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Abstract
This paper presents a proof-of-concept of the idea of using bulk high-temperature
superconducting (HTS) materials as quasi-permanent magnets that would form, in the future, an
integral part of an advanced Lorentz force velocimetry (LFV) system. The experiments,
calculations and numerical simulations are performed in accordance with the fundamental theory
of LFV, whereby a moving metal rod passes through a static magnetic field, in our case
generated by the bulk HTSs. The bulk HTS magnet system (MS) consists of two Y–Ba–Cu–O
samples in the form of bulk cylindrical discs, which are encapsulated in an aluminium holder and
wrapped with styrofoam. The aluminium holder is designed to locate the bulk HTS magnets on
either side of the metal rod. After field cooling magnetisation with an applied field of 1.5 T at
77 K, the bulk HTS MS provides a quasi-permanent magnetic field over 240 s, enabling Lorentz
force measurements to be carried out with a constant velocity of the metal rod. Two sets of
Lorentz force measurements with copper and aluminium rods with velocities ranging from
approximately 54–81 mm s−1 were performed. The obtained results, which are validated using a
numerical model developed in COMSOL Multiphysics, demonstrate the linear relationship
between the Lorentz force and velocity of the moving conductor. Finally, the potential of
generating very high magnetic fields using bulk HTS that would enable LFV in even weakly-
conducting and slow-flowing fluids, e.g., glass melts, is discussed.

Keywords: Lorentz force velocimetry, bulk high-temperature superconductors, flow rate
measurement, glass melts, trapped field magnets, numerical simulation, finite-element method

(Some figures may appear in colour only in the online journal)

1. Introduction

Velocity or flow rate measurement of fluids is of great
importance to industry because it improves the reliability of
accounting and facilitates stricter control of production pro-
cesses. In particular, there is a growing need for non-invasive
measurements, in view of the hygienic requirements in the
pharmaceutical and food industries [1]. Furthermore, there is

a demand for a non-contact measurement method in several
other industrial sectors (see table 1):

(i) liquid metals for high-quality aluminium, cooper and
steel production [2];

(ii) glass melts for the manufacturing of high-quality glass
products [3, 4];

(iii) molten salt energy or storage systems [5].

Currently-used flow measurement techniques (e.g. mag-
neto-inductive) require an electrical contact to the wall of the
channel directly to the fluid [6, 7], or when using optical
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methods, the wall should be transparent. In addition, the fluid
itself can impose limitations, especially when it is opaque, hot
or chemically aggressive.

To overcome this limitation, Lorentz force velocimetry
(LFV) has been introduced and studied in recent years,
extensively in the pursuit of the non-invasive measurements
of the velocity or flow rate in opaque and aggressive fluids [2,
8–14]. The LFV working principle relies on measuring the
force, namely the Lorentz force, that is generated by the
relative motion of an electrically conductive medium through
a transversely applied magnetic field. The theory of LFV was
introduced in [8] and expressed through the scaling law:

F u B V 1L
2s~ · · · ( )

where the Lorentz force FL depends linearly on electrical
conductivity σ, mean flow velocity u, magnetic flux density B
and a characteristic volume V. By measuring the resultant
reaction force for a prescribed magnetic flux density and
known electrical conductivity, it is possible to estimate the

mean flow velocity of the fluid. It should be stressed that
equation (1) holds for stationary flow or for the steady state
motion of a solid conductor of a constant cross-section
[8, 9, 15]. Figure 1(a) illustrates the LFV principle: the pri-
mary magnetic field (shown by the B) is generated by a
magnet system and when the moving conductor passes
through this magnet system, the interaction between induced
eddy currents and the primary magnetic field causes a
retarding force to act on the moving conductor [8]. In
accordance with Newton’s third law, a force (shown by the FL
vector) with a magnitude equal to the retarding force, but in
the opposite direction, acts on the magnet system along the
moving direction.

It has been shown that LFV works well for liquid metals
due to their relatively high electrical conductance (σ∼106

S m−1) [2, 9, 10]. However, in case of weakly-conducting
and slow-flowing fluids, LFV treats the measurement of tiny
forces down to 10 nN, depending on the fluid velocity and
electrical conductivity (see table 1). The experimental

Figure 1. (a) Schematic of the LFV proof-of-concept. (b) Photograph of the realised LFV experimental setup, which consists of five main
components: (1) HTS magnet system, (2) force sensor, (3) metal rod, (4) linear drive and (5) aluminium rack.

Table 1. Classification of aggressive and opaque fluids with respect to the measurement forces resulting from equation (1) (with B=0.1 T
and V=10−3 m3).

Industrial sector Fluid type σ (S m−1) u (m s−1) FL (N)

Material inspection Solid metal 107 1 102

Metallurgy Liquid metal 106 1 101

Chemistry Acid, base 102 1 10−3

Glass/semiconductor Glass melts 101 10−2 10−6

Pharmacy/food Ultra pure water 10−6 1 10−11
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investigation of LFV for salted water (as a model fluid) of
varying electrical conductivity and flow velocity was reported
in several past works [11–14]. This was realised by
employing a high-precision force measurement system
(FMS), i.e. electromagnetic force compensated weighing cell
(Sartorius Lab Instruments), in a combination with an opti-
mised Halbach array of permanent magnets (PMs) [16] of
1 kg. The PMs were placed at the minimum distance from the
flowing salted water, thereby providing effective interaction
of the magnetic flux density with the flow volume. However,
in the case of aggressive fluids (i.e. glass melts) the realization
of close magnetic interaction with the fluid is not possible due
to the large isolation walls. Furthermore, the surface magnetic
flux density of the strongest available NdFeB PMs is limited
to about 0.5 T [17].

Hence, even in early works on LFV [11–14, 18], the
prospective idea to employ bulk HTS magnets has been
proposed, because of their ability to act as much stronger
trapped field magnets. Record trapped fields over 17 T using
field cooling (FC) magnetisation was achieved in [19, 20],
whilst a maximum trapped field over 5 T was reported in [21]
using compact and fast pulsed field magnetisation. Further-
more, bulk HTS magnets continue to be investigated as a
replacement for conventional PMs in a variety of applications
[22–34].

In contrast to PMs, the bulk HTS magnet has a char-
acteristic feature of generating a conically-shaped trapped
magnetic flux density, BT, distribution, that has a sharp field
gradient [35]. Whether this feature adequately replicates the
LFV theory [8] (the linear relationship between FL and the
product σ·u·B2 in equation (1)) is one question to be
addressed by current experimental efforts. Hence, the main
objective of this study is to examine the feasibility of bulk
HTS magnets as a substitute for existing NdFeB PMs in LFV.

The paper is organized as follows: section 2 presents the
experimental setup, including the FMS and the design of
the bulk HTS MS. This includes the method of cooling and
magnetising the bulks as trapped field magnets, as well as the
magnetic field distribution from the magnets. In particular,
section 2.4 gives details on the Lorentz force measurements.
A numerical model in COMSOL Multiphysics is then intro-
duced in section 3 to validate the experimental results and the
theory of LFV as applied to this system. Finally, section 4
discusses the obtained experimental results and ends with a
view to further developing the system practically in section 5.

2. Experimental

2.1. Overview

The experiments were carried out using a ‘dry calibration’
setup [10, 36], developed at the Department of Engineering,
Techniche Universität Ilmenau, but upgraded with the bulk
HTS MS and an appropriate load cell for the force mea-
surements. The idea of the ‘dry calibration’ implies the
replacement of a fluid flow with the controlled motion of a
solid conductor (e.g. metal rod) of a fixed geometry [10]. This

enables a fairly straightforward way of carrying out funda-
mental LFV measurements.

2.2. Experimental set up

Figure 1 shows a schematic diagram and photograph of the
experimental setup used to test LFV using the bulk HTS MS.
The setup consists of five main components: (1) bulk HTS
MS, (2) load cell, (3) metal rod, (4) linear drive and (5)
aluminium rack. The experimental procedure is fully auto-
mated: an IBA-Automation environment controls the linear
drive and is used for data acquisition [37]. The linear drive
executes a repetitive motion of the metal rod with a prescribed
constant velocity. At first, it moves downwards, then reverses
its direction and moves back to its initial position. The
cylindrical long metal rods have a length of 1000 mm and a
diameter of 40 mm. Two types of metal rods were used:
copper with an electrical conductivity of σCu=58.96±
0.20MSm−1 and aluminium alloy (AlMgSi) with σAl=
19.43±0.03MSm−1 [37]. The mean velocities of the
copper rod were u=[54; 64; 76; 81] mm s−1. For the
aluminium rod, FL measurements with only two velocities
of u=[70; 81] mm s−1 were possible, due to its lower
conductivity and limitations related to the resolution of the
present LFV measurement system. Note, the metal rod starts
its motion being z=+165 mm distant from the centre of the
bulk HTS MS, whilst the distances between the surfaces of
the bulk HTS and the metal rod is y=+12 mm on both sides,
as shown in figure 1(a).

A commercial load cell (Model PW6D, Hottinger Baldwin
Messtechnik GmbH) combined with an analogue measuring
amplifier (SOEMER Messtechnik GmbH) was used for the
force measurements. The force is measured in terms of a
voltage with the accuracy class C3. In-situ force–voltage
calibration was performed using E2 class certified calibration
masses of 5, 10, 20 and 100 g. Details on the force measure-
ment calibration are provided in appendix A1.

2.3. Bulk high-temperature superconducting magnet system

The bulk HTS MS consists of two Y–Ba–Cu–O samples in
the form of a cylindrical disc with a diameter of 46 mm and a
thickness of 16 mm, provided by Adelwitz Technologiezen-
trum GmbH. The Y–Ba–Cu–O bulks were encapsulated in an
aluminium holder and arranged opposite each other with a
distance of 64 mm between. The aluminium holders were
wrapped in styrofoam and radiation shielding tape, in order to
reduce warming to room temperature. A G-10 plate of
thickness of 10 mm was used to prevent heat transfer from the
HTS MS to the load cell.

The bulk HTS MS must be magnetised before coupling
with the force sensor. The magnetisation was carried out in the
room temperature bore of a superconducting solenoid magnet
(Cryogenics Ltd., London, UK) using FC magnetisation: at
first, an applied field of BA=1.5 T was generated; then,
the bulk HTS MS was cooled down to 77 K. Cooling was
achieved by immersing the entire HTS MS in an open
styrofoam container with liquid nitrogen (LN2), which was
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refilled periodically, due to the evaporation of LN2. After-
wards, BA was ramped down at a ramp rate of 0.092 Tmin−1.
A certain magnetic flux density BT can be retained in the
bulks, because of the trapped flux and resultant induced
superconducting current. When BA reduced to zero, the BT

(hereafter BT indicates the By-component of B) distribution
was measured using a scanning Hall probe arrangement to
characterise the bulk HTS.

At first, BT was measured for each bulk HTS separately,
then for the gap between the two magnetised bulks in the HTS
MS. The peak trapped magnetic flux density BT(y) for each
bulk HTS as a function of distance (along the y-axis) is shown
in figure 2(a). A maximum field of 1.08 T (left) and 0.8 T
(right) at the bulk surfaces was recorded for each bulk HTS,
respectively. The magnetic flux distribution BT(x, y) in the
gap of the bulk HTS MS is presented in figure 2(b). It is
qualitatively consistent with data reported in [24, 38–40],
where a similar bulk HTS face-to-face arrangement was
employed. The relatively large gap between the bulk HTSs in
this study was required to enable the unobstructed motion of
the metal rod through the bulk HTS MS (see figure 1). In
future studies, this gap should be minimised for the proper
utilisation of the magnetic field, since the maximum trapped
magnetic flux density exponentially decreases with increasing
distance (see figure 2(a)). To achieve this, a novel cooling
system for the bulk HTS MS must be developed.

2.4. Lorentz force measurements

When the bulk HTS MS is coupled with the load cell and
mounted to the LFV setup, continuous cooling in a LN2 bath
is not possible, because of the mass and volume restriction of

the load cell. Hence, it was necessary during the force mea-
surements to extract the bulk HTS MS from its LN2 bath. The
bulk HTS MS holds a trapped field for a specific period of
time until it begins to warm up to room temperature, during
which LFV measurements for one assigned velocity are per-
formed. In addition, the temperature of the system during
LFV measurements was monitored with a Cernox sensor.

An example of the periodic rod motion L(t) for a velocity
of u=54 mm s−1 and the corresponding time sequence of
the Lorentz force measurements is depicted in figure 3(a). The
experimental procedure is as follows:

(i) [t0=0; t1=5 s]—extraction of the magnetised bulk
HTS MS from the LN2 bath;

(ii) [t1=5; t2=23 s]—coupling with the force sensor and
beginning motion of the rod;

(iii) [t2=23; t3=500 s]—Lorentz force measurements;
(iv) [t3=500 s]—stopping the rod motion and decoupling

of the bulk HTS MS.

In the future, a more practical design of the bulk HTS MS
with robust and long-term operation is required at tempera-
tures T<77 K, hence cryogenic refrigeration in a compact
and light-weight cryostat is an issue to be resolved.

Figure 3(b) shows the time dependent data for BT(t) and
T(t) (see the arrow, different scales are used) in the gap of the
MS in the vicinity (y≈25 mm, equivalent to 7 mm from the
bulk surface) of the one bulk HTS. BT(t) remains almost
constant up to 240 s, and then gradually reduces to zero due to
warming at room temperature and flux creep [41]. Although
the direct temperature measurement of the bulk HTS during
the FL(t) experiments was not performed, its influence on the
HTS bulks is indirectly included in the measured BT(t)

Figure 2. (a) The peak trapped magnetic flux density BT(y) for each bulk HTS as a function of distance (along the y-axis) with a maximum
field of 1.08 T (left) and 0.8 T (right) at the bulk surfaces. The shaded rectangles indicate the HTS bulks (left and right). (b) The magnetic flux
density distribution BT(x, y) in the bulk HTS MS gap. The drawn circle indicates the location of the metal rod. Firstly, this was measured for
each bulk HTS separately, then for the gap between the two bulks in the HTS MS.
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dependence. Still, in order to obtain a correct force signal, the
temperature of the load cell was measured: T(t) drops at the
beginning from room temperature down to 240 K and remains
constant.

Figure 3(c) shows an example of the measured Lorentz
force FL(t) for the prescribed velocity of 54 mm s−1. FL(t)
exhibits a periodic step function behaviour with the antici-
pated attenuation due to the above effects. At the beginning, a
steep decrease in the amplitude of FL(t) is attributed to the
temperature drop, while gradual attenuation is consistent with
the change in BT(t). Obtaining experimental data under the
conditions of constant BT(t) and T(t) is important, since any
changes strongly influence the FL measurements [14].
Therefore, the estimation of the Lorentz force was calculated
for the second period of metal rod motion (see figure 3(c) and
its inset), where BT(t) and T(t) are nearly constant.

The detailed FL(t) response of the metal rod for the
second period is presented in the inset of figure 3(c). Initially,
the force is zero, when the metal rod is not moving. Then the
metal rod approaches the bulk HTS MS resulting in an

increase in FL. Stationary motion of the metal rod through the
bulk HTS MS results in a plateau-like FL(t). Afterwards, the
metal rod reverses the direction, yielding an analogous but
negative force. Admittedly, some asymmetry between the
positive and negative force signals arises because of asym-
metric up- and down-movement (i.e. along z-axis) and off-
axis alignment (i.e. along x-axis and/or y-axis), as was
stressed in [15].

3. Numerical model

Numerical modelling is a powerful tool to validate and
interpret experimental results and is useful for predicting the
performance of bulk superconductors in practical applications
[42]. To validate the experimental results in this work, a fully
3D model based on the finite-element method was imple-
mented using the AC/DC module of COMSOL Multiphysics
5.3a. The geometry of the model is shown in figure 3, with the
same dimensions as the experimental setup described in
section 2. The electromagnetic properties of the bulk HTS
magnets and the metal rod are implemented using the AC/DC
module’s magnetic and electric fields interface, satisfying
Ampere’s law:

H J 2 ´ = ( )

and current conservation, such that

J 0. 3 =· ( )

The bulk HTS magnets are assumed to be fully magnetised,
utilising the ‘external current density’ node to assume a cur-
rent density of constant Jc [43]. The value of Jc for each
magnet is determined from the experimental trapped field
measurements of the bulks (see figure 2(a)), where
BT,1=1.08 T and BT,2=0.8 T, and the following equation
based on the critical state model presented by Bean [35, 44]
and application of the Biot–Savart law [43]:

B k J a, 4T c0m= ( )

where BT is the peak trapped magnetic flux density at the
centre of the top surface of a c-axis oriented, single-grain bulk
superconductor, μ0 is the permeability of free space, Jc is the
critical current density of the superconducting material, and a
is the sample radius. k is the correction factor to the simple
Bean (slab) approximation due to the finite thickness, t, of a
disc-shaped bulk superconductor:

k
t

a

a

t

a

t2
ln 1 . 5

2

= + + ⎜ ⎟
⎛
⎝
⎜⎜

⎛
⎝

⎞
⎠

⎞
⎠
⎟⎟ ( )

This results in an average, in-field Jc for the two bulks of
Jc,1=9.9 × 107 Am−2 and Jc,2=7.33 × 107 Am−2. The
resultant magnetic flux density within the rod cross-section
across the centre of the bulk HTS MS is shown in figure 4(b).
The calculated magnetic flux density is consistent with the
experimental results shown in figure 2(b).

The movement of the metal rod through the magnets is
simulated by applying a velocity (Lorentz term) condition to

Figure 3. (a) An example of the periodic rod motion L(t) with a
velocity of u=54 mm s−1. The time sequence of the experiments
is indicated as follows: [t0=0; t1=5 s]—extraction of the bulk
HTS MS from the LN2 bath; [t1=5; t2=23 s]—coupling with
the force sensor and beginning the motion of the rod; [t2=23;
t3=500 s]—LFV measurements, [t3=500 s]—stopping the rod
motion and decoupling of the bulk HTS MS. (b) Trapped field BT at
a distance of 7 mm from the surface of one HTS bulk as function of
time t. The field was recorded by a Hall probe right after the HTS
magnet system was removed from the LN2 container. In addition, the
time dependent temperature behaviour of the load cell T(t) (see the
arrow, different scales are used) is included. (c) The Lorentz force FL

as a function of time t which acts on HTS MS upon repetitive
movement of the metal rod. Inset: measured data for F(t) for the
second period.
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the metal rod sub-domain in COMSOL, such that

J E u B . 6s= + ´( ) ( )

Finally, the force is calculated by

F F dV B J B J dV . 7
V

z
V

y x x yò ò= = -· ( ) · ( )

The calculated force for the two rods for different rod velo-
cities is compared with the experiments in the following
section (see figure 5(a)).

4. Results and discussion

With the aim of scaling the force and velocity according to
equation (1), a set of LFV measurements with prescribed
mean velocities u were carried out. In the case of the copper
rod, u=[54; 64; 76; 81] mm s−1, while for the aluminium
rod: u=[70; 81] mm s−1. The results of the Lorentz force
measurements obtained experimentally with those calculated
numerically are plotted against the velocity for the aluminium
and copper rods in figure 5(a). FL is linearly dependent on the

Figure 4. (a) Fully 3D model for the numerical simulation of the fundamental LFV proof-of-concept. The bulk HTS magnets are assumed to
be fully magnetised, carrying a constant Jc corresponding to the trapped field measurements of each bulk (see figure 2(a)). The movement of
the metal rod through the magnets is simulated by applying a velocity (Lorentz term) to the rod sub-domain. (b) Magnetic flux density within
the rod cross-section aligned with the centre of the bulk HTS MS. The calculated magnetic flux density is consistent with the experimental
results shown in figure 2(b).

Figure 5. (a) Lorentz force FL as function of a velocity u for the copper and aluminium rods. Open circles indicate the experimental results,
and the solid circles indicate the simulation results. The dashed lines indicate the linear fit to the experimental results. (b) Expected Lorentz
forces as function of electrical conductivity for relevant fluids, e.g. solid metals, acids/base and glass melts, including the experimental
results presented in this paper.

6

Supercond. Sci. Technol. 31 (2018) 084003 O V Vakaliuk et al



velocity and the electrical conductivity of the moving metal
rods, which is consistent with theory (see equation (1)) [8].
Additionally, the FL values obtained with same-sized copper
and aluminium rods for one prescribed velocity, e.g. u=81
mms−1, scales as σCu/σAl. Unfortunately, in the case of
aluminium, the induced Lorentz force approaches the reso-
lution limit of the current LFV setup and therefore can result
in significant measurement errors.

Furthermore, it is shown that the experimental and
simulation results agree well, validating the numerical model
(time independent, 3D) as a fast and accurate tool to predict
the LFV performance. Thus, the expected FL with respect to
the electrical conductivity of relevant fluids, e.g. solid metals,
acids/base and glass melts (see table 1), can be estimated in
accordance with equation (1). It should be noted that the FL

values are valid only for our particular design of the proof-of-
principle LFV setup (see figure 1(b)) and may vary for each
individual system differently: in particular, the spatial dis-
tribution of the magnetic flux density within the interaction
volume of the moving conductor. Figure 5(b) shows the
expected FL as a function of the electrical conductivity. With
use of the present proof-of-principle LFV setup (the bulk
HTS trap BT=0.94 T, i.e., the average of 1.08/0.8 T), the
generated forces for weakly-conducting and slow-flowing
fluids are in the range of μN and below. In particular,
FL∼10−6 N for acids/bases and FL∼10−7 N for glass
melts. It is immediately clear that the use of the bulk HTS MS
with higher trapped fields of 3 and 5 T enhance the resultant
FL over an order of magnitude and thereby the FL-resolution.
This provides evidence that the bulk HTS MS is feasible and
serves as a starting point for the future development of a new
LFV prototype with improved performance.

Still, for practical LFV application to weakly-conducting
and slow-flowing fluids, a high-precision force measurement
in combination with the bulk HTS magnets is required.
Measurements of such forces can be achieved by replacing
the simplified load cell with a torsion balance based system
for high-precision force measurement (TFMS), proposed in
[45, 46]. In order to raise the issue of the limiting total mass
(which is always an issue for high-precision force measure-
ments), the bulk HTS MS and TFMS can be merged within an
integrated cryostat. This idea was patented by the authors [47]
and the relevant portable LFV prototype is currently under
construction.

5. Conclusions

The current work demonstrates the applicability of a bulk
HTS magnet system (MS) to Lorentz force velocimetry (LFV)
using an experimental setup, where the Lorentz force, acting
on the moving metal rod, is measured by a load cell that
carries the bulk HTS MS. The bulk HTS MS offers higher
magnetic field than the previously used NdFeB PM-based
system, with a similar mass, despite it requiring appropriate
cooling and magnetisation. However, the magnetic field of the
bulk HTS magnets strongly decreases with a distance,

implying that proximity of the bulk HTS MS to the moving
metal rod is important for optimal LFV performance.

The obtained experimental and numerical simulation
results agree well, exhibiting the linear relationship between
the Lorentz force and product of the electrical conductivity
and velocity, in accordance with LFV theory [8]. Hence, these
results serve as a starting point for the future development of a
new LFV prototype with improved performance.

In particular, the LFV prototype currently under con-
struction consists of bulk HTS magnets that are combined
with the high-precision TFMS and encapsulated in an inte-
grated cryostat. All these features enable a further extension
of the LFV application to a number of industrial weakly-
conducting and slow-flowing fluids, e.g. glass, molten salts
melts and/or acid and lyes.

Finally, a simple, time independent 3D numerical model
has been developed as a fast and accurate tool to predict the
LFV performance, but a time dependent, dynamic model
should be developed in the future that can consider more
detailed superconducting properties, including different
magnetisation process and flux creep effects.
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Appendix. Force–voltage calibration of the load cell

Masses of 5, 10, 20 and 100 g (KERN & SOHN GmbH) were
used to generate a force on the load cell (Model PW6D,
Hottinger Baldwin Messtechnik GmbH) in order to calibrate
the output voltage signal from the measuring amplifier
directly into a force. The measured calibration curve U(F) and
its linear fit with a regression coefficient R2=0.999 96 is
shown in figure A1.

The uncertainty for the obtained force data ΔF was
computed on the basis of the measured standard deviation
ΔU of the voltage recorded by the the IBA-Automation
environment [37] and uncertainty of the E2 class certified
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calibration masses using:

F

F

U

U

m

m
, A.1

2 2D
=

D
+

D⎜ ⎟ ⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠ ( )

where ΔU and Δm are the measured uncertainty of the
voltage U and mass m, respectively.
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