2 . (10)

Defining a new parameter b = υ0K allows Eq. (10) to be written
as

f (ξ (x)) =−ψ

2
ξ

2 +
b
3

ξ
3 +

c
4

ξ
4 +

κ

2
(∇ξ )2 , (11)

and we fix ψ =−0.05 as before. We now have a different param-
eter, the coefficient b of the cubic term, that controls the phase
transition. Figure 2(b) shows the homogeneous part of the free
energy density, Eq. (11); the region shaded red is disallowed be-
cause ξ < 0. In this system, a free energy barrier emerges at low
particle density ξ as the critical parameter b decreases, and gives
rise to the region of metastability at low density that appears in
the phase diagram of Fig. 2(d). This system therefore shows dif-
ferent physics to the density-independent one as the phase tran-
sition resulting from a decrease in b through its critical value, bc,
is discontinuous; this would correspond to a first-order transition
in systems with non-conserved order parameter (i.e, model A38)
and is analogous to the isotropic-nematic transition in liquid crys-
tals39.

In our model, particles are not created or removed (since we
neglect cell growth or death), and therefore the density must be
globally conserved. To minimise the free-energy density subject
to this constraint, we apply the common-tangent construction to
the homogeneous part of the free energy densities, Eqs. (6) and
(11), to generate the density-independent and density-dependent
phase diagrams shown in Figs. 2(c) and (d) respectively (see
the ESI† for details). Importantly, the cubic term in the density-
dependent system gives rise to a region of metastability (black
dashed line) at small values of ξ that is absent in the density-
independent system.

Field Simulations

To determine the effects of the altered phase diagram on phase
separation dynamics, we performed 2-dimensional numerical
simulations of the density-independent and density-dependent
models defined by Eqs. (6) and (11), to assess the effect of
the free-energy barrier that emerges from the cubic term in the
density-dependent case. Since ξ is a conserved order parameter
(i.e.,

∫
A ξ dx = ξ0A, where ξ0 is the overall system density and A is

the total area), the phase-separation dynamics of the two systems
can be modelled using the Cahn-Hilliard equation40
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Fig. 4 The time evolution of the density-independent (a-c) and -dependent (d-e) systems following a quench highlights the effect of the free energy
barrier at low density shown in Fig. 2. (a) Density-independent, ξ0 = 0.07,a =−1.0, at t = 0 SU. (b) Density-independent, ξ0 = 0.07,a =−1.0, at t = 250
SU. (c) Density-independent, ξ0 = 0.07,a = −1.0, at t = 47500 SU. (d) Density-independent, ξ0 = 0.07,b = −0.5, at t = 0 SU. (e) Density-independent,
ξ0 = 0.07,b =−0.5, at t = 250 SU. (f) Density-independent, ξ0 = 0.07,b =−0.5, at t = 47500 SU.

∂ξ (x, t)
∂ t

= m∇
2
(

δ

δξ (x)

∫
A

f (ξ (x))dx
)
+∇ ·Jr. (12)

In Eq. (12), m is the mobility, the term in brackets is the chemical
potential, and Jr is a random flux which is spatially and tempo-
rally uncorrelated, i.e., 〈Jr(x, t)〉 = 0 and 〈Jr;α (x, t) · Jr;β (x, t ′)〉 =
Λξ δα,β δ (x− x′)δ (t − t ′), with α,β = x,y. For simplicity, both m
and the random noise strength Λ were kept constant, at m = 0.01
and Λ = 0.141. Equation (12) was solved on an 256×256 grid us-
ing standard finite difference simulations, with periodic boundary
conditions.

Low-density quench We first simulated the effect of quench-
ing the system at low density (ξ = 0.07) from the homogeneous
phase into the phase-separated region of the phase diagram.
For the density-independent case, this corresponds to decreas-
ing the parameter a as shown by the red arrow in Fig. 2(c)
(a > 0→ a = −1.0). Since the system is quenched into the spin-
odal region of the phase diagram (Fig. 2(c)), we expect phase
separation to occur via spinodal decomposition (a consequence
of the negative curvature of the free energy function at ξ = 0.07
in Fig. 3(a)). Figures 4(a) to (c) shows that this is indeed the
case: the low density and high density phases separate sponta-
neously (see also Movie 1 in ESI†).

We also performed a similar quench for the density-dependent
case. Here the parameter b was decreased as shown by the red
arrow in Fig. 2(d) (b> 0→ b=−0.5), such that the resulting con-
densed phase density, ξcp ∼ 2, was similar to that of the density-
independent system. In this case, the system is quenched into the
low-density metastable region of the phase diagram (which does
not exist for the density-independent case), and therefore we ex-
pect phase separation to occur via nucleation, requiring a large
enough density fluctuation to overcome the free-energy barrier

(red curve Fig. 3(a)). Indeed, the snapshots in Figs. 4(d) to
(f) are consistent with nucleation: we observe the formation of a
single aggregate that grows larger with time (see also Movie 2 in
ESI†).

Higher-density quench Next, we simulated a quench at the
higher density of ξ = 0.3, which lies to the right of the free en-
ergy barrier in the density-dependent system (Fig. 3(b)). At this
value of ξ , both the density-dependent and density-independent
systems are quenched into the spinodal part of the phase dia-
gram (green arrows in Fig. 2(c) and (d)). Let us first focus on
the density-dependent case, for which the quench was performed
from a homogeneous density at b > 0 to b = −0.5. Figure 5(d)
shows a snapshot of the system, taken at time t = 2.5×105 simu-
lation units (SU) following the quench. It is clear that phase sep-
aration does indeed proceed via spinodal decomposition (see also
Movie 3 in ESI†), with many aggregates forming spontaneously.
Figure 5(a) (black line) plots the distribution of density values at
this same time point; the distribution is clearly bimodal, with dis-
tinct peaks corresponding to the condensed and non-condensed
phases.

We would like to know whether phase separation in the spin-
odal region differs intrinsically between the density-dependent
and density-independent scenarios. To test this, we per-
formed a series of quenches in the density-independent case,
for ξ = 0.3, a > 0 initially, and a range of final a values
(−0.1,−0.2,−0.3, ....,−1.0; dark green points along the green line
in Fig. 2(c)). The rationale for performing a range of simula-
tions was that the density-dependent simulation effectively sam-
ples a range of υ values (since υ = 2/3υ0Kξ ); thus many values
of a should be sampled in the density-independent system in or-
der to compare with the density-dependent case. Figures 5(b)
and (c) show snapshots of these simulations, for a = −0.2 and
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a =−1.0 respectively, taken at time t = 2.5×105 SU following the
quench. Clearly, the spinodal decomposition process is affected
by the value of a: a more negative value of a produces a more
rapid contraction of the early-stage elongated structures into the
later-stage rounded clusters (see also Movies 4 (a = −0.2) and 5
(a =−1.0) in ESI†). The coloured lines in Fig. 5(a) show the dis-
tribution of density values at this same time point, for each of the
density-independent simulations. These distributions are also bi-
modal, with a gas-phase peak at ξ ∼ 0.07 and a condensed-phase
peak at a value ξcp that increases with decreasing a.

Comparing the density distributions in Fig. 5(a) between
the density-dependent and density-independent cases (black vs
coloured lines), we see a notable difference: aggregate formation
appears to be hindered in the density-dependent system. Specifi-
cally for the density-dependent case, the gas phase peak is larger,
and the condensed phase peak is smaller. This points to a higher
fraction of the gas phase coexisting with the condensed-phase ag-
gregates. This affects the aggregate size distribution in the con-
densed phase: comparing for example Figs. 5(c) and (d), the ag-
gregates in the density-dependent simulation (Fig. 5(d)) appear
smaller and more narrowly distributed in size. This is confirmed
by the aggregate size distributions shown in Fig. 6. We also ob-
serve that density-dependence gives rise to aggregates with more
diffuse interfaces. These results suggest that the existence of the
low-density metastable region (Fig 2(d)) can affect the phase sep-
aration dynamics even upon quenching into the spinodal region.
Specifically, local density fluctuations can bring the system locally
into the low-density metastable region, where there is a free en-
ergy barrier to phase separation.

Time to phase separate The driving force for spinodal decom-
position can be measured by the effective diffusion coefficient
De f f , which is related to the curvature of the free energy density
at the global density42:

De f f = m
∂ 2 f
∂ξ 2 . (13)

Figure 3(b) shows that this curvature is significantly less nega-
tive in the density-dependent case than the density-independent
case (comparing (ξ = 0.3, b =−0.5) and (ξ = 0.3, a =−1.0)). We
therefore expect spinodal decomposition to happen more slowly
for the density-dependent case. Indeed, Fig. 7(a) shows that
this is the case; here we plot the maximal density ξmax in our
simulations as a function of time following the quench to (ξ =

0.3, b = −0.5) or (ξ = 0.3, a = −1.0) for the density-dependent
and -independent cases respectively. We can also measure the
time taken to reach the condensed phase density ξcp, which is
∼ 1.75 in both cases: this time is indeed much shorter for the
density-independent simulation (tps ∼ 550 SU versus tps ∼ 3750
SU in the density-dependent case); see also Movies 6 (density-
independent) and 7 (density-dependent) in ESI†. From Fig. 7(b),
which shows representative density distributions at tps of the
density-dependent (∼ 3750 SU) and -independent systems (∼ 550
SU), we see that the density-dependent system contains a much
larger proportion of the noncondensed phase at this early stage.

Spatial structure during phase separation The length scale of

Fig. 5 Field simulations. (a) Probability distribution, P(ξ ), of the or-
der parameter ξ , at t = 2.5× 105 SU, for the density-dependent system
(black curve), and the density-independent systems (coloured curves)
at various values of the critical parameter a. The distributions shown
were generated from one simulation run; distributions generated from re-
peated simulations showed no discernible differences (data not shown).
(b) and (c): representative snapshots at t = 2.5× 105 SU of the density-
independent system with a =−0.2 and a =−1.0 respectively, undergoing
phase separation. (d) Representative snapshot at t = 2.5× 105 SU of
the density-dependent system with b = −0.5, undergoing phase separa-
tion. It is reasonable to compare panels (c) and (d) since the density-
independent system with a = −1.0 has a similar condensed phase den-
sity, ξcp ∼ 1.75, as the density-dependent system with b = −0.5. In all
snapshots, the colour bar indicates the density.

the condensed phase structures formed during spinodal decompo-
sition is controlled by the wavelength q at which the amplification
factor

R(q) =−De f f q2

1+
2κq2

∂ 2 f
∂ξ 2

 , (14)

is maximal42. Equation (14) shows that R(q) depends on the
curvature of the free energy density; its maximum occurs at
a smaller q−value in the density-dependent case than in the
density-independent case (Fig. 12(a) ESI†, comparing (ξ = 0.3,
b = −0.5) and (ξ = 0.3, a = −1.0)). We therefore expect to see
larger domains during spinodal decomposition for the density-
dependent system. Indeed, Fig. 8 shows that there is a clear
difference in the spatial structures that form during phase sep-
aration in the two systems. In the density-independent system,
narrow elongated structures form that span the entire system be-
fore breaking up (Figs. 8(a) to (c)). In the density-dependent
system, however, these elongated structures do not form; phase
separation proceeds instead via the formation of larger, rounded
aggregates (Figs. 8(d) to (e)). For both systems, at later times,
t > tps, the aggregates grow via coarsening and coalescence with
long-time scaling behaviour ∝ t0.63 (see Fig. 12(b) ESI†); this is
consistent with classical models of phase separation (∝ t0.67) in
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Fig. 7 Field simulations. Phase separation in the density-dependent
system (red curves) is slower than in the density-independent system
(blue curves). (a) Time evolution of the maximal density, ξmax. The
dashed horizontal line corresponds to the phase separation density
ξcp = 1.75, the location of the condensed phase peak in Fig. 5(a). Black
vertical lines represent the time, tps, that it takes for the systems to reach
ξcp. (b) The corresponding distribution of densities, p(ξ ), at tps ∼ 3750
SU (density-dependence) and tps ∼ 550 SU (density-independence). The
black vertical line corresponds to ξcp = 1.75.

diffusive systems with negligible hydrodynamic interactions36.
Local free-energy barrier in the spinodal regime for density-

dependent interactions The characteristic features of phase sep-

aration in the spinodal regime of the density-dependent system
– fewer small aggregates, narrower aggregate size distribution,
slower phase separation and larger, more circular spatial domains
at early times – can be rationalised in terms of the free energy bar-
rier at low density (Fig. 3(a)), which arises from the low-density
coexistence region of the phase diagram (Fig. 2(d)). This free
energy barrier leads to a region of positive curvature of f ver-
sus ξ , and hence positive effective diffusion coefficient, for low
ξ . Even when the system is quenched to a point within the spin-
odal regime, when local regions of low density form, these are
in the coexistence region of the phase diagram (Fig. 2(d)) and
hence they are locally “stable”, in the sense that the formation of
higher density structures is hindered by the free-energy barrier.
This contrasts with the density-independent case (also shown in
Fig. 3(a)), for which a gas of monomers is always unstable to ag-
gregation. The fact that such a free energy barrier can have sig-
nificant effects even when the system is quenched into the spin-
odal regime is a consequence of the global conservation of the
order parameter and gives rise to a weakly first order transition,
whereas without global conservation of the order parameter, the
first order transition would be more pronounced.

“System-swap” simulations confirm the role of thermody-
namics Our discussion so far suggests that thermodynamics –
i.e. the form of the free-energy density – is crucial in controlling
the nature of phase separation in the density-dependent system.
But to what extent does the history of a particular phase separa-
tion trajectory control its future behaviour? This question can be
addressed by “switching” from a density-dependent free-energy
function to a density-independent one (or vice versa), during a
phase separation trajectory. If the controlling factor is indeed the
free-energy density, then the trajectory should rapidly adjust its
characteristics in line with the few free-energy function. If in-
stead, trajectory history is important, then we would expect the
trajectory to retain the characteristics of its original free-energy
function.

To test this, we performed density-dependent simulations ini-
tialised with the configurations from density-independent simula-
tions taken at tps (i.e. once the condensed phase density had been
reached), and vice-versa. Figure 9 shows representative snap-
shots during the time evolution of these "switched" simulations
(2nd and 4th rows), alongside, for comparison, representative
snapshots from simulations (initiated from the same configura-
tions) that were not switched (1st and 3rd rows). Rows 1 and
2 illustrate the effect of turning on density-dependent interac-
tions in systems initialised from density-independent simulations.
Shortly after switching (compare (b) and (e)), the density be-
comes redistributed in a manner that increases the concentration
of the gas phase whilst lowering that of the dense phase (see also
Fig. 13 ESI†). This redistribution persists at later times (see Fig.
13 ESI†), leading to smaller aggregates (compare (c) and (f))
that are more narrowly distributed in size (see Fig. 14 ESI†). In
other words, the system takes on the characteristics of a density-
dependent free-energy function.

Switching from density-dependent interactions to density-
independent interactions (rows 3 and 4) has the opposite effect,
i.e., the aggregates become less diffuse and the density is redis-
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Fig. 8 Field simulations. Simulation snap-shots showing the time evolution of the density-independent (a-c) and -dependent (d-e) systems during
time tps. (a) Density-independent, t = 140 SU ∼ 1

4 tps. (b) Density-independent, t = 275 SU = 1
2 tps. (c) Density-independent, t = 550 SU = 1tps. (d)

Density-dependent, t = 900 SU ∼ 1
4 tps. (e) Density-dependent, t = 1750 SU = 1

2 tps. (f) Density-dependent, t = 3500 SU = 1tps.

tributed to decrease the gas-phase concentration whilst increasing
that of the condensed phase aggregates; this behaviour persists at
later times, leading to large aggregates that are more broadly dis-
tributed in size – i.e. the system takes on the characteristics of
a density-independent free-energy function. Therefore we con-
clude that it is the underlying thermodynamics which govern the
phase separation process; the trajectory history has little influence
on the long term dynamics of phase-separation.

Particle-Based Model

To assess the generality of our observations, we also performed 2-
dimensional particle-based Brownian dynamics simulations, with
and without interactions that depend on the local particle den-
sity. In these simulations, particles interact via the cut and shifted
Lennard-Jones potential. Although this potential is more com-
monly used in atomistic simulations, it has become a popular
choice for modelling interactions between bacteria43–46 or be-
tween bacteria and polymers24, since it captures the essential
features of attraction and repulsion between soft-interacting par-
ticles. To implement a density-dependent cohesive interaction we
modify the standard Lennard-Jones potential such that the pa-
rameter ε, which the governs the strength of the attraction, de-
pends on the local particle density ρ: ε = ε(ρ). The interaction
potential then becomes

U(r,ρ) = 4ε(ρ)
[
(σ/r)12− (1/r)6−Uc

]
, (15)

for r < rc, and U = 0 for r ≥ rc, where r is the inter-particle
distance. Here, σ is the particle diameter and the shift Uc =

(σ/rc)
12 − (σ/rc)

6 ensures that U = 0 at the cut-off distance
rc = 1.2σ .

Following Eq. (5), ε(ρ) is assumed to take the linear form

ε = ρ(x)ε ′, (16)

where ε ′, which has units of energy times area, determines the
sensitivity of the interaction to the particle density. Thus the
strength of the interaction between any pair of particles increases
with increasing local density of the surrounding particles (see the
ESI† for details). In practice, at each time step, the local density
ρ at each particle coordinate x is computed on a grid and the cor-
responding value of ε is assigned to that particle via Eq. (16) (see
the ESI† for details). To compute interactions between pairs of
particles with different local densities, and hence different values
of ε, we use the Lorentz-Berthelot rule ε =

√
ε1ε2 (see the ESI†

for details), where ε1 and ε2 are computed according to Eq. (16).

In this particle-based model, as in our field simulations, the
total density is conserved, i.e. particles do not grow, reproduce or
die. The particles are also assumed to be non-motile.

Particle-Based Simulations

We performed 2-dimensional BD simulations of N monodisperse
discs interacting via Eqs. 15 and 16, comparing our results
to those of equivalent simulations with a standard, density-
independent, Lennard-Jones potential (no ρ dependence in Eq.
15).

The position, xi of an individual particle, i, evolves in our sim-
ulations via numerical integration of the over-damped Langevin
equation

dxi

dt
= βDFi +

√
2Dηi(t), (17)

where D is the diffusion coefficient, β = 1/kBT , Fi = −∇∑
N
j 6=i Ui j
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Fig. 9 Field simulations. Simulation snap-shots showing the time evolution of the "non-switched" (1st and 3rd row) vs switched simulations (2nd and
4th row). 1st row (top)- Density-independent simulation initialised with a configuration sampled from a density-independent simulation at time tps = 550
SU. 2nd row- Density-dependent simulation initialised with a configuration sampled from a density-independent simulation at time tps = 550 SU. 3rd
row- Density-dependent simulation initialised with a configuration sampled from a density-dependent simulation at time tps = 3500 SU. 4th row (bottom)-
Density-independent simulation initialised with a configuration sampled from a density-dependent simulation at time tps = 3500 SU. Columns (a, d, g, j),
(b, e, h, k), and (c, f, i, l) correspond to snapshots taken at times t = 0 SU, t = 1500 SU, and t = 50000 SU after initialisation.

is the force on particle i resulting from interactions with the other
N− 1 particles, and ηi(t) is a unit variance white noise variable
with 〈ηi(t)〉 = 0 and 〈ηi;α (t)ηi;β (t

′)〉 = δα,β δ (t − t ′), with α,β =

x,y. To implement our simulations, we non-dimensionalised Eq.
(17) using σ , kBT , and τ = σ 2

D as the basic units of length, energy,

and time respectively (see the ESI† for details). Simulations were
performed in a square box of length 115 σ with periodic boundary
conditions, using the Euler method of numerical integration with
a time-step of 2.5×10−5 τ.

To characterise the system with density-dependent interactions,
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we systematically varied the interaction strength parameter, ε ′,
for three values of the total number of particles: N = 3600, cor-
responding to area fraction θ = 0.21, N = 4900 (θ = 0.29), and
N = 6400 (θ = 0.38)47. We observed similar phase separation be-
haviour in all three systems – we therefore focus on the results
for the intermediate area fraction θ = 0.29 (N = 4900). Results
for the other area fractions can be found in ESI†.

After an equilibration period (1000 τ) without inter-particle at-
tractions, our simulations were run for times trun = 1250 τ (in
total 2250 τ), which is the approximate time required for the frac-
tion of particles in the condensed phase to reach a steady state.
After time trun, coarsening and coalescence changes the distribu-
tion of aggregate sizes (ultimately leading to the formation of
one large phase-separated domain), but the aggregated fraction
remains constant (see the ESI† for details). The time-scales used
here, although not long enough to observe fully phase separated
states, are long enough to capture the rich early aggregation be-
haviour resulting from density-dependent cohesion.

Figure 10 shows configurations of the system for θ = 0.29 and
for various values of ε ′, after simulation time trun = 1250τ. For
ε ′ = 1 (weak density-dependent attraction), the system is in a
“gas-like” phase (Fig. 10(a)) whose ordering, characterised by the
structure factor S(q), is consistent with that of a simple colloidal
dispersion or hard sphere fluid (see the ESI† for details). For
ε ′ = 70 (strong density-dependent attraction), elongated and in-
terconnected aggregates give rise to a "gel-like” state (Fig. 10(c)).

For ε ′ = 40 (intermediate density-dependent attraction), we ob-
tain interesting behaviour arising from the density-dependent at-
traction. Our simulation shapshots at trun = 1250 τ (Fig. 10(b))
show clearly that the system is undergoing phase separation into
condensed and non-condensed phases, with the emergence of the
former being confirmed by the presence of well-defined peaks in
S(q) (see the ESI† for details). For this value of ε ′, inspection of
the simulation trajectory shows that phase separation proceeds
via the formation of aggregates that appear to grow only once
they reach a threshold size (see Movie 8 in ESI†). This is remi-
niscent of the "spinodal nucleation" phenomenon observed in our
field simulations. Figure 11(a) shows the aggregate size distribu-
tion for ε ′ = 40, computed at time trun (i.e. the probability that a
particle belongs to an aggregate of a given size). Consistent with
the snapshot of Fig. 10(b), the distribution is bimodal, with two
peaks corresponding to aggregates of > 300 particles and individ-
ual particles (clusters of < 2 particles).

To determine whether this behaviour is intrinsic to the density-
dependent interaction potential, we also performed a series of
simulations with a standard, density-independent, Lennard-Jones
interaction potential. We used values of the interaction strength
ε in the range 2.84→ 42.68 kBT : this corresponds to the ε-range
that is sampled (via Eq. (16)) in the final configuration of our
density-dependent simulation with ε ′ = 40 (see the ESI† for de-
tails). A snapshot from the density-independent simulation with
ε = 28.4 kBT is shown in Fig. 10(d). Consistent with our ob-
servations from the field simulations, the aggregates are more
varied in size and shape than those of the density-dependent sys-
tem, and the non-condensed phase contains small clusters rather
than single particles (compare to Fig. 10(b)). Phase separation

in this system proceeds in a manner typical of spinodal decompo-
sition, in that clusters form rapidly throughout the entire system
(see Movie 9 in ESI†). Figure 11(b) shows the aggregate size dis-
tribution (at time trun) for density-independent simulations with
ε = 2.84→ 42.68 (see also the ESI†). In contrast to the density-
dependent case, none of these distributions are bimodal. Rather,
the density-independent system forms either large aggregates (for
ε > 25.6), or predominantly small aggregates (for ε ≤ 25.6). We
also checked that a weighted linear superposition of the aggregate
size distributions for different ε values cannot reproduce the ag-
gregate size distribution produced by the density-dependent sim-
ulations (Fig. 11(c)) (see the ESI† for details). Thus, as we ob-
served in our field simulations, the bimodal aggregate size distri-
bution appears to be an intrinsic feature of the density-dependent
system. For the particle-based simulations, we also observe that
the peaks in the aggregate size distribution are broader for the
density-independent simulations than in the density-dependent
case (Fig. 11(b); see also Fig. 11(d) which confirms that the
large-aggregate peak is narrower in the density-dependent sys-
tem). Thus, density-dependent aggregation appears to confer in-
creased "control" of aggregate size.

Given that our particle-based simulations exhibit qualitatively
similar behaviour to that of our field simulations, we can con-
clude that "spinodal-nucleation"-like cluster formation, consisting
of rather homogeneous aggregates that appear to show a bar-
rier to growth, bimodal aggregate size distribution and a nar-
row cluster size distribution, are characteristic of systems with
density-dependent attractive interactions, whether manifested as
a cubic term in the Landau-Ginzburg free energy, or as a density-
dependent potential in a particle-based model.

Conclusions

Living cells often interact via secreted molecules, some of which
can affect inter-cellular mechanical interactions. In this paper,
we have shown that in an idealised model where the secreted
cohesive agent is degraded rapidly enough that their concentra-
tion profile around each cell reaches a steady state, the effects
of the secreted agent can be coarse-grained as an attractive in-
teraction between cells that depends on the local cell density.
This in turn leads to a picture in which cell aggregation can
be thought of as a phase separation process driven by density-
dependent attractive interactions – a process which turns out
to differ in interesting ways from phase separation in standard,
"density-independent" systems. Our results complement previ-
ous work on systems where phase separation is driven by particle
motility19,21–24,26, on changes in particle motility due to polymer
secretion49, and on bacterial aggregation driven by addition of
exogenous polymer24,28–32.

Combining a field theory approach with particle-based simula-
tions, we observe behaviour that appears to be characteristic of
systems with density-dependent attractive interactions. Specifi-
cally, we see an apparent barrier to cluster growth even in the
spinodal regime, that we term "spinodal nucleation", and bimodal
aggregate size distributions with narrow peaks – corresponding
to aggregates of rather uniform size in a "sea" of single particles.
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Fig. 10 Particle-based simulations. Simulation snapshots of our particle-based simulations, for area fraction θ = 0.29. Snapshots are taken at time
trun = 1250 τ. Panels (a)-(c) show results from systems with a density-dependent potential (for different values of ε ′, in units of kBT σ2); panel (d) (red
box) shows a snapshot from a system with a density-independent potential (with ε in units of kBT .)
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Fig. 11 Particle-based simulations. Aggregate size distributions, com-
puted at trun = 1250τ, for density-dependent and -independent systems
with area fraction θ = 0.29. The distributions are weighted by the ag-
gregate size, Na, such that they represent the probability p(Na) that a
particle belongs to an aggregate of size Na particles. In plots (a) to (c),
the distributions are plotted vs the logarithm of Na. All distributions were
generated from 10 final configurations at trun = 1250τ generated in in-
dependent replicate simulations. ε ′ values are in units of kBT σ2 and
ε values are in units of kBT . Aggregate sizes were computed using a
linked-list method 48. (a) p(Na) for the density-dependent system with
ε ′ = 40. (b) p(Na) for density-independent systems with ε values in the
range ε = 2.84→ 42.68 that is explored in a density-dependent simula-
tion with ε ′ = 40. Note that the apparent peaks located in the range
1 < log(A) < 2.0 (green and cyan curves) correspond to transient aggre-
gates, i.e., aggregate “seeds” which dissolve soon after formation. For
comparison, the red curve shows p(Na) for the density-dependent sys-
tem with ε ′ = 40. (c) A weighted linear superposition (blue curve) of the
p(Na) curves computed in the density-independent simulations of Fig.
11(b) (see the ESI† for details). Again, the red curve shows p(Na) for the
density-dependent system with ε ′ = 40. (d) Aggregate size distribution,
including only aggregates of size Na > 10 particles, for ε = 28.44 (density-
independent) and ε ′ = 40 (density-dependent).

These characteristic behaviours can be understood as originating
from a local free-energy barrier to cluster formation at low par-

ticle density, even in the spinodal region of the phase diagram.
This barrier arises because local density fluctuations drive the
system into the low-density coexistence region of the phase di-
agram, which in turn exists as a consequence of the cubic term
that emerges from the Landau-Ginzburg free energy when the
secretion of cohesion-inducing agents are considered, like that
observed in nematic liquid crystals39.

From the point of view of real biological cells, our model is
highly simplified: we neglect, for example, cell motility, prolifera-
tion and death. Moreover, our assumption that the concentration
field of cohesive agent is at steady state around a given particle
is idealistic: in reality cohesive agents such as extracellular poly-
mers are likely to degrade only slowly and may well accumulate
in the system. Even for rapidly degrading agents the concentra-
tion field might be perturbed, for example by local fluid motion.
Taking account of these factors would of course require a different
modelling approach. Nevertheless, our work suggests that pro-
duction of cohesive molecules might provide a route to control of
aggregate size, and reveals interesting physics associated with the
kind of density-dependent interactions that could be generated by
the non-equilibrium process of cohesive agent production.
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