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Dynamic optical rectification and delivery of active
particles†

Nick Koumakis,a Aidan T. Brown,a Jochen Arlt,a Samuel E. Griffiths,a Vincent A.
Martinez,a and Wilson C. K. Poona

We use moving light patterns to control the motion of Escherichia coli bacteria whose motility is
photo-activated. Varying the pattern speed controls the magnitude and direction of the bacterial
flux, and therefore the accumulation of cells in up- and down-stream reservoirs. We validate our
results with two-dimensional simulations and a 1-dimensional analytic model, and use these to
explore parameter space. We find that cell accumulation is controlled by a competition between
directed flux and undirected, stochastic transport. Our results point to a number of design prin-
ciples for using moving light patterns and light-activated micro-swimmers in a range of practical
applications.

1 Introduction
Active colloids1 are fundamentally interesting, exhibiting phe-
nomena not found in equilibrium systems such as currents and
unique kinds of pattern formation2. Such phenomena have been
applied, e.g., to concentrate particles3 or separate them by size,
actuate micro-machines4, or self-assemble microstructures. For
example, V-shaped ‘funnel gates’ fabricated using soft lithogra-
phy can rectify the motion of randomly-swimming bacteria3, pro-
ducing steady currents or spatial patterns. Similar effects can be
achieved by applying a spatial light pattern to bacteria or other
active colloids whose speed v depends on the intensity of incident
light, I. If dv/dI > 0, bacteria in illuminated regions swim un-
til they encounter a darker region, where they are slowed down.
Cells then accumulate in the dark regions because they swim out
of the light regions and stop in the dark. Quantitatively, this leads
to the relationship ρv = constant5,6 where ρ is the spatially vary-
ing bacterial concentration.

This technique for ‘painting patterns with bacteria’ has been
demonstrated using Escherichia coli in which the proton motive
force (PMF) driving swimming is generated by light-powered
proteorhodopsin (PR)6–8. Potential applications include direct-
ing swimmers into compartments3,9 to actuate micro-mechanical
components4. Such ‘bacterial painting’ becomes significantly
more versatile if the template is dynamic. Thus, globally time-
varying light fields projected onto PR-driven E. coli can ‘erase’ and
‘re-paint’ patterns7. Here, we study the response of PR-driven E.
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coli to spatio-temporally varying light fields, specifically, wave-like
propagating periodic patterns of illumination. By using a combi-
nation of experiments, theory and simulations we uncover a rich
array of often counter-intuitive phenomena.

α α

Fig. 1 (a) 1D schematic of a translating square-wave light field with co-
(red) and counter-moving (blue) bacteria. (b) Kymograph of a light field
moving at speed u (duty cycle α = 0.5) with light regions as white and
dark ones with grey stripes and with trajectories of non-tumbling right
(red) and left (blue) swimmers at speed v = u (i.e. γ ≡ u/v = 1) and the
mean trajectory (magenta). (c) Kymograph for γ = 0.2 and 2, and α = 0.5.
(d) Schematic of the 2D light pattern in our experiments.

To motivate our work, consider a 1D model solvable by inspec-
tion. Bacteria swim right (+x, ⇀) or left (−x, ↽) at speed v when
illuminated, and stop completely in the dark; the (equal) ⇀ and
↽ populations do not exchange. Now impose and translate at
speed u > 0 a square-wave light pattern, Fig. 1a. If γ = u/v = 1,
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⇀ cells keep up with the moving light field in steady state, and
so maintain their speed v, whereas ↽ cells spend only some of
their time in the light, determined by the duty cycle (fractional
on time) of the pattern, α. This results in a net positive cell flux,
i.e., a light pattern translating at γ = 1 rectifies the cells’ motion
and transports them with the pattern. We can represent this be-
haviour in a space-time plot (kymograph), Fig. 1b.

Optimal rectification is obtained for γ ≈ 1: For γ � 1, ⇀ cells
remain trapped at the slowly-moving light-dark interface, while
the ↽ cells move faster through the light regions; For γ � 1, the
light field moves much faster than the cells, so both ⇀ and ↽ cells
spend ≈ 50% time in the dark and the light. Either way, the net
flux falls, Fig. 1c. This qualitative picture has been quantified pre-
viously in simulations and theoretically10,11. Counter-intuitively,
these works also predicted that a reversal of the flux direction is
possible for γ � 1, and showed that this was dependent on other
parameters such as the bacterial tumbling rate10 or the speed of
bacteria in the dark11.

In this paper, we first perform bacterial experiments designed
to quantitatively test these theoretical predictions. Our exper-
iments reproduce the optimal rectification suggested by the in-
tuitive picture, and identify flux reversal at low pattern speeds.
Simulations of our system quantitatively reproduce our experi-
mental results, but only when we include a biological delay in the
bacterial response to light, and translational thermal diffusion of
the bacteria. We go on to explore the wider parameter space us-
ing a one-dimensional analytical theory. This allows us to explain
various mechanisms for flux reversal, controlled, e.g., by rota-
tional diffusion or the duty cycle of the pattern. Further, we show
that the parameter dependence of the steady-state downstream
accumulation of bacteria, i.e., their ability to form patterns, can
be quite different, and even reversed, from the parameter depen-
dence of the flux in periodic boundary conditions, which theo-
retical studies generally discuss10,11. Based on these findings,
we articulate design principles for the transport of light-activated
swimmers using moving patterns of illumination.

2 Materials and methods
The bodies of E. coli bacteria12 are ≈ 2µm× 1µm× 1µm sphe-
rocylinders. They swim by using their PMF (of ≈ −150mV)
to power membrane-embedded rotary motors which rotate ≈ 7-
10µm helical flagella. Unusually for bacteria, E. coli can generate
a PMF without external nutrients13 by using internal resources
and O2 to pump protons out of the cell. Without O2, swimming
ceases12 unless there is another source of PMF, as in cells ex-
pressing PR14, a photon-driven proton pump. Thus, under anaer-
obic conditions, PR-expressing E. coli cells swim only when illu-
minated, which is analogous to synthetic light-activated swim-
mers15,16.

We inserted a PR-bearing plasmid into E. coli AB1157, and
deleted the cheY gene and the unc operon encoding the ATP syn-
thase complex to give strain AD107. The former deletion turns
wild-type run-and-tumblers into smooth swimmers, while the lat-
ter gives fast stopping whenever illumination ceases7.

Overnight cultures were grown aerobically in 10 ml
Luria–Bertani broth at 30oC. A fresh culture was inoculated at

1:100 dilution of the pre-grown cells in 35 ml tryptone broth and
grown for 4 h. The production of PR was induced by adding
arabinose to a concentration of 1 mM, as well as the necessary
cofactor all-trans-retinal to 10µM in the growth medium. Cells
were incubated under the same conditions for a further hour
to allow protein expression to take place and then transferred
to motility buffer. A single filtration was used to prepare high
density stock solutions (optical density≈10) which were diluted
with phosphate motility buffer (MB, pH 7.0, 6.2 mM K2HPO4,
3.8 mM KH2PO4, 67 mM NaCl and 0.1 mM EDTA) to an optical
density ≈ 6 at 600 nm (≈ 0.8 vol.% cell bodies12). 2 µL aliquots
sealed into 20 µm-thick, ≈ 10mm wide, flat glass capillaries were
observed in phase contrast under red illumination using a PF
10×/0.3 NA objective on a Nikon TE2000 microscope. Movies
were recorded with a high speed CMOS MC1462 Mikrotron cam-
era. Swimming stopped a few minutes after sealing due to O2
depletion.

After leaving these cells in the dark for a further 10 min, uni-
form green illumination was turned on (510-560 nm, correspond-
ing to peak PR absorption; ≈ 5 mWcm−2 at the sample). Dif-
ferential dynamic microscopy (DDM)17,18 returned an increasing
mean swimming speed v̄, saturating at ≈ 6.5µms−1, with stan-
dard deviation ≈ 2.5µms−1 and a typical fraction β ≈ 25% of
non-motile bacteria (v̄ is averaged over the motile bacteria only).
The non-motile bacteria have diffusivity DT ≈ 0.15µm2 s−1. In
this work, we use the terms ‘motile/non-motile’ to refer to cells
that are able/unable to swim in the presence of green light, while
the descriptors ‘swimmers/non-swimmers‘ are reserved for those
motile cells that are transiently powered/not-powered by external
illumination.

A spatial light modulator projected a 4× 4 array of static and
dynamic patterns onto this initially uniform field of swimmers
and non-motile cells. Each pattern featured a central dark square
(side l = 85µm) inside an outer square (side L = 300µm), Fig. 1d.
In the static pattern, the square annulus was uniformly illumi-
nated. The dynamic pattern comprised concentric square annuli
of equal width Λ/2 = 40µm (α = 0.5) propagating inwards at
speed u. The area outside the patterns was dark in all cases.
We chose a square-wave intensity pattern because its predicted
flux is higher than other waveforms previously considered, e.g.,
sinusoidal11. Moreover, the fact that the swimming speed is non-
linearly dependent on the light intensity7 means that any pattern
apart from a square-wave pattern will be distorted, complicating
the experiment and analysis.

In our setup, the local intensity variance in the microscopy im-
age, σ2, has previously been found to be proportional to the local
cell density7 (See SI for details). Here, we are interested in the
density ρin(t) of motile cells in the central square of the pattern

ρin(t) = f σ
2
in(t) [1−βin(t)] , (1)

where f is a constant of proportionality, and σ2
in and βin are the

local variance in pixel intensity averaged over the inner square,
and the motile fraction in the inner square, respectively. We as-
sume zero net transport of non-motile cells, i.e., βin(t)σ2

in(t) =
βin(0)σ2

in(0), and calculate the relative accumulation of motile
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Fig. 2 (a) Phase contrast microscopy snapshots of a static pattern, and
a dynamic pattern with u = 2.25 µm/s (γ = u/v̄ = 0.35, with v̄ = 6.5 µm/s).
(b) Experimental normalized density ρ̃ at the center of the pattern as a
function of time for static and dynamic patterns. (c) 2D simulated ρ̃ for
a dynamic (u = 2.0 µm/s, γ = 0.31) and a static pattern, with (dots) and
without (dashes) thermal motion.

cells averaged over the inner square:

ρ̃(t)≡ ρin(t)−ρin(0)
ρin(t)+ρin(0)

=
σ2

in(t)−σ2
in(0)

σ2
in(t)+σ2

in(0)(1−2βin(0))
. (2)

Initially, ρin(0) = ρout(0) = ρ0, the uniform motile density every-
where. Subsequently, we find that the outer motile cell density
stays approximately constant, i.e., ρout(t) ∼ ρ0 (see SI), so that
ρ̃(t) also corresponds to the contrast between the inside and out-
side of the pattern, i.e., ρ̃(t) = (ρin(t)−ρout(t))/(ρin(t)+ρout(t)).
Our choice of normalization means that ρ̃ =±1 for complete rec-
tification in the inwards or outwards directions respectively.

3 Results
3.1 Rectification in 2D experiments and simulations
Fig. 2 shows data for u = 2.25µms−1, corresponding to γ = 0.35.
Imposing a static pattern ‘paints’ a central dark square and the
outer square acquires a dark edge, Fig. 2a, as previously7, be-
cause cells in the bright (B) annulus swim into the dark (D) cen-
tral square and outer regions in roughly equal numbers and stop
upon arrival. Because the central square is much smaller than
the outer region this initial influx of swimmers from the bright
annulus gives a sharp increase in ρin and therefore ρ̃, Fig. 2b (•).
Thereafter, ρ̃ decreases slowly as accumulated non-swimmers dif-
fuse back out into the bright annulus and swim to the outside of
the annulus. Presumably, at long times, a steady state obtains
where the B→ D active flux balances the D→ B diffusive flux, so
that we expect ρin(t → ∞) ≈ ρout(t → ∞) = ρ0, and ρ̃(t → ∞) = 0.
However, we cannot reach this limit experimentally because bac-
teria slow down and begin to aggregate with time, possibly due
to accumulated photo-damage. The contrast in the steady-state
‘static painting’ is due to the annulus, inhabited by a small amount
of non-motile cells and few swimmers in transit, so that ρann� ρ0.

The dynamic light pattern also accumulates cells in the central
square, Fig. 2a. The difference from the static case, already vis-

ible in the snapshots but highlighted in Fig. 2b, is that ρ̃(t) does
not decay after the initial increase, but reaches instead a finite
steady-state value. This enhancement of accumulation depends
non-monotonically on γ = u/v, Fig. 3a, and, counter-intuitively, it
reverses sign at γ � 1: cells are swept out of the central region
(ρ̃ < 0). Both of these features are clearly illustrated in Fig. 3c,
which shows that at both t =500 s and t =4000 s, ρ̃ is peaked as a
function of γ, and that at the later time ρ̃ < 0 when γ . 0.05 (see
SI movie 1).

Fig. 3 (a) Experimental time-dependent normalized density ρ̃(t) for pat-
tern speeds u =0.045, 2.25, 9 µm/s (γ = 0.007, 0.35, 1.4). (b) 2D simula-
tions (γ = 0.006, 0.31, 1.54). (c) Experimental ρ̃ as a function of pattern
speed for indicated times from experiments. (d) As in (c) but from sim-
ulations, and also results for DT = 0 and τA=τB=0. Arrows in (c) and (d)
correspond to the γ from (a) and (b). Error bars in c) and d) refer to the
standard deviation of the values taken in a ±100s window.

To explore these features, we simulated 2×104 non-interacting
swimmers in a 600×600 µm2 periodic box. Particle speeds vi are
drawn from an experimental Schultz distribution for our bacte-
ria17,18 (mean = 6.5 µms−1, 40% standard deviation). The dy-
namics of particle i obeys

ṙi = viAiBipi +
√

2DTξ T, (3)

θ̇i =
√

2DRξR, (4)

Ȧi = (I(ri)−Ai)/τA, (5)

Ḃi = (I(ri)−Bi)/τB, (6)

with ri and pi = (cosθi,sinθi) its position and propulsion direc-
tion respectively. ξ T is a two- and ξR is a one-dimensional unit-
variance temporally-uncorellated Gaussian noise term (in each di-
rection for ξ T). Translational, DT = 0.15µm2 s−1, and rotational,
DR = 0.05s−1, diffusivities reflect experimental values (see SI).
The normalized light intensity, I(ri, t)= 1 for bright and 0 for dark.
The two dynamical variables A and B reflect the observation7 that
two independent, internal processes control the response of our
cells to changes in the intensity of external illumination. We inde-
pendently measured τA = 1.6s and τB = 100s (see SI). Note that
in the instant-response limit (τA = τB = 0) this model reduces to
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the popular 2-dimensional active-Brownian-particle (ABP) model
that was previously used to study the effect of translating light
patterns10,11.

Coarse graining

a)

b)

Fig. 4 Schematic of coarse graining for 1-dimensional model. a) Bacte-
ria swim at speed v(x, t) and tumble at rate k in a light pattern translating
at speed u between two reservoirs with steady-state bacterial concentra-
tion ρout and ρin. b) After coarse graining, the bacteria are considered to
swim uniformly at the average speeds 〈v+〉 and 〈v−〉 they would obtain
from the same pattern moving with periodic boundary conditions.

Our simulations reproduce the observed rise and decay in ρ̃(t)
for the static pattern, Fig. 2c (×). The saturation behavior for
the dynamic pattern is also reproduced, Fig. 2c (×). Most visibly
in the decay of the static case, the simulated dynamics is slower
than experiments, by a factor of≈ 2, possibly due to our neglect of
cell-cell interactions, which are expected to lead to an increased
apparent diffusivity19. Even so, the semi-quantitative agreement
is gratifying given the simplicity of our model.

We also claimed that the diffusion of cells that had stopped
swimming in the dark was responsible for the observed non-
monotonicity in ρ̃(t) of the static pattern, Fig. 2b (•). Simulations
confirm this: setting DT = 0 removes the drop in ρ̃(t), Fig. 2c
(- - -). The effect of removing diffusion on the dynamic pattern
is to render the rise to saturation significantly more rapid, Fig. 2c
(- - -). Thus, a dynamic pattern has to work against translational
thermal diffusion, as identified previously10 (see SI movies 2, 3
and 4).

The simulations account well for the dynamics of ρ̃(t) at our
selected experimental u values, Fig. 3b, including the oscillations
at low u with a characteristic time = Λ/u ∼ 2× 103 s. These os-
cillations occur because as the band of light approaches the dark
centre, swimmers in the band are able to ‘tunnel through’ and
stop in the centre, increasing the accumulation transiently, until
the leading edge of the light band reaches the outer edge of the
dark centre. Now, thermal diffusion can transport cells from the
darkness to the light, whereupon they swim outwards, reducing
ρ in the central dark area (see SI movies 5 and 6).

Similarly, ρ̃(γ) is well reproduced over two orders of magnitude
in γ, for both t = 500 s and 4000 s, see Fig. 3c-d. In both cases γ ≈
0.3 is optimal for accumulation, and flux reversal (drainage of the

central square) occurs if γ . 0.1. Importantly, with DT = 0, Fig. 3d
(green), simulations show no flux reversal: bacteria transported
inwards cannot escape the inner square (see SI movie 7). Nor
does taking the instant-response limit τA,B = 0 give quantitative
agreement, Fig. 3d (black).

3.2 Exploring parameter space with a 1D analytic model

So far we have studied the effect of varying one parameter, the
pattern speed u = γv using 2D experiments and simulations. We
now turn away from experiments to construct an idealized 1D
analytic model, which will allow us to explore the wider parame-
ter space. Our calculations are based on recent analytical results
for light-activated particles in a 1D periodic moving light field11,
which is the one-dimensional version of our 2-dimensional simu-
lation model, but with instant bacterial response, no translational
diffusion, and rotational diffusion replaced by tumbling (the only
possibility in 1D). The 1-dimensional model was originally solved
for a square wave in periodic boundary conditions, and used to
show that flux inversion can occur if the bacteria have a finite
swimming speed in the dark. Here, our bacteria do not swim in
the dark, so we look at other mechanisms for flux inversion, no-
tably caused by the pattern’s duty cycle, α, or by the tumbling
rate of the bacteria. We also extend the analysis to account for
the non-periodic boundaries in our 2D experiments, which per-
mit accumulation.

In the original theory11, active point particles move right or left
at speed v in the light and v′ in the dark, but we set v′ = 0 here.
Particles reorient independently at rate k, which can be viewed
as a tumbling or rotational diffusion rate, non-dimensionalised
as κ ≡ kΛ/u (tumbling and rotational diffusion are indistinguish-
able in 1D). A periodic, square light pattern is imposed, moving
at speed u > 0, in whose comoving frame are periodic bound-
ary conditions (BCs) at x = 0 and x = Λ, with [0,αΛ) light and
[αΛ,Λ) dark. The Fokker-Planck equation (FPE) for this system
with α = 0.5 was solved11 to yield the average transport velocity,
〈v〉 (equivalently, the flux), in periodic boundary conditons.

In our experiments, we do not have periodic boundary condi-
tions, and we do not measure flux: instead we probe the density
difference between different regions, which is also the relevant
variable for pattern formation. We therefore extend the results
of11 (see SI) into a coarse-grained theory to predict density dif-
ferences. In detail, we calculate the concentration difference be-
tween either end of a finite square-wave illumination pattern of n
(not necessarily integer) periods moving from an ‘outer’ reservoir
at x = 0 to an ‘inner’ reservoir at x = L = Λn, see Fig. 4a. In the
moving region, 0 < x < L, we coarse-grain over the periodic dy-
namics by approximating all the bacteria in this region as having
uniform speeds given by the mean speeds 〈v+〉 and 〈v−〉 that ⇀
and ↽ bacteria, respectively, would have in the equivalent peri-
odic pattern, see Fig. 4. This approximation should be valid as
long as there are a sufficient number n of periods in the moving
pattern. The mean speeds 〈v+〉 and 〈v−〉 are obtained in the same
way as the overall mean speed 〈v〉 = (〈v+〉− 〈v−〉)/2 was in ref.
11. We give expressions for and outline the calculation of these
quantitities in the SI.
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α

α

Fig. 5 (a) 1D theory (lines) and simulations (points) of average particle
velocity (or flux) vs pattern speed for α = 0.5 and k = 0,0.01,0.1 and 1 s−1.
Inset: kymograph of a particle tumbling periodically at k = 0.07s−1 with
α = 0.5 and γ = 0.1. (b) As in (a) but for k = 0.01s−1 and α = 0.25,0.5 and
0.75. (c) Predicted critical γ for flux reversal, γ∗, vs k for different α (in
legend).

We are interested in concentration differences in steady state,
so we write down the resulting FPE for the time-invariant (coarse
grained) probability densities φ± in the lab frame

0 =
∂φ+

∂ t
=−〈v+〉

∂φ+

∂x
+

k
2
(φ−−φ+) ,

0 =
∂φ−
∂ t

= 〈v−〉
∂φ−
∂x

+
k
2
(φ+−φ−) . (7)

where the first term on the right-hand side accounts for advection
due to swimming, and the second accounts for tumbling between
the two orientations. BCs account for the reservoirs: the flux
j+(0) of ⇀ particles into the light-pattern at x = 0 is

j+(0) = φ+〈v+〉=Cρout , (8)

with ρout the bacterial density in the x = 0 reservoir, and C a con-
stant accounting for the rate at which bacteria exit the reservoirs
(the value of C does not affect the steady state provided C > 0;
this will be the case as long as there is any translational diffusion,
though we do not need to include this explicitly in the model).

Similarly, the flux of ↼ particles out of the x = L reservoir is

j−(L) =−φ−〈v−〉=−Cρin . (9)

The other condition is that steady state requires zero net flux ev-
erywhere, so j = j++ j− = 〈v+〉φ+−〈v−〉φ− = 0.

Solving Eq. (7) subject to these conditions yields an exponen-
tial density distribution across the moving part of the light-field

φ+ =
Cρout

〈v+〉
exp
[

kx〈v〉
〈v+〉〈v−〉

]
,

φ− =
Cρout

〈v−〉
exp
[

kx〈v〉
〈v+〉〈v−〉

]
, (10)

and an expression for the parameter of interest, the steady-state
accumulation ρ̃∞ = ρ̃(t→ ∞) (see Eq. (2))

ρ̃∞ = tanh
(

knΛ〈v〉
2〈v+〉〈v−〉

)
. (11)

This result can be understood as a balance between the per-
sistent particle flux, 〈v〉, and stochastic events where individual
particles traverse the pattern against the flux. This can be seen
most clearly in the case where the flux is strong in one direction,
with bacteria only occasionally moving against the flow, e.g., if
〈v−〉 � 〈v+〉. In this case, the probability of a bacterium which
leaves the outer reservoir reaching the inner reservoir is p+ ∼ 1,
whereas the probability p− of a bacterium passing in the oppo-
site direction without returning to the inner reservoir is much
smaller, and is approximately equal to the probability that zero
left-to-right tumbles occur within the time τ− = nΛ/〈v−〉 taken for
the bacterium to traverse this distance, i.e., p− ∼ exp(−kτ−/2).
The steady state requirement then gives ρin/ρout = p+/p− ∼
exp [knΛ/(2〈v−〉)], yielding ρ̃∞ ∼ tanh [knΛ/(4〈v−〉)], which is in
fact the limiting form of Eq. (11) for 〈v−〉 � 〈v+〉.

These theoretical results predict what happens when we vary α

and κ (by changing k or Λ or both), Fig. 5. In particular, the flux
reverses at a critical γ∗ < 1, Fig. 5a,b, that is k and α-dependent,
Fig. 5c. Under our v′ = 0 conditions, such reversal requires a finite
k (whereas for v′ > 0, reversal can occur at k = 011).

The speed reversal at k > 0 occurs, Fig. 5a, because of an asym-
metry in the effect of tumbling on the ⇀ and ↽ parts of the trajec-
tory, which is illustrated in the inset for regular (period 1/k) tum-
bling. Tumbling effectively retards particles more during ⇀ (red)
periods because they then become un-trapped from the moving
interface and so spend significant amounts of time static in the
dark. The effect on the ↽ (blue) part of the trajectory is weaker
because this part of the trajectory is already significantly in the
dark even without tumbles, so tumbling will not disturb the rela-
tively rapid runs through the light, lasting τlight = Λα/(u+v) until
the tumbling rate increases above the rate of this process, i.e.,
when kτlight & 1.

How the duty cycle α affects reversal, Fig. 5b, is illustrated by
the kymographs in Fig. 6a. For increasing α, ↼ particles spend
longer in the light (so the blue curve becomes steeper), whereas
⇀ particles trapped at the boundary are unaffected (the red curve
stays the same); hence the reversal point γ∗ shifts to higher values
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with increasing α.
Perhaps counter-intuitively, the accumulation ρ̃∞, Fig. 6b, c, is

not trivially related to the behavior of the flux, Fig. 5a, b. The
case of α = 0.5 is striking: the accumulation generally increases
with increasing k even though the flux decreases. This is mainly
because as the tumbling rate increases, the probability of a bac-
terium moving from one reservoir to the other, without tumbling,
decreases; hence, the number of events where bacteria ‘hop’ back
over the moving light field against the net flow also decreases. As
the tumbling rate rises, it thus becomes easier to maintain a con-
centration gradient, and this effect turns out to be stronger than
the simultaneous decrease of the flux.

To validate our analytics, we simulated a 1D system obey-
ing the same dynamical equations already used for 2D, but with
the reorientation, Eq. 4, replaced by a Poissonian tumbling pro-
cess, and with instant bacterial response, τA = τB = 0. This re-
produced the predicted fluxes exactly, Figs. 5a,b, as before11.
To extract ρ̃, we used simulations of a finite system, adding a
small DT = 0.01µm2 s−1 to allow the particles to escape 20µm-long
reservoirs. These simulations only approximately reproduced the
theory, Figs. 6b,c. This is reasonable, as the theory itself is an
approximation and we expect it to be exact only in the limit of
(i) many periods, i.e., n � 1, where the BCs become less im-
portant, and (ii) for limited accumulation each period, i.e., for
kΛ〈v〉/(〈v+〉〈v−〉)� 1, where it is valid to use a periodic approxi-
mation for the cell density distribution.

These results suggest that by tuning α and κ, it should be possi-
ble to exercise a great deal of control over how the accumulation
and flux vary with γ. This is significant because polydispersity in
e.g., speed and rotational diffusion rates are unavoidable, so that
one will be dealing with a wide γ distribution in practice, and the
ideal pattern design will depend on the goal. For example, con-
centrating all bacteria in a single target region requires bacteria
with a wide range of speeds to be strongly rectified in the same
direction, corresponding to the wide γ plateau seen at low α or
high Λ in Fig. 6b, c. Alternatively, to separate a sample on the
basis of speed when there is also polydispersity in tumbling or
rotational diffusion, the value of α = 0.75 would be ideal, as the
reversal point is then independent of k, see Fig. 5c.

4 Summary and conclusions
Recent numerical10 and analytical work11 has explored the effect
of moving patterns of light-dark illumination on light-activated
swimmers, and predicted the rectification of the random motion
of swimmers in the direction of the moving light pattern, and
a counter-intuitive regime of reverse rectification at low pattern
speeds. We have performed experiments and simulations in 2D
to verify that rectification in both directions does indeed occur.
The simulations included a finite bacterial response time with two
timescales accounting for distinct biological processes, which we
found was necessary to faithfully reproduce the experimental re-
sults.

We have also generalized the recent 1-dimensional analytic the-
ory11 to predict not only the swimmer flux, but differences in
swimmer densities for different spatial regions, the latter being a
more natural experimental variable, and the variable directly rel-

α α

α

Fig. 6 (a) Kymographs for α = 0.3 and α = 0.7 with traces of non-
tumbling particles moving left (blue) and right (red) for γ � 1. Magenta:
the average of the two tracks. (b) 1D simulation and theory of ρ̃ vs pat-
tern speed for α = 0.5 and k = 0,0.01,0.1 and 1 s−1. (c) As in (b) but for
k = 0.01s−1 and α = 0.25,0.5 and 0.75. The colour coding of b) follows
that of fig. 5a, while c) follows that of fig. 5b and c.

evant to pattern formation. We used this 1D theory to explore a
wide parameter range and considered in detail two mechanisms
of flux inversion: via bacterial tumbling, and via asymmetry in the
waveform (i.e. the duty cycle α). To the best of our knowledge,
the effects of waveform asymmetry have not been previously con-
sidered in the theoretical or simulation literature10,11. We expect
that the ability to achieve precise control of bacterial flux by sev-
eral means will allow for crucial flexibility in future studies.

Indeed, our results point to a number of design principles for
particle transport using moving light fields. If the target appli-
cation requires accumulation, γ ≈ 1 is a necessity, however any
light control delays, i.e. deviations from τA = τB = 0 are ex-
pected to shift the γ of optimum accumulation. Maximal ac-
cumulation is also achieved by minimizing the tumble rate and
regulating α. Additionally, e.g., if the possibility of flux reversal
is important, it will be necessary to use Brownian particles, be-
cause setting DT = 0 produced no reversal in our simulations. It
is likely that some, if not all, of these principles will be applica-
ble more widely to the control of active particles in other kinds of
spatiotemporally-varying fields, e.g., electrical20 or ultrasound21.
Spatiotemporally-varying fields, in turn, may become a standard
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component in developing applications such as the separation of
polydisperse mixtures, the directed-assembly of active particles,
and the dynamic actuation and control of microscopic machines.
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