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Abstract 25 
 26 

Goats (Capra hircus) are an economically important livestock species providing meat 27 
and milk across the globe. They are of particular importance in tropical agri-systems 28 
contributing to sustainable agriculture, alleviation of poverty, social cohesion and utilisation 29 
of marginal grazing. There are excellent genetic and genomic resources available for goats, 30 
including a highly contiguous reference genome (ARS1). However, gene expression 31 
information is limited in comparison to other ruminants. To support functional annotation of 32 
the genome and comparative transcriptomics we created a mini-atlas of gene expression for 33 
the domestic goat.  RNA-Seq analysis of 22 transcriptionally rich tissues and cell-types 34 
detected the majority (90%) of predicted protein-coding transcripts and assigned informative 35 
gene names to more than 1000 previously unannotated protein-coding genes in the current 36 
reference genome for goat (ARS1).  Using network-based cluster analysis we grouped genes 37 
according to their expression patterns and assigned those groups of co-expressed genes to 38 
specific cell populations or pathways. We describe clusters of genes expressed in the gastro-39 
intestinal tract and provide the expression profiles across tissues of a subset of genes 40 
associated with functional traits. Comparative analysis of the goat atlas with the larger sheep 41 
gene expression atlas dataset revealed transcriptional differences between the two species in 42 
macrophage-associated signatures. The goat transcriptomic resource complements the large 43 
gene expression dataset we have generated for sheep and contributes to the available genomic 44 
resources for interpretation of the relationship between genotype and phenotype in small 45 
ruminants. 46 
 47 
 48 
 49 
 50 
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 2 

Introduction 51 
 52 
 Goats (Capra hircus) are an important source of meat and milk globally. They are an 53 
essential part of sustainable agriculture in low and middle-income countries, representing a 54 
key route out of poverty particularly for women.  Genomics-enabled breeding programmes 55 
for goats are currently implemented in the UK and France with breeding objectives including 56 
functional traits such as reproductive performance and disease resistance (Larroque et al., 57 
2016; Pulina et al., 2018). The International Goat Genomics Consortium (IGGC) 58 
(http://www.goatgenome.org) has provided extensive genetic tools and resources for goats 59 
including a 52K SNP chip (Tosser-Klopp et al., 2014), a functional SNP panel for parentage 60 
assessment and breed assignment (Talenti et al., 2018) and large-scale genotyping datasets 61 
characterising global genetic diversity (Stella et al., 2018). In 2017 a highly contiguous 62 
reference genome for goat (ARS1) was released (Bickhart et al., 2017; Worley, 2017). 63 
Advances in genome sequencing technology, particularly the development of long-read and 64 
single-molecule sequencing, meant that the ARS1 assembly was a considerable improvement 65 
in quality and contiguity from the previous whole genome shotgun assembly (CHIR_2.0) 66 
(Dong et al., 2013).  In 2018 the ARS1 assembly was released on the Ensembl genome portal 67 
(Zerbino et al., 2018) (https://www.ensembl.org/Capra_hircus/Info/Index) greatly facilitating 68 
the utility of the new assembly and providing a robust set of gene models for goat.  69 

RNA-Sequencing (RNA-Seq) has transformed the analysis of gene expression from 70 
the single-gene to the whole genome allowing visualisation of the entire transcriptome and 71 
defining how we view the transcriptional control of complex traits in livestock (reviewed in 72 
(Wickramasinghe et al., 2014)). Using RNA-Seq we generated a large-scale high-resolution 73 
atlas of gene expression for sheep (Clark et al., 2017). This dataset included RNA-Seq 74 
libraries from all organ systems and multiple developmental stages, providing a model 75 
transcriptome for ruminants. Analysis of the sheep gene expression atlas dataset indicated we 76 
could capture approximately 85% of the transcriptome by sampling twenty ‘core’ tissues and 77 
cell types (Clark et al., 2017). Given the close relationship between sheep and goats, there 78 
seemed little purpose in replicating a resource on the same scale. Our aim with the goat mini-79 
atlas project, which we present here, was to produce a smaller, cost-effective, atlas of gene 80 
expression for the domestic goat based on transcriptionally rich tissues from all the major 81 
organ systems.  82 

In the goat genome there are still many predicted protein-coding and non-coding 83 
genes for which the gene model is either incorrect or incomplete, or where there is no 84 
informative functional annotation. For example, in the current goat reference genome, ARS1 85 
(Ensembl release 97), 33% of the protein-coding genes are identified only with an Ensembl 86 
placeholder ID. Many of these unannotated genes are likely to have important functions. 87 
Using RNA-Seq data we can annotate them and assign function (Krupp et al., 2012). With 88 
datasets of a sufficient size, genes form co-expression clusters, which can either be 89 
ubiquitous, associated with a cellular process or be cell-/tissue specific. This information can 90 
then be used to associate a function with genes co-expressed in the same cluster, a method of 91 
functional annotation known as the ‘guilt by association principle’ (Oliver, 2000). Using this 92 
principle with the sheep gene expression atlas dataset we were able to annotate thousands of 93 
previously unannotated transcripts in the sheep genome (Clark et al., 2017). By applying this 94 
rationale to the goat mini-atlas dataset we were able to do the same for the goat genome.  95 

The goat mini-atlas dataset that we present here was used by Ensembl to create the 96 
initial gene build for ARS1 (Ensembl release 92).  A high-quality functional annotation of 97 
existing reference genomes can help considerably in our understanding of the transcriptional 98 
control of functional traits to improve the genetic and genomic resources available, inform 99 
genomics enabled breeding programmes and contribute to further improvements in 100 
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productivity. The entire dataset is available in a number of formats to support the livestock 101 
genomics research community and represents an important contribution to the Functional 102 
Annotation of Animal Genomes (FAANG) project (Andersson et al., 2015; FAANG, 2017; 103 
Harrison et al., 2018). 104 

This study is the first global analysis of gene expression in goats. Using the goat mini-105 
atlas dataset we describe large clusters of genes associated with the gastrointestinal tract and 106 
macrophages. Species specific differences in response to disease, or other traits, are likely to 107 
be reflected in gene expression profiles. Sheep and goats are both small ruminant mammals 108 
and are similar in their physiology. They also share susceptibility to a wide range of viral, 109 
bacterial, parasitic and prion pathogens, including multiple potential zoonoses (Sherman, 110 
2011), but there have been few comparisons of relative susceptibility or pathology between 111 
the species to the same pathogen, nor the nature of innate immunity. To reveal transcriptional 112 
similarities and differences between sheep and goats we have performed a comparative 113 
analysis of species-specific gene expression by comparing the goat mini-atlas dataset with a 114 
comparable subset of data from the sheep gene expression atlas (Clark et al., 2017). We also 115 
use the goat mini-atlas dataset to examine the expression of candidate genes associated with 116 
functional traits in goats and link these with allele-specific expression (ASE) profiles across 117 
tissues, using a robust methodology for ASE profiling (Salavati et al., 2019). The goat mini-118 
atlas dataset and the analysis we present here provide a foundation for identifying the 119 
regulatory and expressed elements of the genome that are driving functional traits in goats. 120 
 121 
Methods 122 
 123 
Animals  124 

Tissue and cell samples were collected from six male and one female neonatal 125 
crossbred dairy goats at six days old. The goats were sourced from one farm and samples 126 
were collected at a local abattoir within 1 hour of euthanasia.  127 
 128 
Tissue Collection 129 

The tissue samples were excised post-mortem within one hour of death, cut into 130 
0.5cm diameter segments and transferred into RNAlater (Thermo Fisher Scientific, Waltham, 131 
USA) and stored at 4oC for short-term storage. Within one week, the tissue samples were 132 
removed from the RNAlater, transferred to 1.5ml screw cap cryovials and stored at -80oC 133 
until RNA isolation. Alveolar macrophages (AMs) were isolated from two male goats by 134 
broncho-alveolar lavage of the excised lungs using the method described for sheep in (Clark 135 
et al., 2017), except using 20% heat-inactivated goat serum (G6767, Sigma Aldrich), and 136 
stored in TRIzol (15596018; Thermo Fisher Scientific) for RNA extraction. Similarly bone 137 
marrow derived macrophages (BMDMs) were isolated from 10 ribs from 3 male goats and 138 
frozen down for subsequent stimulation with lipopolysaccharide (LPS) (Salmonella 139 
enterica serotype minnesota Re 595 (L9764; Sigma-Aldrich)) using the method described in 140 
(Clark et al., 2017; Young et al., 2018) with homologous serum. Details of all the samples 141 
collected are included in Table 1. 142 
 143 
RNA extraction 144 

RNA was extracted from tissues and cells as described in (Clark et al., 2017). For 145 
each RNA extraction from tissues approximately 60mg of tissue was processed. Tissue 146 
samples were first homogenised in 1ml of TRIzol (15596018; Thermo Fisher Scientific) with 147 
CK14 (432–3751; VWR, Radnor, USA) tissue homogenising ceramic beads on a Precellys 148 
Tissue Homogeniser (Bertin Instruments; Montigny-le-Bretonneux, France) at 5000 rpm for 149 
20 sec. Cell samples which had previously been collected in TRIzol (15596018; Thermo 150 
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Fisher Scientific) were mixed by pipetting to homogenise. Homogenised (cell/tissue) samples 151 
were then incubated at room temperature for 5 min to allow complete dissociation of the 152 
nucleoprotein complex, 200µl BCP (1-bromo-3-chloropropane) (B9673; Sigma Aldrich) was 153 
added, then the sample was shaken vigorously for 15 sec and incubated at room temperature 154 
for 3 min. The sample was centrifuged for 15 min at 12,000 x g, at 4°C for 3 mins to separate 155 
the homogenate into a clear upper aqueous layer. The homogenate was then column purified 156 
to remove DNA and trace phenol using a RNeasy Mini Kit (74106; Qiagen Hilden, Germany) 157 
following the manufacturer’s instructions (RNeasy Mini Kit Protocol: Purification of Total 158 
RNA from Animal Tissues, from step 5 onwards). An on-column DNase treatment was 159 
performed using the Qiagen RNase-Free DNase Set (79254; Qiagen Hilden, Germany). The 160 
sample was eluted in 30ul of RNase free water and stored at -80°C prior to QC and library 161 
preparation. RNA integrity (RINe) was estimated on an Agilent 2200 TapeStation System 162 
(Agilent Genomics, Santa Clara, USA) using the RNA Screentape (5067–5576; Agilent 163 
Genomics) to ensure RNA quality was of RINe > 7. RINe and other quality control metrics for 164 
the RNA samples are included in Supplementary Table S1. 165 

 166 
RNA-Sequencing 167 

RNA-Seq libraries were prepared by Edinburgh Genomics (Edinburgh Genomics, 168 
Edinburgh, UK) and run on the Illumina HiSeq 4000 sequencing platform (Illumina, San 169 
Diego, USA). Strand-specific paired-end reads with a fragment length of 75bp were 170 
generated for each sample using the standard Illumina TruSeq mRNA library preparation 171 
protocol (poly-A selected) (Ilumina; Part: 15031047 Revision E). Libraries were sequenced 172 
at a depth of either >30 million reads per sample for the tissues and AMs, or >50 million 173 
reads per sample for the BMDMs.  174 

Data Processing  175 
The RNA-Seq data processing methodology and pipelines are described in detail 176 

in (Clark et al., 2017). Briefly, for each tissue a set of expression estimates, as transcripts per 177 
million (TPM), were obtained using the alignment-free (technically, ‘pseudo-aligning’) 178 
transcript quantification tool Kallisto (Bray et al., 2016), the accuracy of which depends on a 179 
high quality index (reference transcriptome). In order to ensure an accurate set of gene 180 
expression estimates we used a ‘two-pass’ approach to generate this index.  181 

We first ran Kallisto on all samples using as its index the ARS1 reference 182 
transcriptome available from Ensembl (ftp://ftp.ensembl.org/pub/release-183 
95/fasta/capra_hircus/cdna/Capra_hircus.ARS1.cdna.all.fa.gz). We then parsed the resulting 184 
data to revise this index. This was for two reasons: i) in order to include, in the second index, 185 
those transcripts that should have been present but were missing (i.e. where the reference 186 
annotation was incomplete), and ii) to remove those transcripts that were present but should 187 
not have been (i.e. where the reference annotation was poor quality and a spurious model had 188 
been introduced). For i) we obtained the subset of reads that Kallisto could not (pseudo)align, 189 
assembled those de novo into putative transcripts, then retained each transcript only if it could 190 
be robustly annotated (by, for instance, encoding a protein similar to one of known function) 191 
and showed coding potential. For ii), we identified those transcripts in the reference 192 
transcriptome for which no evidence of expression could be found in any of the samples from 193 
the goat mini-atlas. These were then discarded from the index and the revised index was used 194 
for a second ‘pass’ with Kallisto, generating higher-confidence expression level estimates. 195 

We complemented the Kallisto alignment-free method with a reference-guided 196 
alignment-based approach to RNA-Seq processing, using the HISAT aligner (Kim et al., 197 
2015) and StringTie assembler (Pertea et al., 2015). This approach was highly accurate when 198 
mapping to the (ARS1) annotation on NCBI 199 
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(ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCF/001/704/415/GCF_001704415.1_ARS1/GCF_0200 
01704415.1_ARS1_rna.fna.gz), precisely reconstructing almost all exon (96%) and transcript 201 
(76%) models (Supplementary Table S2). We used the HISAT/StringTie output to validate 202 
the set of transcripts used to generate the Kallisto index. Unlike alignment-free methods, 203 
HISAT/StringTie can be used to identify novel transcript models, particularly for ncRNAs, 204 
which we have described separately in (Bush et al., 2018b). Details of all novel transcript 205 
models detected are included in Supplementary Table S3. 206 

 207 
Data Validation 208 

To identify any spurious samples which could have been generated during sample 209 
collection, RNA extraction or library preparation, we generated a sample-to-sample 210 
correlation of the gene expression estimates from Kallisto, in Graphia Professional (Kajeka 211 
Ltd, Edinburgh, UK).  212 

 213 
Network cluster analysis 214 

Network cluster analysis of the goat gene mini-atlas dataset was performed using 215 
Graphia Professional (Kajeka Ltd, Edinburgh, UK) (Livigni et al., 2018). In brief, similarities 216 
between individual gene expression profiles were determined by calculating a Pearson 217 
correlation matrix for both gene-to-gene and sample-to-sample comparisons, and filtering to 218 
remove relationships where r < 0.83. A network graph was constructed by connecting the 219 
remaining nodes (transcripts) with edges (where the correlation exceeded the threshold 220 
value). The resultant graph was interpreted by applying the Markov Cluster algorithm (MCL) 221 
at an inflation value (which determines cluster granularity) of 2.2. The local structure of the 222 
graph was then examined visually. Transcripts with robust co-expression patterns, i.e. related 223 
functions, clustered together forming sets of tightly interlinked nodes. The principle of ‘guilt 224 
by association’ was then applied, to infer the function of unannotated genes from genes 225 
within the same cluster (Oliver, 2000). Expression profiles for each cluster were examined in 226 
detail to understand the significance of each cluster in the context of the biology of goat 227 
tissues and cells. Clusters 1 to 30 were assigned a functional ‘class’ and ‘sub-class’ manually 228 
by first determining if multiple genes within a cluster shared a similar biological function 229 
based on GO term enrichment using the Bioconductor package ‘topGO’ (Alexa and 230 
Rahnenfuhrer, 2010).  231 
 232 
Comparative analysis of gene expression in macrophages in sheep and goats 233 

To compare transcriptional differences in the immune response between the two 234 
species we focused our analysis on the macrophage populations (AMs and BMDMs). For this 235 
analysis we used a subset of data from our sheep gene expression atlas for AMs and BMDMs 236 
(+/- LPS) from three male sheep (Clark et al., 2017) (Supplementary Dataset S1).  237 

For AMs we compared the gene level expression estimates from the two male goats 238 
and three male sheep using edgeR v3.20.9 (Robinson et al., 2010). Only genes with the same 239 
gene name in both species, expressed at a raw read count of more than 10, FDR<10%, an 240 
FDR adjusted p-value of <0.05, and Log2FC of >=2, in both goat and sheep, were included in 241 
the analysis.  242 

Differential expression analysis using edgeR (Robinson et al., 2010) was also 243 
performed for sheep and goat BMDMs (+/-) LPS separately, using the filtration criteria 244 
described above for AMs, to compile a list of genes for each species that were up or down 245 
regulated in response to LPS. These lists were then compared using the R package dplyr 246 
(Wickham et al., 2018) with system query language syntax. Each list was merged based on 247 
GENE_ID using the inner_join function to only return the observations that overlapped 248 
between goat and sheep (i.e. genes which had corresponding annotations in both species).  249 
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A dissimilarity index (Dis_Index) was then calculated by taking the absolute 250 
difference of the Log2 fold change (Log2FC) between sheep and goat using the formula:  251 

ABS(Log2FC Sheep-Log2FC Goat) 252 
A high Dis_Index indicated that a gene was differently regulated in goat and sheep. 253 
 254 

Allele-specific expression 255 
 To measure allele-specific expression (ASE), across tissues and cell-types from the 256 

goat mini-atlas we used the method described in (Salavati et al., 2019). Briefly, BAM files 257 
from the RNA-Seq data, were mapped to the ARS1 top level DNA fasta track from Ensembl 258 
v96, using HISAT2 as described in (Clark et al., 2017). Any reference mapping bias was 259 
removed using WASP v0.3.1 (van de Geijn et al., 2015) and the resultant BAM files 260 
processed using the Genome Analysis Tool Kit (GATK) to produce individual VCF files. 261 
The ASEreadCounter tool in GATK v3.8 was used to obtain raw counts of the allelic 262 
expression profile in the dataset. These raw counts were then tested for imbalance (using a 263 
modified negative-beta bionomial test at gene level) at all heterozygote loci (i.e. ASE = 264 
Counts RefAllele/(Counts RefAllele+ Counts AltAllele) within the boundaries of the gene using the R 265 
package GeneiASE (Edsgärd et al., 2016).  266 

 267 
Results and Discussion 268 
 269 
Scope of the goat mini-atlas dataset, sequencing depth and coverage 270 

The goat mini-atlas dataset includes 54 mRNA-Seq (poly-A selected) 75bp paired-271 
end libraries.  Details of the libraries generated including the age and sex of the animals, the 272 
tissues and cell types sampled, and the number of biological replicates per sample are 273 
summarised in Table 1. Gene level expression estimates, for the goat mini-atlas, are provided 274 
as unaveraged (Supplementary Dataset S2) and averaged across biological replicates 275 
(Supplementary Dataset S3) files. 276 

Approximately 8.7x108 paired end sequence reads were generated in total. Following 277 
data processing with Kallisto (Bray et al., 2016), a total of 18,528 unique protein coding 278 
genes had detectable expression (TPM>1), representing 90% of the reference transcriptome 279 
(Bickhart et al. 2017).  From the set of 17 tissues and 3 cell types we sampled we were able 280 
to detect approximately 90% of protein coding genes providing proof of concept that the 281 
mini-atlas approach is useful for global analysis of transcription. The average percentage of 282 
transcripts detected per tissue or cell type was 66%, ranging from 54% in alveolar 283 
macrophages, which had the lowest to 72% in testes, which had the highest. The percentage 284 
of protein coding genes detected per each tissue is included in Table 2. Although we included 285 
uterine horn as well as uterus and both stimulated and unstimulated BMDMs, our analysis 286 
suggests that including only one tissue/cell of a similar type would be the most economical 287 
approach to generating a mini-atlas of gene expression for functional annotation. 288 

Approximately 2,815 (13%) of the total 21,343 protein coding genes in the goat 289 
reference transcriptome had no detectable expression in the goat mini-atlas dataset. These 290 
transcripts are likely to be either tissue specific to tissues and cell-types that were not 291 
sampled here (including lung, heart, pancreas and various endocrine organs) rare or not 292 
detected at the depth of coverage used.  The large majority of these transcripts were detected 293 
in the much larger sheep atlas, and their likely expression profile can be inferred from the 294 
sheep.  In addition, for the goat mini-atlas unlike the sheep gene expression atlas we only 295 
included neonatal animals so transcripts that were highly developmental stage-specific in 296 
their expression pattern would also not be detected. A list of all undetected genes is included 297 
in Supplementary Table S4 and undetected transcripts in Supplementary Table S5.  298 
 299 
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Gene Annotation  300 
The proportion of transcripts per biotype (lncRNA, protein coding, pseudogene, etc), 301 

with detectable expression (TPM >1) in the goat mini-atlas relative to the ARS1 reference 302 
transcriptome, on Ensembl is summarised at the gene level in Supplementary Table S6 and at 303 
the transcript level in Supplementary Table S7. Of the 21,343 protein coding genes in the 304 
ARS1 reference transcriptome 7036 (33%) had no informative gene name. Whilst the 305 
Ensembl annotation will often identify homologues of a goat gene model, the automated 306 
annotation genebuild pipeline used to assign gene names and symbols is conservative. Using 307 
the annotation pipeline we described in (Clark et al., 2017) we were able to use the goat mini-308 
atlas dataset to assign an informative gene name to 1114 previously un-annotated protein 309 
coding genes in ARS1. These genes were annotated by reference to the NCBI non-redundant 310 
(nr) peptide database v94 (Pruitt et al., 2007). A shortlist containing a conservative set of 311 
gene annotations to HGNC (HUGO Gene Nomenclature Committee) gene symbols, is 312 
included in Supplementary Table S8. Supplementary Table S9 contains the full list of genes 313 
annotated using the goat mini-atlas dataset and our annotation pipeline. Many unannotated 314 
genes can be associated with a gene description, but not necessarily an HGNC symbol; these 315 
are also listed in Supplementary Table S10. We manually validated the assigned gene names 316 
on the full list using network cluster analysis and the “guilt by association” principle. 317 

 318 
Network Cluster Analysis 319 

Network cluster analysis of the goat gene expression atlas was performed using 320 
Graphia Professional (Kajeka Ltd, Edinburgh UK), a network visualisation tool (Livigni et 321 
al., 2018). The goat mini-atlas unaveraged TPM estimates (Supplementary Dataset S2) were 322 
used for network cluster analysis. We first generated a sample-to-sample graph (r=0.75, 323 
MCL=2.2) Supplementary Fig S1, which verified that the correlation between biological 324 
replicates was high and that none of the samples were spurious.  We then generated a gene-325 
to-gene network graph (Fig 1), with a Pearson correlation coefficient of r=0.83, that 326 
comprised 16,172 nodes (genes) connected by 1,574,259 edges.  The choice of Pearson 327 
correlation threshold is optimised within the Graphia program to maximise the number of 328 
nodes (genes) included whilst minimising the number of edges.  By applying the MCL 329 
(Markov Clustering) algorithm at an inflation value (which determines cluster granularity) of 330 
2.2, the gene network graph separated into 75 distinct co-expression clusters, with the largest 331 
cluster (cluster 1) comprising of 1795 genes. Genes found in the top 30 largest clusters are 332 
listed in Supplementary Table S11. Clusters 1 to 20 (numbered in order of size, largest to 333 
smallest) were annotated manually and assigned a functional ‘class’ (Table 3). These 334 
functional classes were assigned based on GO term enrichment (Alexa and Rahnenfuhrer, 335 
2010) for molecular function and biological process (Supplementary Table S12). Assignment 336 
of functional class was further validated by visual inspection of expression pattern and 337 
comparison with functional groupings of genes observed in the sheep gene expression atlas 338 
(Clark et al., 2017). 339 

The largest of the clusters (Cluster 1) contained 1795 genes that were almost 340 
exclusively expressed in the central nervous system (cortex, cerebellum) reflecting the high 341 
transcriptional activity and complexity in the brain. Significant GO terms for cluster 1 342 
included cognition (p=4.6x10-17) and synaptic transmission (p=2.5x10-30). Other tissue-343 
specific clusters; e.g. 4 (liver), 6 (testes), 7 (skin/rumen), 14 (adrenal) and 17 (kidney) were 344 
similarly enriched for genes associated with known tissue-specific functions.  In each case, 345 
the likely function of unannotated protein-coding genes within these clusters could be 346 
inferred by association with genes of known function that share the same cell or tissue 347 
specific expression pattern.  Cluster 9 showed a high level of tissue specificity and included 348 
genes associated with skeletal muscle function and development including MSTN which 349 
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encodes a protein that negatively regulates skeletal muscle cell proliferation and 350 
differentiation (Wang et al., 2012). Several myosin light and heavy chain genes (e.g. MYH1 351 
and MYL1) and transcription factors that are specific to muscle including (MYOG and 352 
MYOD1) were also found in cluster 9. GO terms for muscle were enriched in cluster 9 e.g. 353 
muscle fiber development (p=3.8x10-13) and structural constituent of muscle (p=1.8x10-11). 354 
Genes expressed in muscle are of particular biological and commercial interest for livestock 355 
production and represent potential targets for gene editing (Yu et al., 2016). Cluster 8 was 356 
also highly tissue specific and included genes expressed in the fallopian tube with enriched 357 
GO terms for cilium movement (p=1.4x10-15) and cilium organization (p=2.3x10-15). A 358 
motile cilia cluster was identified in the fallopian tube in the sheep gene expression atlas 359 
(Clark et al., 2017) and a similar cluster was enriched in chicken in the trachea (Bush et al., 360 
2018a).  The goat mini-atlas also included several clusters that were enriched for immune 361 
tissues and cell types and we have based our analysis in part upon the premise that the 362 
greatest differences between small ruminant species likely involve the immune system. 363 

 364 
Gene expression in the neonatal gastrointestinal tract 365 
 Three regions of the gastrointestinal (GI) tract were sampled; the ileum, colon and 366 
rumen. These regions formed distinct clusters in the network graph. The genes comprising 367 
these clusters were highly correlated with the physiology of the tissues. Goats are ruminant 368 
mammals and at one-week of age (when tissues were collected) the rumen is vestigial. Even 369 
at this early stage of development, the typical epithelial signature of the rumen (Xiang et al., 370 
2016a; Xiang et al., 2016b) was observed. Genes co-expressed in the rumen (clusters 7 and 371 
13 – Table 3) were typical of a developing rumen epithelial signature (Bush et al., 2019) and 372 
were associated with GO terms for epidermis development (p=0.00016), keratinocyte 373 
differentiation (p=1.5x10-14) and skin morphogenesis (p=8.2x10-6). Large colon (cluster 12) 374 
included several genes associated with GO terms for microvillus organization (p=1x106) and 375 
microvillus (p=6.3x106) including MYO7B which is found in the brush border cells of 376 
epithelial microvilli in the large intestine. The microvilli function as the primary surface of 377 
nutrient absorption in the gastrointestinal tract, and as such numerous phospholipid-378 
transporting ATPases and solute carrier genes were found in the large colon cluster. 379 

 Throughout the GI tract there was a strong immune signature, similar to that 380 
observed in neonatal and adult sheep (Bush et al., 2019), which was greatest in clusters 10 381 
and 19 (Table 3) where expression was high in the ileum and Peyer’s patches, thymus and 382 
spleen. Cluster 10 had a more general immune related profile with higher expression in the 383 
spleen and significant GO terms associated with cytokine receptor activity (p=1.3x10-8) and T 384 
cell receptor complex (p=0.00895). Several genes involved in the immune and inflammatory 385 
response were found in cluster 10 including CD74, IL10 and TLR10. The expression pattern 386 
for cluster 19 was associated with B-cells including GO terms for B cell proliferation 387 
(p=1.4x10-7), positive regulation of B cell activation (p=4.9x10-6) and cytokine activity 388 
(p=0.0051). Genes associated with the B-cell receptor complex CD22, CD79B, CD180 and 389 
CR2, and interleukins IL21R and IL26 were expressed in cluster 19 (Treanor, 2012). This 390 
reflects the fact that we sampled the Peyer’s patch with the ileum, which is a primary 391 
lymphoid organ of B-cell development in ruminants (Masahiro et al., 2006). 392 
 Each of the GI tract clusters included genes associated with more than one cell 393 
type/cellular process. This complexity is a consequence of gene expression patterns from the 394 
lamina propria, one of the three layers of the mucosa. The lamina propria lies beneath the 395 
epithelium along the majority of the GI tract and comprises numerous different cell types 396 
from endothelial, immune and connective tissues (Ikemizu et al., 1994). This gene expression 397 
pattern, which is also observed in sheep (Clark et al., 2017; Bush et al., 2019) and pigs 398 

.CC-BY 4.0 International licenseIt is made available under a 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/711127doi: bioRxiv preprint first posted online Jul. 25, 2019; 

http://dx.doi.org/10.1101/711127
http://creativecommons.org/licenses/by/4.0/


 9 

(Freeman et al., 2012), highlights the complex multi-dimensional physiology of the ruminant 399 
GI tract.   400 
 401 
Macrophage-associated signatures 402 

A strong immune response is vitally important to neonatal mammals. Macrophages 403 
constitute a major component of the innate immune system acting as the first line of defense 404 
against invading pathogens and coordinating the immune response by triggering anti-405 
microbial responses and other mediators of the inflammatory response (Hume, 2015). Several 406 
clusters in the goat mini-atlas exhibited a macrophage-associated signature. Cluster 11 (Table 407 
3), contained several macrophage marker genes, including CD68 which is expressed in AMs 408 
and BMDMs. The cluster includes the macrophage growth factor, CSF1, indicating that as in 409 
sheep (Clark et al., 2017), pigs (Freeman et al., 2012) and humans (Schroder et al., 2012) but 410 
in contrast to mice, goat macrophages are autocrine for their own growth factor. GO terms 411 
associated with cluster 11 included phagocytosis (p=3.5x10-10), inflammatory response 412 
(p=1.4x10-8) and cytokine receptor activity (p=0.00031). Many of the genes that were up-413 
regulated in AMs in cluster 11, including C-type lectins CLEC4A and CLEC5A, have been 414 
shown to be down regulated in sheep (Clark et al., 2017; Bush et al., 2019), pigs (Freeman et 415 
al., 2012) and humans (Baillie et al., 2017) in the wall of the intestine. This highlights 416 
functional transcriptional differences in macrophage populations. AMs respond to microbial 417 
challenge as the first line of defense against inhaled pathogens.  In contrast, macrophages in 418 
the intestinal mucosa down-regulate their response to microorganisms as a continuous 419 
inflammatory response to commensal microbes would be undesirable.  420 

Cluster 11 (Table 3) also included numerous pro-inflammatory cytokines and 421 
chemokines which were up-regulated following challenge with lipopolysaccharide (LPS). 422 
Response to LPS was also reflected in several significant GO terms associated with this 423 
cluster including, cellular response to lipopolysaccharide (p=5.8x10-10) and cellular response 424 
to cytokine stimulus (p=9.5x10-8).  C-type lectin CLEC4E, which is known to be involved in 425 
the inflammatory response (Baillie et al., 2017), interleukin genes such as IL1B and IL27, 426 
and ADGRE1 were all highly inducible by LPS in BMDMs. ADGRE1 (EMR1,F4/80) is a 427 
monocyte-macrophage marker involved in pattern recognition which exhibits inter-species 428 
variation both in expression level and response to LPS stimulation (Waddell et al., 2018).  429 
Based upon RNA-Seq data, ruminant genomes were found to encode a much larger form of 430 
ADGRE1 than monogastric species, with complete duplication of the extracellular domain 431 
[44].  432 
 433 
Comparative analysis of macrophage-associated transcriptional responses in sheep and 434 
goats 435 

Transcriptional differences are linked to species-specific variation in response to 436 
disease, and have been widely documented in livestock (Bishop and Woolliams, 2014). For 437 
instance, ruminants differ in their response to a wide range of economically important 438 
pathogens. Variation in the expression of NRAMP1 (SLC11A1) is involved in the response 439 
of sheep and goat to Johne’s disease (Cecchi et al., 2017). Similarly, resistance to 440 
Haemonchus contortus infections in sheep and goats is associated with a stronger Th2-type 441 
transcriptional immune response (Gill et al., 2000; Alba-Hurtado and Munoz-Guzman, 2013). 442 
To determine whether goats and sheep differ significantly in immune transcriptional 443 
signatures we performed a comparative analysis of the macrophage samples from the goat 444 
mini-atlas and those included in our gene expression atlas for sheep (Clark et al., 2017). One 445 
caveat to this analysis that should be noted is that the sheep and goat samples were 446 
unfortunately not age-matched and as such differences in gene expression could be an effect 447 
of developmental stage rather than species-specific differences. However, as macrophage 448 
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samples from both species were kept in culture prior to collection and analysis we would 449 
expect the effect of developmental stage to be minimal.  450 

We performed differential analysis of genes expressed in goat and sheep AMs 451 
(Supplementary Table S13). The top 25 genes up- and down- regulated in goat relative to 452 
sheep based on log2FC are shown in Fig 2. Several genes involved in the inflammatory and 453 
immune response including, interleukins IL33 and IL1B and C-type lectin CLEC5A were up-454 
regulated in goat AMs relative to sheep. In contrast those that were down regulated in goat 455 
relative to sheep did not have an immune function but were associated with more general 456 
physiological processes. This may reflect species-specific differences but could also indicate 457 
that the immune response in AMs is age-dependent i.e. neonatal animals exhibit a primed 458 
immune response while a more subdued response is exhibited by adult sheep whose adaptive 459 
immunity has reached full development. 460 

Using differential expression analysis (Robinson et al., 2010) we also compared the 461 
gene expression estimates for sheep and goat BMDMs (+/-) LPS, to compile a list of genes 462 
for each species that were up or down regulated in response to LPS (Supplementary Table 463 
S14A goat and Supplementary Table S14B sheep). These lists were then merged using the 464 
methodology described above (see Methods section) to highlight genes that differed in their 465 
response to LPS between the two species. In total 188 genes exhibited significant differences 466 
between goats and sheep (FDR<10%, Log2FC>=2) in response to LPS (Supplementary Table 467 
S15). The genes which showed the highest level of dissimilarity in response to LPS between 468 
goats and sheep (Dis_Index>=2) are illustrated in Fig 3. Several immune genes were 469 
upregulated in both goat and sheep BMDMs in response to LPS stimulation but differed in 470 
their level of induction between the two species (top right quadrant Fig 3). IL33, IL36B, 471 
PTX3, CCL20, CSF3 and CSF2 for example, exhibited higher levels of induction in sheep 472 
BMDMs relative to goat, and vice versa for ICAM1, IL23A, IFIT2, TNFSF10, and 473 
TNFRSF9. Several genes were upregulated in sheep but downregulated in goat BMDMs (e.g. 474 
KIT) (top left quadrant Fig 3), and upregulated in goat, but downregulated in sheep (e.g. 475 
IGFBP4) (bottom right quadrant Fig 3).  476 

Overall the transcriptional patterns in BMDMs stimulated with LPS were broadly 477 
similar between the two species. Some interesting differences in individual genes were 478 
observed that could contribute to species-specific responses to infection. For instance, IL33 479 
and IL23A both exhibited a higher level of induction in sheep BMDMs after stimulation with 480 
LPS relative to goat (Fig 3). In humans IL33 has a protective role in inflammatory bowel 481 
disease by inducing a Th2 immune response (Lopetuso et al., 2013). An enhanced Th2 482 
response, which accelerates parasite expulsion, has been associated with H. contortus 483 
resistance in sheep (Alba-Hurtado and Munoz-Guzman, 2013). Conversely, higher 484 
expression of IL23A is associated with susceptibility to Teladorsagia circumcincta infection 485 
(Gossner et al., 2012). Little is known about the function of IL33 and IL23A in goats. They 486 
are members of the interleukin-1 family which play a central role in the regulation of immune 487 
and inflammatory response to infection (Dinarello, 2018). Given the similarities in their 488 
expression patterns, it is reasonable to assume that these genes are regulated in a similar 489 
manner to sheep and involved in similar biological pathways. As such they would be suitable 490 
candidate genes to investigate further to determine if they underlie species-specific variation 491 
in susceptibility to pathogens (Bishop and Stear, 2003; Bishop and Morris, 2007). 492 
 493 
Expression patterns of genes associated with functional traits in goats 494 

The goat mini-atlas dataset is a valuable resource that can be used by the livestock 495 
genomics community to examine the expression patterns of genes of interest that are relevant 496 
to ruminant physiology, immunity, welfare, production and adaptation/resilience particularly 497 
in tropical agri-systems. Several genes, associated with functional traits in goats, have been 498 
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identified using genome wide association studies (GWAS). Insulin-like growth factor 2 499 
(IGF2), for example, is associated with growth rate in goats (Burren et al., 2016), and was 500 
highly expressed in tissues with a metabolic function including, kidney cortex, liver and 501 
adrenal gland (Fig 4A). As expected expression of myostatin (MSTN), which encodes a 502 
negative regulator of skeletal muscle mass, was highest in skeletal muscle in comparison with 503 
the other tissues (Fig 4B). MSTN is a target for gene-editing in goats to promote muscle 504 
growth (e.g. Yu et al., 2016). Expression of genes associated with fecundity and litter size in 505 
goats, including GDF9 and BMPR1B (Feng et al.; Shokrollahi and Morammazi, 2018), were 506 
highest in the ovary (Fig 4C & D). The ovary included here is from a neonatal goat and these 507 
results correlate with similar observations in sheep where genes essential for ovarian 508 
follicular growth and involved in ovulation rate regulation and fecundity were highly 509 
expressed in foetal ovary at 100 days gestation (Clark et al., 2017).  510 

Some genes, particularly those involved in the immune response had high tissue or 511 
cell type specific expression. Matrix metalloproteinase-9 (MMP9), which is involved in the 512 
inflammatory response and linked to mastitis regulation in goats (Li et al., 2016) was very 513 
highly expressed in macrophages, particularly AMs, in comparison with other tissues (Fig 514 
4E). Other genes that are important for goat functional traits were fairly ubiquitously 515 
expressed. The expression level of Diacylglycerol O-Acyltransferase 1 (DGAT1) which is 516 
associated with milk fat content in dairy goats (Martin et al., 2017) did not vary hugely across 517 
the tissues sampled (Fig 4F), although there was slightly higher expression in some tissues 518 
(e.g. colon and liver) relative to immune tissues (e.g. thymus and spleen). DGAT1 encodes a 519 
key metabolic enzyme that catalyses the last, and rate-limiting step of triglyceride 520 
synthesis, the transformation from a diacylglycerol to a triacylglycerol (Bell and Coleman, 521 
1980). This is an important cellular process undertaken by the majority of cells, explaining 522 
its ubiquitous expression pattern. Two exonic mutations in the DGAT1 gene in dairy goats 523 
have been associated with a notable decrease in milk fat content (Martin et al., 2017). 524 
Understanding how these, and other variants for functional traits, are expressed can help 525 
us to determine how their effect on gene expression and regulation influences the observed 526 
phenotypes in goat breeding programmes. 527 
  528 
Allele-specific expression 529 

Using mapping bias correction for robust positive ASE discovery (Salavati et al., 530 
2019), we were able to profile moderate to extreme allelic imbalance across tissues and cell 531 
types, at the gene level, in goats. The raw ASE values for every tissue/cell type are included 532 
in Supplementary Dataset S4. We first calculated the distribution of heterozygote sites per 533 
gene, as a measure of homogeneity of input sites, and found there was no significant 534 
difference between the eight individual goats included in the study (Supplementary Fig S2). 535 

Several genes exhibited pervasive allelic imbalance (i.e. where the same imbalance in 536 
expression is shared across several tissues/cell types) (Fig 5). For example, allelic imbalance 537 
was observed in the mitochondrial ribosomal protein MRPL17 in 16 tissues/cell types (except 538 
skeletal muscle and rumen). SERPINH1, a member of the serpin superfamily, was the only 539 
gene in which an imbalance in expression was detected in all tissues/cell types. Allelic 540 
imbalance was observed in COL4A1 in 11 tissues, and was highest in the rumen and skin 541 
samples. COL4A1 has been shown to be involved in the growth and development of the 542 
rumen papillae in cattle (Nishihara et al., 2018) and sheep (Bush et al., 2019). The highest 543 
levels of allelic imbalance in individual genes were observed in ribosomal protein RPL10A in 544 
ileum and SPARC in liver (Fig 5). 545 

The ASE profiles were highly tissue- or cell type- specific, with strong correlations 546 
between samples from the same organ system (Fig 6). For example, ASE profiles in female 547 
reproductive system (ovary, fallopian tube, uterine horn, uterus), GI tract (colon and ileum) 548 

.CC-BY 4.0 International licenseIt is made available under a 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/711127doi: bioRxiv preprint first posted online Jul. 25, 2019; 

http://dx.doi.org/10.1101/711127
http://creativecommons.org/licenses/by/4.0/


 12 

and brain (cerebellum and frontal lobe cortex) tissues were highly correlated. The two tissues 549 
showing the largest proportion of shared allele-specific expression were the ovary and liver 550 
(Fig 6). This might reflect transcriptional activity in these tissues in neonatal goats during 551 
oogenesis (ovary) and haematopoiesis (liver). Future work could determine if these ASE 552 
patterns were observed at other stages of development, or whether they are time-dependant.  553 

The next step of this analysis would be to analyse ASE at the variant (SNV) level. 554 
This would allow us to identify variants driving ASE and determine whether they were 555 
located within important genes for functional traits. These variants could then be weighted in 556 
genomic prediction algorithms for genomic selection, for example.  The sequencing depth 557 
used for the goat mini-atlas is, however, insufficient for statistically robust analysis at the 558 
SNV level. Nevertheless, it does provide a foundation for further analysis of ASE relevant to 559 
functional traits using a suitable dataset, ideally from a larger number of individuals (e.g. for 560 
aseQTL analysis (Wang et al., 2018)) and at a greater depth. 561 

 562 
Conclusions 563 
 564 

We have created a mini-atlas of gene expression for the domestic goat. This 565 
expression dataset complements the genetic and genomic resources already available for goat 566 
(Tosser-Klopp et al., 2014; Stella et al., 2018; Talenti et al., 2018), and provides a set of 567 
functional information to annotate the current reference genome (Bickhart et al., 2017; 568 
Worley, 2017). We were able to detect the majority (90%) of the transcriptome from a sub-569 
set of 22 transcriptionally rich tissues and cell-types representing all the major organ systems, 570 
providing proof of concept that this mini-atlas approach is useful for studying gene 571 
expression and for functional annotation. Using the mini-atlas dataset we annotated 15% of 572 
the unannotated genes in ARS1. Our dataset was also used by the Ensembl team to create a 573 
new gene build for the goat ARS1 reference genome 574 
(https://www.ensembl.org/Capra_hircus/Info/Index).  575 

We have also provided transcriptional profiling of macrophages in goats and a 576 
comparative analysis with sheep. This provides a foundation for further analysis in more 577 
tissues and cell types in age-matched animals, and in disease challenge experiments for 578 
example. Prior to this study little was known about the transcription in goat macrophages. 579 
While more information is available on goat monocyte derived macrophages (Adeyemo et 580 
al., 1997; Taka et al., 2013; Walia et al., 2015), there was previously relatively little 581 
knowledge available on the characteristics of goat BMDMs. In addition, few reagents are 582 
available for immunological studies in goat, with most studies relying on cross-reactivity 583 
with sheep and cattle antibodies (Entrican, 2002; Hope et al., 2012). Recently a 584 
characterisation of goat antibody loci has been published using the new reference genome 585 
ARS1 (Schwartz et al., 2018), demonstrating the usefulness of a highly contiguous reference 586 
genome with high quality functional annotation for the development of new resources for 587 
livestock species. The goat mini-gene expression atlas complements the large gene 588 
expression dataset we have generated for sheep and contributes to the genomic resources we 589 
are developing for interpretation of the relationship between genotype and phenotype in small 590 
ruminants. 591 

 592 
Data Availability 593 
 594 
  We have made the files containing the expression estimates for the goat mini-atlas 595 
(Supplementary Dataset S2 (unaveraged) and Supplementary Dataset S3 (averaged)) 596 
available for download through the University of Edinburgh DataShare portal 597 
(https://doi.org/10.7488/ds/2591). Sample metadata for all the tissue and cell samples 598 
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collected has been deposited in the EBI BioSamples database under project identifier GSB-599 
2131 (https://www.ebi.ac.uk/biosamples/samples/SAMEG330351) according to FAANG 600 
metadata and data sharing standards. The raw fastq files for the RNA-Seq libraries are 601 
deposited in the European Nucleotide Archive (https://www.ebi.ac.uk/ena) under the 602 
accession number PRJEB23196. The data submission to the ENA includes experimental 603 
metadata prepared according to the FAANG Consortium metadata and data sharing 604 
standards. The BAM files are also available as analysis files under accession number 605 
PRJEB23196 (‘BAM file 1’ are mapped to the NCBI version of ARS1 and ‘BAM file 2’ to 606 
the Ensembl version). The data from sheep included in this analysis has been published 607 
previously and is available via (Clark et al., 2017) and under ENA accession number 608 
PRJEB19199. Details of all the samples for both goat and sheep are available via the 609 
FAANG data portal (http://data.faang.org/home). All experimental protocols are available on 610 
the FAANG consortium website at http://www.ftp.faang.ebi.ac.uk/ftp/protocols 611 
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Table 1: Details of samples included in the goat mini-atlas. 860 
Tissue/Cell type Organ System No. of 

replicates 
Sex 

Adrenal gland Endocrine  4 male 
Alveolar macrophage Immune  2 male 
BMDM - LPS (0 hours) Immune  3 male 
BMDM + LPS (7 hours)  Immune  3 male 
Cerebellum Nervous system 2 male 
Colon large GI tract 4 male 
Fallopian tube Reproductive system (female) 1 female 
Frontal lobe cortex Nervous system 2 male 
Ileum and Peyer's patches GI tract 2 male 
Kidney cortex Endocrine  4 male 
Liver Endocrine  4 male 
Ovary Reproductive system (female) 1 female 
Rumen Gastrointestinal tract 2 male 
Skeletal muscle - longissimus dorsi  Musculo-skeletal 3 male 
Skin Integumentary  4 male 
Spleen Immune  3 male 
Testes Reproductive system (male) 4 male 
Thymus Immune  4 male 
Uterine horn Reproductive system (female) 1 female 
Uterus Reproductive system (female) 1 female 
 861 
  862 
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Table 2: The percentage of protein coding genes detected per tissue in the goat mini-863 
atlas dataset. 864 
Tissue Average no. of protein-

coding genes expressed 
(TPM > 1) in this tissue 

% of protein-coding 
genes expressed (TPM 
> 1) in this tissue 

Adrenal gland 14585 68.34 
Alveolar macrophage 11533 54.04 
BMDM - LPS (0 hours) 13253 62.1 
BMDM + LPS (7 hours) 13042 61.11 
Cerebellum 14959 70.09 
Colon large 14736 69.04 
Fallopian tube 14390 67.42 
Frontal lobe cortex 14757 69.14 
Ileum & Peyer’s patches 15268 71.54 
Kidney cortex 15223 71.33 
Liver 13497 63.24 
Ovary 14251 66.77 
Rumen 13642 63.92 
Skeletal muscle - longissimus dorsi 12276 57.52 
Skin 14892 69.77 
Spleen 14659 68.68 
Testes 15359 71.96 
Thymus 14484 67.86 
Uterine horn 14298 66.99 
Uterus 14298 66.99 
 865 
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Table 3: Annotation of the 20 largest network clusters in the goat mini-atlas dataset (> indicates decreasing expression profile). 866 
Cluster 
ID 

Number of 
Genes 

Profile Description Class Enriched GO terms 

1 1795 Cortex>cerebellum Brain cognition, neurotransmitter transport, synaptic 
transmission 

2 1395 Thymus>Spleen>Ileum Cell-Cycle DNA-dependent DNA replication, DNA repair 
3 795 General House Keeping mRNA processing, regulation of RNA splicing 
4 505 Liver Oxidative-Phosphorylation oxidation-reduction process, fatty acid oxidation 
5 494 General House Keeping RNA binding, nucleolus 
6 481 Testes Male Reproduction male meiosis, spermatogenesis 
7 449 Skin > Rumen Epithelial skin morphogenesis, keratinocyte differentiation 
8 374 Fallopian Tube Motile Cilia motile cilium, ciliary basal body 
9 351 Skeletal muscle Muscle muscle fibre development, motor activity 

10 337 Spleen>Ileum Immune immune response, B-cell activation, cytokine activity 
11 290 Macrophages Immune response to lipopolysaccharide, phagocytic vesicle 
12 241 Colon Large Gastrointestinal tract microvillus, actin filament bundle 
13 226 Rumen > Skin Gastrointestinal/Epithelial epidermis development, chloride channel activity 
14 219 Adrenal Gland Endocrine oxidation-reduction process, sterol metabolic process 
15 211 BMDMs Fibroblasts collagen binding, positive regulation of fibroblast 

proliferation 
16 134 General Ribosomal ribosomal large subunit biogenesis, ribosome 
17 133 Kidney Cortex Mesoendonephric 

organogenesis 
sodium ion homeostasis, skeletal system 
morphogenesis 

18 119 Ovary Oogenesis growth factor activity, nucleosome disassembly 
19 113 Ileum>Spleen>Thymus Immune B-cell proliferation, cytokine activity 
20 108 Uterus, Uterine Horn Organogenesis tissue remodelling, bone morphogenesis 
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 867 

 868 
 869 
Figure 1: Gene-to-gene network graph of the goat mini-atlas dataset. Each ‘node’ 870 
represents a gene and each ‘edge’ represents correlations between individual measurements 871 
above the set threshold. The graph comprised 16,172 nodes (genes) and 1,574,259 edges 872 
(Pearson correlations ≥ 0.83), MCL inflation = 2.2, Pearson Product Correlation Co-efficient 873 
= 0.83. 874 
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 875 
Figure 2: Differentially expressed genes (FDR<10%) between goat and sheep alveolar macrophages. The top 25 up-regulated in goat 876 
relative to sheep (red) and the top 25 down-regulated in goat relative to sheep (blue) are shown. 877 
  878 

.CC-BY 4.0 International licenseIt is made available under a 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/711127doi: bioRxiv preprint first posted online Jul. 25, 2019; 

http://dx.doi.org/10.1101/711127
http://creativecommons.org/licenses/by/4.0/


 24 

 879 
Figure 3: Comparative analysis of differentially expressed genes (FDR<10%, Log2FC>=2) in goat and sheep BMDM. The genes which 880 
showed the highest level of dissimilarity in response to LPS between goats and sheep (Dis_Index>=2) are shown. Top right quadrant: genes that 881 
were up-regulated in both goat and sheep but differed in their level of induction between the two species. Top left quadrant: genes that were up-882 
regulated in sheep but down-regulated in goat. Bottom right quadrant: genes up-regulated in goat, but down-regulated in sheep. 883 
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 884 

 885 
 886 
 887 
Figure 4: Expression levels (transcripts per million) of genes involved in functional 888 
traits in goats to illustrate tissue and cell type or ubiquitous expression patterns. A: 889 
IGF2 is associated with growth rate; B: MSTN is associated with muscle characteristics; C: 890 
GDF9 is associated with ovulation rate; D: BMPR1 is associated with fecundity; E: MMP9 is 891 
associated with resistance to mastitis; F: DGAT1 is associated with fat content in goat milk. 892 
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 893 
Figure 5: Genes exhibiting the largest mean allelic imbalance (i.e. allele-specific 894 
expression averaged across all heterozygote sites within each gene) across 17 tissues and one 895 
cell type from the goat mini-atlas dataset visualised as a heatmap (red indicating the highest 896 
level of mean allelic imbalance and green the least).   897 
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 899 
 900 
Figure 6: Correlation of ASE profiles shared across tissues/cell types from the goat 901 
mini-atlas dataset. Each section represents the genes showing significant allelic imbalance 902 
within the tissue. The chords represent the correlation coefficient (CC<0.85) of ASE profiles 903 
shared between the samples (i.e. the proportion of genes showing co-imbalance). 904 
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Supplemental Figures 916 
S1 Figure: Sample-to-sample network graph of the samples included in the goat mini-atlas 917 
dataset. 918 
S2 Figure: Distribution of heterozygote (bi-allelic) sites per genes for each of the eight 919 
individual goats included in the study. The bi-allelic sites were compared to the ARS1 920 
Ensembl v96 reference variant call format (VCF) track which includes 22,379 genes and 921 
more than 12 million heterozygote sites. On average for each animal 3,004,867 heterozygote 922 
loci were examined for allelic imbalance. The ARS1 reference (Ref) distribution is shown in 923 
blue with the distribution for each individual goat included in this study (male m1-7, female 924 
f8) overlaid in red. 925 
 926 
Supplemental Datasets 927 
S1 Dataset: Gene expression estimates for AMs and BMDMs (+/- LPS) unaveraged across 928 
biological replicates for the subset of sheep gene expression atlas dataset included for 929 
comparative analysis. 930 
S2 Dataset: Gene expression estimates unaveraged across biological replicates for the goat 931 
mini-atlas dataset. 932 
S3 Dataset: Gene expression estimates averaged across biological replicates for the goat 933 
mini-atlas dataset.  934 
S4 Dataset: Estimates of allele-specific expression for each sample from the goat mini-atlas 935 
dataset using the GeneiASE model. 936 
 937 
Supplemental Tables 938 
S1 Table: Quantity and quality measurements of isolated RNA from all tissue and cell-types 939 
in the goat mini-atlas dataset. 940 
S2 Table: Summary of transcript models generated using the HISAT2/stringtie pipeline in 941 
comparison with gene models in the reference genome ARS1. 942 
S3 Table: Novel transcript models generated for goat using the HISAT2/stringtie pipeline. 943 
S4 Table: A list of all undetected genes in the goat mini-atlas dataset. 944 
S5 Table: A list of all undetected transcripts in the goat mini-atlas dataset. 945 
S6 Table: The proportion of transcripts with detectable expression (TPM >1) in the goat 946 
mini-atlas relative to the ARS1 reference transcriptome at the gene level. 947 
S7 Table: The proportion of transcripts with detectable expression (TPM >1) in the goat 948 
mini-atlas relative to the ARS1 reference transcriptome at the transcript level. 949 
S8 Table: A short-list containing a conservative set of gene annotations using the goat mini-950 
atlas dataset. 951 
S9 Table: The ‘long’ list of genes annotated using the goat mini-atlas dataset. 952 
S10 Table: A list of unannotated genes associated with a gene description, but not necessarily 953 
an HGNC symbol. 954 
S11 Table: Genes included in each cluster from the network cluster analysis of the goat mini-955 
atlas dataset. 956 
S12 Table: GO term enrichment of each of the clusters from the network cluster analysis of 957 
the goat mini-atlas dataset. 958 
S13 Table: Differentially expressed genes in goat and sheep alveolar macrophages. 959 
S14 Table: Differentially expressed genes in goat (A) and sheep (B) bone marrow derived 960 
macrophages (BMDM) (+/-) LPS. 961 
S15 Table: Genes that exhibited significant differences between goats and sheep (FDR<10%, 962 
Log2FC>=2) in response to LPS. 963 
 964 
 965 
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