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Zusammenfassung

In dieser Promotionsschrift untersuchen wir Beispiele fiir kritisches Verhalten von Quan-
tensystemen, die an eine Hintergrundmetrik gekoppelt sind. Die Analyse wird mit dem
doppelten Zweck durchgefithrt, Informationen tiber Materiefreiheitsgrade und Gravita-
tionsfreiheitsgrade zu extrahieren. Verschiedene Formulierungen der Renormalisierungs-
gruppe werden iiberpriift und angewendet, um die kritischen Eigenschaften der unter-
suchten Systeme zu extrahieren. Insbesondere konzentrieren wir uns auf zwei Klassen
von Systemen.

Zunéchst analysieren wir das Verhalten von chiraler fermionischer Materie auf nega-
tiv gekrimmten Réumen, die aufgrund der Hintergrundkrimmung typischerweise eine
verstiarkte Tendenz zur chiralen Symmetriebrechung aufweisen. Dieses Phénomen ist als
Gravitationskatalyse bekannt. In dieser Arbeit wird argumentiert, dass die Gravitation-
skatalyse aufgrund der hohen Energien in der Nahe des Planck-Regimes zur Vorhersage
von schwerer fermionischer Materieteilchen fithren konnte, die mit den aktuellen Beobach-
tungen der Teilchenphysik unvereinbar wéren. Wir fithren daher eine skalenabhéngige
Analyse durch, um eine Reihe von Parametern zu identifizieren, die die Gravitationskatal-
yse ausschlieBen und zu einem Kriterium fiir die Falsifikation von Modellen der Quanten-
gravitation fithren konnen. Die skalenabhéngige Analyse hat zwei Vorteile: Zum einen
ermoglicht sie eine allgemeinere Behandlung des Phénomens, da wir keine Annahmen
iiber die globale Struktur der Raumzeit treffen miissen. Zum anderen wird der Wettbe-
werb zwischen ihnen explizit dargestellt als die Abschirmung der Infrarotmoden aufgrund
einer Regularisierungsskala und deren Verstarkung aufgrund der Hintergrundkriimmung.
Wir finden, dass jede Theorie der Quantengravitation, die eine Formulierung im Sinne
einer lokalen Feldtheorie der Metrik in der Nahe der Planck-Skala zuldsst, unsere Ein-
schrankung respektieren oder einen alternativen Mechanismus zur Losung des Problems
bereitstellen muss.

Die zweite Klasse von Systemen, die wir untersuchen, ist ein unendlicher Turm von
Skalarmodellen mit multikritischen Eigenschaften. Hier analysieren wir ihren Renormal-
isierungsfluss in fithrender Reihenfolge unter Verwendung einer kovarianten Version der
Epsilon-Entwicklung in der dimensionellen Regularisierung. Wir untersuchen dann ihre
analytische Fortsetzung unterhalb der oberen kritischen Dimension, wobei wir dem Fix-
punktwert der nicht-minimalen Kopplung zum Hintergrund, der sich als konformer Wert
herausstellt, besondere Aufmerksamkeit schenken. Dank einer verbesserten Parametrisierung
der Wirkung kénnen wir die Giiltigkeit unserer Analyse im Zusammenhang mit zweidi-
mensionaler Quantengravitation gekoppelt an eine grofie Anzahl von Skalarfeldern und
der statistischen Feldtheorie im gekriimmten Raum gegen bekannte Ergebnisse testen.
Wir diskutieren schliellich die Méglichkeit, den konformen Wert fiir die nicht-minimale

Schwerkraftkopplung auch in der nachsthoheren Ordnung durch spezifische Renormal-



isierungsbedingungen im Zusammenhang mit verwandten Arbeiten zu erzwingen. Wir

lassen diese Hypothese vorerst ungepriift.
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Summary

In this thesis we study examples of critical behavior of quantum systems coupled to a
background metric. The analysis is performed with the double purpose of extracting
information about matter degrees of freedom and gravitational degrees of freedom. Dif-
ferent formulations of the renormalization group are reviewed and applied to extract the
critical properties of the systems under examination. In particular we focus on two classes
of systems.

First we analyze the behavior of chiral fermionic matter on negatively curved space
which typically exhibit an enhanced tendency towards chiral symmetry breaking due to
the background curvature. This phenomenon is known as gravitational catalysis. In this
thesis we argue that, due to the high energies involved near the Planck regime, gravita-
tional catalysis could result in the generation of heavy fermionic matter particles which
would be inconsistent with the current observations of particle physics. We therefore
perform a scale dependent analysis to identify a set of parameters which rules out gravi-
tational catalysis and can lead to a criterion to for the falsification of models of quantum
gravity. The advantage of the scale dependent analysis is twofold: On one hand it allows
for a more general treatment of the phenomenon as we do not need to perform any as-
sumption on the global structure of the spacetime, on the other hand it makes explicit
the competition between the screening of the infrared modes due to a regularization scale
and their enhancement due to the background curvature. We claim that any theory of
quantum gravity that admits a formulation in terms of a local field theory of the metric
in vicinity to the Planck scale should respect our constraint or provide an alternative
mechanism to solve the problem.

The second class of systems we study is a tower of infinite scalar models with multicrit-
ical properties. Here we analyze their renormalization flow at leading order employing
a covariant version of the epsilon expansion in dimensional regularization. We then in-
vestigate their analytical extension below the upper critical dimension paying particular
attention to the fixed point value of the non minimal coupling to the background, which
turns out to be the conformal value. Thanks to an improved parametrization of the
action we can test the validity of our analysis against known results in the context of two
dimensional quantum gravity couple to a large number of scalar fields and of statistical
field theory in curved space. We finally speculate on the possibility of imposing the con-
formal value for the non-minimal coupling to gravity also at the next-to-leading order by
means of specific renormalization condition in connection to related works. We leave this

hypothesis untested for the moment.
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1. Introduction

One of the most fascinating and challenging branches of modern physics is the search
for a quantum theory of gravity [1, 2]. The unification of the two formalisms of general
relativity (GR) [3, 4] and quantum field theory (QFT) [5] has proven itself to be surpris-
ingly difficult. On one side there is a very elegant classical theory of gravity based on
the geometrical properties of spacetime. Understanding GR led to a revolution in the
way we describe physics through the introduction of the equivalence principle and the
requirement of general covariance for the physical equations. On the other side we have
a very well established framework for quantum effects in highly energetic matter which
has provided some of the most precise predictions for experimental measurements so far
[6]. With the introduction of QFT we had to renew the way we think about the nature
of matter itself.

Neither one of these two theories, though, is fully consistent by itself. In a way, they
both predict their own limitations, suggesting that an interplay of the two is needed. In
fact, general relativity admits solutions where the geometrical description of spacetime
becomes singular, losing every possible physical interpretation [7, 8]. Even if an attempt
of solving this issue was given via the cosmic censorship hypothesis, formulated by Pen-
rose [9], several counterexamples in terms of naked singularities that could be realized in
nature where given in the literature[10]. Moreover, the current theory of gravity shows
large deviations from observations of its theoretical predictions already at the level of
galactic scales, a problem that leads to the conjecture of so far unobserved particles of
dark matter [11, 12]. At first sight both these topics seem to require the introduction of
the quantum formalism: dark matter as a new type of matter field to be incorporated in
the standard model (SM) of particle physics, which currently represents our best descrip-
tion of fundamental matter; while the naked singularity problem as a phenomenon where
the energy scales involved are larger than the Planck scale at which GR is expected to
break down. For what concerns quantum field theory a consistent embedding of gravity
within the formalism is still lacking. Beside the obvious theoretical generalization, such
improvement could lead to a step forward in understanding problems in particle physics.
In particular, the particle spectrum of the standard model, as well as the relative abun-
dance of matter over antimatter, are results of early universe physics where fluctuations
of spacetime play a fundamental role.

Within the formalism of QFT every theory aiming at being a fundamental description
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of nature needs to successfully pass the renormalization test [5, 13]. The failure to
incorporate gravity into the standard model, as a quantum theory of the metric generated
by the Einstein-Hilbert action, realizes as the non-renormalizability of general relativity at
the perturbative level [14, 15]. The lack of a fundamental description for quantum gravity
has set the stage for the birth of new models, each introducing new technical features in
addition to the common analysis performed in quantum field theory. Examples are string
theory [16-19], loop quantum gravity (LQG) [20-22], causal dynamical triangulations
(CDT) [23, 24], all of which introduce some sort of non-locality at the fundamental
description of spacetime; and asymptotically safe gravity (AS) [25-31], which conjectures
the renormalizability of a local theory of the metric at the non-perturbative level. In the
asymptotic safety scenario the renormalization flow of quantum gravity is endowed with
a non-Gaussian fixed point which defines a fundamental strongly interacting field theory.
Regardless of the underlying ultraviolet (UV) theory, any attempt to quantize gravity
is supposed to predict an infrared (IR) scenario compatible with general relativity and
the standard model of particle physics both at the level of the framework and of the
observations (even if only effectively).

As the inclusion of gravity can drastically change the phase diagram of matter fields,
the inclusion of matter degrees of freedom in a gravitational theory can strongly affect
the low energy behavior of the model. A study of the interplay between gravitational and
matter degrees of freedom can unfold new features for both gravity and quantum field
theory. One of the best tools available to perform such analysis is the renormalization
group (RG). The advantage of RG methods is that they take into account by construction
the role of the different scales involved in those processes where both gravity and matter
are important. The physical information stored in the renormalization group becomes
manifest when the system undergoes critical phenomena [32, 33].

A study of critical phenomena and phase transitions reveals how models defined in
terms of very different degrees of freedom may in fact have the same renormalization
properties and similar phase diagrams. When this happens we say that two models fall
into the same universality class [34, 35]. A very illustrative example of universality class
is given by the ¢* field theory which shares the same critical behavior as several models
of magnetic systems on the lattice, e.g. the Ising model (we review this example in
chapter 2). When two models fall into the same universality class they can thus be used
to effectively describe different regimes of the same systems. As a consequence we have
that a renormalization study of (Euclidean) field theories can provide relevant results for
both high energy quantum systems and low energy statistical systems.

The purpose of this thesis is to expand the scientific knowledge about critical phenom-
ena for field theories coupled to gravity and examine the consequences that arise for both
matter degrees of freedom and gravitational degrees of freedom.

In chapter 2 we recall most of the basic aspects of critical phenomena and phase



transitions. The analysis is mostly based on a thermodynamical approach which provides
a straightforward physical interpretation of the formalism. A particular attention is
paid to the role of symmetries and spontaneous symmetry breaking (SSB) and to the
Landau theory of phase transitions [36]. The concept of universality is then introduced
via a description of (thermal) fluctuations and the way they affect the behavior of a
system. The framework of statistical field theory plays a big part in the analysis of
thermodynamical systems at criticality and its connection to the formalism of quantum
field theory is pointed out in appendix C.

In chapter 3 we introduce the renormalization group and its most relevant formulations.
The Kadanoff-Wilson approach [32, 33, 37-39] is analyzed and employed to clarify the
physical relevance of the renormalization group. The functional renormalization group
(FRG) [10-51] is then introduced and its improved mathematical framework is studied.
These two formulations are non-perturbative and provide us with (to some extent scheme
dependent) pieces of information about the global properties of the theory space under
examination. The connection to critical phenomena and universality is made through
the fixed point analysis and the perturbative renormalization group in its e-expansion
formulation [13], which is reviewed for the case of a p*-theory. We then point out the
connection between the FRG scheme and the M .S scheme of perturbation theory following
the analysis of [52]. A description of phase transitions for fermionic systems is then carried
out studying the breaking of chiral symmetry in theories endowed with four fermion self
interactions and the consequent mass generation. Finally, at the end of chapter 3 we
introduce gravity and point out the main aspects one needs to take into account when
coupling the system to gravity.

Chapter 4 is dedicated to the study of gravitational catalysis [53-72] and contains part
of the original work of this thesis. The term gravitational catalysis describes the breaking
of chiral symmetry and subsequent fermionic mass generation induced by a curved space-
time background. The phenomenon is known to occur generically in fermionic systems
of any dimension for various negatively curved spacetimes even at the weakest fermionic
attraction.

Gravitational catalysis can be understood as a consequence of dimensional reduction
of the fluctuation spectrum. For instance in d-dimensional hyperbolic space, the low
lying modes of the Dirac operator exhibit a reduction from d to 14 1 dimensions [70-72].
Hence, the long-range dynamics of any self-interaction of the fermions (be it fundamen-
tal, effective or induced) involving a chiral symmetry-breaking channel behaves like the
corresponding model in 14 1 dimensions, e.g., the Gross-Neveu [73] or the Nambu-Jona-
Lasinio model [74, 75], which both exhibit chiral symmetry breaking and fermionic mass
generation.

In the present thesis, we argue that gravitational catalysis may play a malign role

for the interplay of quantum gravitational and fermionic matter degrees of freedom in
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the high energy regime near the Planck scale. As suggested in [76], the observational
fact of the existence of light chiral fermions in our universe puts implicit bounds on the
properties of the quantum gravitational interactions: if quantum gravity near the Planck
scale was such that it triggered chiral symmetry breaking, the low energy particle sector
of our universe would generically be characterized by massive fermions with Planck scale
masses. As gravity couples equally to all matter degrees of freedom, it thus would seem
difficult to understand the existence of light chiral fermions.

Despite the fact that gravity represents an attractive interaction among particles, grav-
itational fluctuations in a quantum field theory setting surprisingly do not trigger chiral
symmetry breaking [76, 77]. In this respect, gravity differs substantially from gauge
theories or Yukawa interactions. Therefore, the existence of light fermions appears com-
patible even with a high energy regime of strongly coupled gravity, as long as an effective
field theory description for quantum gravity is suitable. In particular, the asymptotic
safety scenario of quantum gravity passes this consistency test [78-88], also in conjunc-
tion with further gauge interactions [89-92]. In asymptotic safety it is even possible to
study the interplay of non-chiral fermions and gravity [93], demonstrating that chiral
fermions are favored by simple asymptotic safety scenarios. Certain asymptotically safe
gravity-matter scenarios even exhibit an enhanced predictive power [94-101].

Whereas most of the studies about asymptotically safe gravity have essentially been
performed on flat space, with curvature dependent calculations coming up only recently
[102, 103], the gravitational catalysis mechanism is active on negatively curved space-
times. In this picture, the consistency of quantum gravity and light fermions thus is not
so much a matter of gravitational fluctuations and their interplay with matter, but of the
effective spacetime resulting from quantum gravity itself.

In chapter 4 a scale dependent analysis of the effective potential of four fermion the-
ories coupled to a negatively curved background is employed to constrain the average
curvature of patches of spacetime. In order to elucidate the connection to quantum grav-
ity we apply the result to the asymptotic safety scenario, showing how the bound on the
curvature can be rephrased in a constraint for the number of fermionic degrees of freedom
of the underlying model of particle physics. The results, though suffering from scheme
dependence, appear to be consistent with the current observations of particle physics.

Finally, in chapter 5 we perform a study of the renormalization properties of scalar
field theories in curved space exhibiting a multicritical phase diagram. Even though
these models are extensively studied in flat space [104-112] and some relevant cases
coupled to gravity is already known in the literature [113—117], the analysis presented in
this thesis extends these results to incorporate an infinite tower of models. The approach
is heavily based on technical improvements of dimensional regularization which allow for
a covariant formulation of the method [115-118] (see appendices F and G for further

details). The fixed point analysis of these models can be analytically extended below



their upper critical dimensions (which happens to be fractional for the vast majority
of these theories). Therefore a prediction for the leading order quantum correction to
the non-minimal coupling of scalar fields to curvature degrees of freedom is given in
d = 2. A functional parametrization of the models permits us to reproduce known results
concerning two-dimensional quantum gravity coupled to ¢ scalar fields in the limit of large

C.

The compilation of this thesis is solely due to the author. However, a large part of the
work presented here has been published in a number of articles and in collaboration with
other authors. Chapter 4 relies on a paper written with Holger Gies [119]. The work of

chapter 5 is based on a collaboration with Omar Zanusso [120)].



2. Critical phenomena

In this chapter we report the main aspects of phase transitions and critical phenomena
starting from the description usually given in statistical mechanics. Even though most
of the results will be understood in a classical framework, the connection emerging in
the thermodynamical limit with the formalism of (euclidean) field theory allows us to
generalize the study to quantum systems (see appendices A, B and C for a discussion).
The two main scenarios we will have in mind in the following are fluid dynamics and
magnetic systems. Even though they are very different at the microscopical level these two
examples share a lot of features regarding their phase diagrams and offer complementary
perspectives on critical phenomena. Most of the notions listed in the following can be
found in the majority of textbooks about statistical thermodynamics and statistical field
theory. The discussion presented in this chapter mainly follows the exposition of [34, 35].

Interesting discussions can be found also in [36, 121-123].

2.1. General aspects of phase transitions

The first question we should ask ourselves in order to understand the transition between
two different phases is under which conditions are these able to coexist. If we define
the temperature of a thermodynamical system as T, its pressure as p and its chemical
potential as p, the thermal, mechanical and chemical equilibrium are represented by

following set of equations:

Th =Ty, pi=p2, 1=, (2.1)

where the indices refer to phase “1” and “2” respectively. As expressed by the Gibbs-
Duhem relation (B.12), the chemical potential as a function of temperature and pressure
represents one of the fundamental properties of fluids at equilibrium (see the discussion
in appendix B) and is in turn equal to the Gibbs free energy per single particle. We can
thus employ (B.12) in order to describe the physical system and the equilibrium would

then be rephrased as:

pi (T, p) = (T, p) = 9(T, p), (2.2)
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where we dropped the indices for temperature and pressure since their values are shared
by the two phases along the transition'. In order to inspect the latent heat involved in
the transition let us consider the enthalpy of the system. Following the conventions of
appendix B one has that H = U + pV is related to the Gibbs free energy by a Legendre

transform on the temperature/entropy couple:

G=uN=H-TS, (2.3)
and the condition (2.2) leads to:
H, H
WQ - Wl =T(s2 — 51), (2.4)

H; and s; being the enthalpy and entropy per particle in the phase i respectively. If the
above quantity is not zero, then we have that s; # s5, highlighting how the two phases
correspond to different degrees of order of the system. Each configuration will then be

favored over the other depending on the specific values of the chemical potential. An
7]

H2

H1

T*

Fig. 2.1.: Typical behavior of the chemical potential in proximity of a continuous phase tran-
sition. The black solid curves represent the dependence of the chemical potential of
each phase on the temperature, while the red lines point out the discontinuous change
of the entropy at the transition temperature.

illustrative picture of the transition is shown in figure 2.1. The values of the chemical
potential for the two phases equate at some temperature T and each phase results

more stable on one of the two side of the temperature space (namely when the chemical

LAt first sight it may seem from (2.2) that the coexistence of more then three phases is impossible,
since the system of equations describing the equilibrium would then be overdetermined. Even though
this is indeed the general case, a fine-tuning of the model could lead to such a consequence. Theories
exhibiting phase diagrams of this type are known as multicritical models, and we will discuss a
subclass of these systems later in this work.
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potential is lower). The chemical potential of the system will, hence, present a cusp and

the entropy will be discontinuous at the transition point:

i
or

Oniz

> = < . 2.5
b, oT LS 52 (2.5)

p

A similar behavior will be shown by the specific volume v = g—‘; as well.
T

Following the coexistence line for increasing temperature, it often happens that the
discontinuity disappears at some point, we call this point critical point and the value of the
temperature there gives the critical temperature T,.. For values of the temperature larger
than T, is possible to shift between the two phases continuously, without encountering any
discontinuity or separation between the two. This, as shown in figure 2.2 is a common
feature of both classical fluids and magnetic systems. While in the case of fluids the
discontinuity appears across the line separating the liquid and the vapor phases (starting
from the triple point, where the three phases are at equilibrium, and ending at the critical
point), in the case of magnetic systems, such as the Ising model or the Heisenberg model,
the transition is between two different alignment of the spin variables (magnetization)

depending on the orientation of an external magnetic field h:

m(T, h) = W iy (2.6)
Am(T,h) = flgr(l){m(h >0)—m(h<0)} >0 for T<T.. (2.7)

In the latter case we can also tune the external magnetic field to vanish and decrease the
temperature from above to below the critical point. What we will observe is a transition
of the system from a disordered phase with vanishing magnetization to an ordered phase
where a spontaneous magnetization grows from zero to a finite value as the temperature
decreases from T, to zero. Even though the transition is continuous (in the sense that
the magnetization is continuous across the critical point), the second derivatives of the
Gibbs free energy, namely the magnetic susceptibility and the specific heat
s, Ciro = —T2C

T on 5 ar2|
T,h=0 h=0

X = (2.8)

are discontinuous and divergent.

The set of phenomenological observations we just pointed out led to the so called
Ehrenfest classifications of phase transitions [34]. According to this classification a phase
transition is said to be of order n if the free energy associated with the system and its
first n — 1 derivatives are continuous, while a discontinuity manifests for some derivative
of the n-th order. Reinterpreting the phase space of fluids and magnetic systems under

this perspective we have that across the equilibrium line of two phases (for example

10
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(b)

Fig. 2.2.: Phase diagrams for classical fluids (2.2a) and magnetic systems (2.2b). Both class of
systems exhibit a discontinuous phase transition. The discontinuity terminates at a
critical point beyond which a continuous transition is possible.

the liquid-vapor transition between the triple point and the critical point) the system
undergoes a first order phase transition, while at the critical point (e.g. for a magnetic
system at zero external field) we typically have a second order phase transition. Finally,
for T > T, we can switch between two phases smoothly?.

It should be clear now that the key point in describing phase transitions is the free
energy of the system and, in particular, its analytical properties. This can be understood
since in general the free energy contains competing terms of energy and entropy which
favor an ordered and a disordered phase respectively. As explained in appendix B the free
energy is given by the logarithm of the partition function and in the thermodynamical
limit? can, thus, be expressed in terms of different thermodynamical potentials depending
on the type of ensemble that better suits the experimental apparatus. For the sake
of simplicity and without loss of generality we will proceed having in mind the grand
canonical ensemble, which represents a good description in the case where two phases at
equilibrium can exchange energy in the form of heat, work and matter. An equivalent

analysis in terms of other ensembles is nevertheless possible.

2Tt is worthwhile to mention that these considerations are not fully general and rather depend on
the system. While the transition above (and far from) the critical point does not show any criti-
cal behavior, examples of infinite order phase transitions at the critical point are known, e.g. the
Kosterlitz—Thouless transition [124].

3 As expressed by the Lee-Yang theorems, a phase transition only occurs in the thermodynamical limit.

11
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Given a grand canonical partition function
Z=Z(T,V,p), (2.9)

we shall call a phase transition point any singular point of the specific grand canonical
potential [34]:

1
O(T,v,z) = —Tlim {ﬁ—vlog Z(T,V, u)} , (2.10)

where 2z is the fugacity z = e¢®#, v = V/N the specific volume and Tlim denotes the

thermodynamical limit.

2.2. Spontaneous symmetry breaking

As we pointed out in the previous section, a phase transition is often associated with a
change on the degree of order of the system. The proper way to describe this phenomenon
is in terms of reducing the symmetry of the system from a group G to a (possibly trivial)
subgroup [34]. This procedure can be done either by introducing an interaction that
breaks the symmetry directly at the level of the microscopical description of the model (in
which case we say that the symmetry is explicitly broken) or we rely on some effect leading
to a reduction of the symmetry space dynamically, namely, a spontaneous symmetry
breaking (SSB).

In order to make the previous considerations formal suppose G to be a global symmetry
group for the Hamiltonian describing a thermodynamic system. Then one says that the
symmetry has been spontaneously broken iff there exist some not G-invariant observable

M such that in the (stable) thermodynamic equilibrium state
m=(M)#0. (2.11)

The quantity m will then be called order parameter and its value characterizes the two
phases separated by SSB.

A few remarks are in order:

1. If the stabilizer of the order parameter is a non-trivial subgroup H of G then the
symmetry is reduced from G to H, and we can identify the order parameter space
with the coset space X = G/H, where H acts as the identity. Since the action of G
on the order parameter space is often transitive any symmetry breaking value of m

can be reached acting on any other one with an element in the appropriate coset
of G,

2. As the expectation value (M) is implicitly defined in terms of a distribution p

12



2.3. Landau description of phase transitions

associated with the equilibrium state w?, it follows from the theory of invariant
measures that if the state is symmetric under the action of G then the expectation
value of M will always be zero. This implies that if we have SSB it has to happen
at the level of the ground state®. As long as the volume of the system is finite
the partition function can be written as sum of Boltzmann factors e # and the
state will inherit all the symmetries of the Hamiltonian without developing any
singularity: no phase transition can be observed. The situation might change,
though, in the thermodynamical limit since the previous sum becomes a series®.
Thus, if we make explicit the dependence of m on the number of particles and
introduce symmetry breaking interaction parametrized by the field h, we will have

34, 122):

lim limmy(h) = lim 0=0, (2.12)

N—o0 h—0 N—o0

while switching the order of the two limits:

fllli% ]%Lmoo my(h) #0, (2.13)

3. With a glance at the quantum formalism we can understand the previous comment
in terms of the cyclicity of the Fock vacuum: developing a new stable equilibrium
thermodynamical state translates, upon Wick rotation, into the generation of new
vacuum states with a reduced symmetry. The entire spectrum of excitations gener-
ated through Fock’s construction of the Hilbert space (as well as the set of creation
and annihilation operators) will hence suffer from the symmetry breaking and con-
stitute a new phase reflecting the non-analyticity of the path integral at the phase
transition. As we will explain in the next session, once that a description of the
system in terms of an effective potential is available, phase transitions correspond

to the development of new minima of the potential.

2.3. Landau description of phase transitions

The aspects pointed out until here are easy to understand in the context of Landau
theory of phase transitions [36]. Even though Landau’s approach relies on a mean field

approximation it still represents a unified theory of phase transitions and manages to

4A state w can be regarded as a functional on the abelian algebra of observables A and defined such
that w(A) = (A),.

5In particular, the symmetry breaking does not happen at the level of the Hamiltonian which, indeed,
remains G-invariant.

SEven though in the context of classical statistical mechanics this coincides with having an infinite
space volume, the same behavior happens in general when the number of degrees of freedom is sent
to infinity, e.g. in field theory.
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2. Critical phenomena

capture many of their most relevant features. Since critical phenomena are driven by
infrared modes we can safely define a continuous theory in terms of fields even when
the original model is defined on a lattice. The order parameter becomes then an order
parameter field denoted by ¢(x). The idea behind the theory of Landau is that we can
construct a functional A of the field such that A respects all the symmetries of the model,

i.e. A is invariant under the action of a group G. The partition function can be written

as:
Z(h;T) = Ne PP = Nexp {—BA[QS] + 8 / A%z h(x) gb(m)} : (2.14)

where A is a normalization constant and F' represents the free energy of the system:
 pir=2 |4 / d%y h = 2.15
5h(z) [h] = = | Alg] = | &% h(y) o) | = —o(x). (2.15)

The field h plays the role of a source for the order parameter field and explicitly breaks
the symmetry group G to the stabilizer of ¢, nevertheless for vanishing A the partition
function is fully symmetric. Upon expansion of the functional A in powers of the order
parameter and in its derivatives is possible to extract a potential for the model and study
the critical phenomena in the fashion described at the end of the previous section.

We are now able to state the assumptions of Landau’s formulation:

1. In the continuum limit, the partition function of the model can be written in the
form (2.14), where ¢ represents the order parameter of the phase transition and h

couples linearly to it. The functional A will then be called effective action.

2. The G-invariant functional A4 can be expressed as an integral of a local density,

namely a G-invariant function of ¢ and its derivative known as Landau function:
Aig) = [ s £o(a), 0.0(a)). (216)

3. A satisfactory description of the critical behavior of the system can be obtained by

expanding the Landau function and keeping only the lowest orders’.

In order to better understand how the approach works and how the new degrees of free-
dom are connected to the fundamental one let us briefly review how Landau’s approach
describes magnetic systems like the Ising model at criticality [34-36].

The partition function of the Ising model reads:

Z[h] = Z exp {Z Jijsisj + Z hisl} ; (2.17)

{si}

“How many orders are enough, though, depends heavily on the system and its dimensionality.
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2.3. Landau description of phase transitions

where the variables s; represent the spin alignment of a particle sitting at the i-th site
of a lattice along some given direction (s; = £1) and J;; gauges the strength of the
interactions between two different sites. The spin-spin interaction term is symmetric
under the group Zs and, indeed, h; represents the symmetry breaking field, namely an
external magnetic field introducing a preferred orientation. At this level we can identify

the order by inspecting the first derivative of the Gibbs® free energy:

m = log Z|h] = ZL Z[h] = (si) . (2.18)

0
Oh;

h;=0

Using the following identity valid for Gaussian integrals:
/ :l_[dgbZ exp [—— Z bidy; 1o+ Z Cbzsz] = N exp [Z Jijsisj] , (2.19)

1,J
N being a normalization constant, one can rewrite (2.17) as’
Z/ l_Id(,bZ exp [__Z¢7, QZ5J—I—Z:h+gbZ

{si}
/ l_IdgzbZ exp [—— Z(qb —hi)J; Zexp [Z gbst] . (2.21)
{si}

7_]

(2.20)

The sum over the spin variables is now much simplified and can be performed explicitly

leading to:

Zexp [Z (]51&] = H (2 cosh ¢;) o exp [Z log (cosh ¢; )] (2.22)

and through a last linear transformation ¢; — 3 ”1@ the partition function is now

turned into:
Zh] —e— i Liyhidij b

X /H d¢; exp [— Z Jij0i05 + Z log(cosh(2Jix ) + Z hi@'] :
i ird : G

(2.23)

At this point we have not performed the continuum limit yet. The field variables ¢; and
h; can take values over the entire real axis, but still enter in the action through the lattice

sites: ¢; = ¢(r;). Assuming the external field h; to be small we can approximate the

8See appendix B for a justification of using Gibbs free energy in order to discuss the Ising model.
9For the sake of keeping the exposition light we neglect the constant A for a while in abuse of the
equality notation.
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2. Critical phenomena

exponential in front of (2.23) by 1+ 0(h?). By sending the discrete lattice to a continuous
system we replace the sums over discrete indices with integrals over spacetime variable
and we formally implement the functional measure. This procedure is implicitly justified
if we are considering long-range fluctuations with wave length much bigger than the

lattice spacing. Employing the following polynomial expansion:

1 1
log(cosh(x)) = §x2 — Ex4 + o(z°), (2.24)

we are able to check the behavior of the above model in its momentum space represen-

tation and identify the correct terms that need to be retained for the Landau approach:

200~ [ 6 exp |~ [ aic (700 21700 lo1

X exp [ - %/{dki}le J(~ki — ko — ky)o(—ki — ko — ks) [] 7 (k) (k)

i=1

+ [ diken(-10009)
(2.25)

where use of the reality condition for the Fourier modes has been made in order to
rearrange the quadratic part. As a first approximation we can fix the coupling J to be
a constant for the quartic interaction and expand its dependence on k (isotropically) up

to the second order for what concerns the quadratic part of the field action
J(k) ~ Jo(1 — p*k?). (2.26)

This approximation basically amounts to retaining the minimum requirements to have

dynamics and a momentum independent interaction!’. The partition function now reads:
Z[h) = / Do exp |~ Jo / dk (1= 2Jo) + (44 = 1)) |p(K)
- 3 [ diadiediy 6(k)olie)otks)o(—ki — e — k) .20
+ /dk h(—k)¢(k)} .

Since phenomenologically we observe that .Jy increases for decreasing temperature, we can

10We will come back to this dependency in the context of renormalization for a more complete analysis.
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2.3. Landau description of phase transitions

define a critical temperature T, for which the momentum free quadratic part vanishes:
T-T.

T.
4Jo—1 =1+0o(T -T,), (2.28)

1-2Jy =

1
JO :§+O(T—TC).

The last set of considerations closes the circle to map the Ising model to a field theory

provided a set of definitions that make the temperature dependence explicit, namely'*

17T -1,

P 7 1 2
ok)=——=0ok), hk) =—%=hk), m(T) =— 2.29
10 = Lo o). )= o hk). m(T) = 5 (2.20)
The final expression for the functional Z turns out to be:
m?
= [ Do e [ 5 [ ax (500700 + 56 + 00) + 6 [ B
230)

where we transformed back the action to the direct space and defined the coupling \!'2
in order to collect all the constants in front of the interaction. One can thus define the

classical action for our field theory to satisfy:

/Dgpe Hﬁfhso’

2 \ (2.31)
Sl = [ dx (5060 + 500 + 609 )

Once we completed the continuum limit we need to find a procedure to extract the
effective action. A common approach is to rely on a mean field approximation. In this case
one substitutes the path integral by its major contributions meaning that the effective
action evaluated at a given state will take the form of the classical action computed at

the same state, where the configuration of the field is given by its expectation value:

O(x) = ((x)) - (2.32)

In other words, considering an expansion for the effective action the mean field approxi-
mation states that this has the following form [34, 35, 122]:

A[®] = S[®] + subleading correction (2.33)

1 Needless to say, the unfortunate choice of symbol m here is due to the identification with the mass
in the field theory formalism and needs not to be confused with the magnetization of a lattice spin
system.

12The 4! factor was inserted for it represents a more convenient parametrization of the coupling.
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2. Critical phenomena

and only the first term is considered. Consequently, our ansatz for A (sometimes called
truncation since we discarded higher order interaction coming from the expansion of

cosh(x)) will be:

A[D] :/dx [%(@@)2()() + %@2@() + %@4()() : (2.34)

One can easily check that the expectation value (2.32) transforms non trivially under

the action of Z, implying that for a symmetric state:

d=(p)=(—¢)=-d = &=0, (2.35)

ing.

(a) (b) (c)

Fig. 2.3.: The figure represents the shape of the effective potential for the Ising model at T' > T,
for three different values of the external magnetic field, namely Fig. 2.3a: h(x) < 0;
Fig. 2.3b: h(x) = 0; Fig. 2.3c: h(x) > 0.

Since the truncation of the effective potential is of the same form of a classical action
we can split the Landau function into a kinetic part (=~ (9;¢)?) and an effective potential
ﬁqﬂ A

5 P%(x) + —o(x) (2.36)

Vers = A1

and identify the stable states with the minima of the potential. Figure 2.3 shows the
shape of V ;s for a magnetic system above the critical temperature. In this scenario
there is only one minimum which is shifted by the external magnetic field according to
its sign. Since the order parameter represents the average of the spin variable over the
system, a minimum occurring for positive ® (Fig. 2.3c) represents a positive orientation
for the majority of the sites and an induced magnetization of the system and similarly
for a minimum occurring in the negative half plane (Fig. 2.3a). The transition between
the two configurations is modulated by h(x) and pass continuously across the symmetric
(disordered) phase at h(x) = 0, where the minimum is located at ®(x) = 0 and the
potential around it gets flatter the more we approach the critical temperature.

The interpretation in terms of the polynomial form of the effective potential is straight-
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2.3. Landau description of phase transitions

forward: the quartic term ensures the asymptotic stability as excitations of the order
parameter increase so that, for positive A\, the Hamiltonian effective action is bounded
from below; the quadratic term is proportional to the Hessian of the potential at the

origin of the field space:

1 0%V,
Verslaz =3 8<I>§f *(x), (2.37)
d=0
9%V,
2 _ eff
m’ = (2.38)
=0

and since limy_7, m?(T) = 0 we have that the potential flattens around its minimum
at the critical point. When the temperature decreases further the Hessian changes sign
causing ® = 0 to become a maximum and simple calculation shows that two new minima
at ¢(x) = ﬂ:\/—% that in the symmetric phase were complex now turn into real.

Similarly to the previous situation, the role of selecting a ground state is given to the

Veff Veff Veff

N — Fo

(a) (b) (c)

Fig. 2.4.: The figure shows the shape of the effective potential for the Ising model at T' < T, for
three different values of the external magnetic field, namely Fig. 2.4a: h(x) < 0; Fig.
2.4b: h(x) = 0; Fig. 2.4c: h(x) > 0.

magnetic field which now rises one of the two minima (which becomes metastable) and
lowers the other (Fig.s 2.4a and 2.4c). Decreasing the value of the h(x) continuously
from positive to negative amounts to switch between the minima and at h(x) = 0 they
will be equivalent and the symmetry of the potential will be restored. Tuning h(x) to
zero and decreasing the temperature across the critical point the symmetric well splits
continuously into the two new minima but its derivative with respect to the magnetic
field (magnetic susceptibility) results infinitely discontinuous, signaling a second order
phase transition.

The same picture presented above can be generalized to effective potentials expressed

by higher order polynomials [36, 121]. An example is given by the following model:

2
Vepr = m7(132@() + %@4@() + é@G(X) : (2.39)

The qualitative discussion of such a model follows the same line as above but the new
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2. Critical phenomena

interaction introduces a richer structure. In fact, a potential of the form (2.39) can be
endowed with up to three local minima (see Fig. 2.5) each of which corresponds to a

different phase. Depending on the values of the magnetic field and of the couplings A and

Ve

®

Fig. 2.5.: Schematic representation of the configuration of the effective potential at the tricritical
point.

¢ the potential may have one, two or three global minima. The case where there is only
one global minimum is trivial. The case of two minima is equivalent to the discussion
about the quartic potential and represents the coexistence of two phases. The case where
all the three minima are equivalent represents the equilibrium of three different phases
and is called tricritical point.

Further generalizations with higher polynomials can of course be defined and are col-
lectively called multicritical models since at criticality they describe the meeting point
of many different phases, and they represent one of the natural generalizations of Ising
model. An extensive discussion of the properties of multicritical models in Landau theory
can be found, for example, in [121]. Chapter 5 will be dedicated to a discussion of some
of these models and their coupling to gravitational degrees of freedom.

It should be now clear how the Landau approach represents a powerful method to
analyze critical phenomena and provides us with direct interpretations about the math-

ematical description of phase transitions.

2.4. Critical exponents, scaling and universality

As we pointed out at the end of section 2.1, phase transitions and critical phenomena
are associated with singularities of the free energy of the system. If we consider the
free energy per unit volume ¢'® it will depend on two variables, namely the reduced

temperature ¢ and the magnetic field h [34]:

g=g(t,h), t= (2.40)

I3For the sake of simplicity we keep referring implicitly to an Ising like system, so that the free energy
will be the Gibbs free energy and the external field will be a magnetic field. We stress once more
that this identification is heavily system dependent, though the formalism is not.
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2.4. Critical exponents, scaling and universality

showing a critical point at ¢ = h = 0. In a neighborhood of the critical point we assume

that the free energy can be decomposed into a regular and a divergent part:
g(ta h) = greg<t7 h) + gdiv(t> h) X (241)

with g analytic at (0,0). The singular component gq;, is the one responsible for crit-
ical phenomena and non-analytic behaviors off physical quantities. These behaviors are
typically described by exponential laws and characterized by a set of critical exponents

[34-36, 121-123]. The most common and interesting exponents are given by the following

scalings:
magnetic susceptibility h = 0:  x o< [¢t]77 (t <0)
specific heat at h = 0: Cheo o [t|7* (t <0)
magnetization at h = 0: Mp—o < |t|? (t <0)
magnetization at T = T: Mp—o o< |h[}/? (t =0) (2.42)
correlation length: € o |t|™ (t <0)
correlation function: Go(r) ocr e ¢ (t 0)
correlation function at T'=T,: G°(r) oc r~ @27 (¢t =0)

where we introduced the connected correlation function (or connected Green function):

G(r) = (s(x+1)s(x)) — (s(x +1)){s(x)) . (2.43)

The astonishing observation is that theories with different microscopical degrees of
freedom share the same set of critical exponents and, thus, exhibit the same critical
behavior. When such a phenomenon happens we say that two theories fall into the same
universality class. An example of this relation was shown in the previous section where
we identified the behaviors of the Ising model and a ? scalar field theory.

In order to clarify how critical exponents depend on the microscopical details of a
theory let us implement a field theoretical setting. It should be clear now that the
central object to be studied are fluctuations and how do they affect correlators and their
scaling properties. Let us suppose that there exist a countable set of observables O;

constituting a basis for perturbations of the microscopical free Hamiltonian H,'*

Hlp] = Ho[p] + dH[¢],

Z)\/dde p(x))., (244)

and that each of these operators transforms under a rescaling of the coordinates according

14 The following discussion about the scaling behavior of fluctuations is largely based on [121].
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2. Critical phenomena

to:
Oi(ax) = a™20i(x) = O ~ |x|™. (2.45)

We call A; the scaling dimension of the observable O;. Then we are able to compute the
asymptotic behavior of the correction to, say, the two-point correlation function!® due to

the new observable as:
G(x) = Go(x) + G (x /Dgp w(x)p(0)(1 —dH)e _H" (2.46)

from which it is straightforward to see that at first order in the couplings \; we have:
“3oN [ dy 0i(y)). (2.47)

where in this case the brackets (- --) represents expectation values over the unperturbed
system.

By decomposing the two fields on the basis of observables as:
P(x)p(0) =Y pulx|M 72 0(0), (2.48)
!

_ d-2
- T2
properties of the measure one finds that (2.47) scales as:

=30 [ty S ikl 4(0,0)04(y)
i l
= DD [
1,1

where the scaling dimension of the free field is A, and taking into account the

(2.49)

In order to make explicit the contribution of the above result we should compare it with

the scaling properties of the free two-point function G, ~ |x|22¢ to find:

If we inspect the terms entering in this result for different i (changing the index [ does
not change the order of the contribution) we notice right away the role of the scaling
dimensions in the long-range dynamics: if A; > d the correction due to O; is small
and the sum converges, leaving the critical exponents unchanged from the free case.

In the case where A; < d the contribution of the fluctuations grows and the result of

15We will first look at the correlation functions generated by the partition function rather than the free
energy.
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2.4. Critical exponents, scaling and universality

(2.50) represents only the first term of a series in powers of A|x|9™2 and the critical
exponents are different from the free case. With a glimpse into renormalization we will
name observables falling in the first category as irrelevant (since they do not affect the
long-range dynamics), while those falling into the second category will be called relevant.
In both the previous cases, a change in the critical behavior can be induced only in a
discontinuous way by turning on a new interaction described by an observable with scaling
dimension smaller than the dimensionality of the system (which typically modifies the
symmetry of the Hamiltonian) and the change does not depend on the microscopical
details of the theory (like the value of the coupling constant or type of fields involved in
the correction). We will, thus, say that the phase transition is universal.

A third possibility might happen, namely the case where the dimension of the per-
turbation coincides with that of the system: A; = d. To study this case we go back to
equation (2.47) and write:

©(0)0;(y) = ap(0)|x|™* + subleading terms, (2.51)
for some coefficient a. Upon integration, we observe a logarithmic divergence:
0G = —\iQqalog |x|G, , (2.52)

4 being the volume of the unit sphere in d dimensions. This last scenario is being referred
to as marginal perturbation and can signal either the violation of scale invariance or the
variation of the critical exponents. In fact, by applying an infinitesimal perturbation to

the scaling exponents of the free propagator it is easy to find a similar divergence:
G ~|x| 2B G — 25ATog [x|G, . (2.53)

By comparison with (2.52) we infer that the critical exponents depend continuously on
the detail of the microscopic theory once that a marginal perturbation is included and
the phase transition is therefore not universal.

If we now turn our attention back to the free energy F' and its perturbations, we have

at first order:
/Dgp (1—6H)e Ho=eto(1 - 0F). (2.54)

The previous expression can be solved for § F':

1

OF
Zo

(0H) . (2.55)

Since every possible scaling due to the Boltzmann weight in the numerator of the last
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2. Critical phenomena

equality is compensated by the same scaling in the denominator, equation (2.55) shows
that the classification of corrections to the microscopical Hamiltonian in terms of relevant,
irrelevant and marginal fluctuations reflects itself directly on the level of perturbations

of the free energy.

2.4.1. High temperature expansion

We conclude this section with a brief presentation of an approximate method for the
computation of critical exponent, namely the high temperature expansion [121]. Suppose,
for example, that we want to compute the critical exponent v for a given model. Imaging
to approach the critical point from the symmetric phase (i.e. higher temperatures) we

can formally expand the susceptibility around 7" = oo:

X:TZW. (2.56)

At the phase transition x will be singular implying that the critical temperature will be

given by the (inverse) radius of convergence of the series:

T. = lim 2+ (2.57)
n—oo (O
The character of the singularity can, hence, be determined by studying the asymptotic

behavior of the coefficients a,,. Using the ansatz (2.42) then one has:

['(n+7)
T'(n+ 1)(y)

Ay ~ ", (2.58)
where I' represents the Euler gamma function. For n >> 1 and using the properties of I"

we get to

dadl _ (1 + 1) T.. (2.59)
ap, n
The last equation shows that the asymptotics of the coefficients for the high temperature
expansion provides both the critical temperature and the critical exponent. Even though
we just presented only the computation of v a similar procedure can be employed for the
other exponents as well, provided that we expand the corresponding thermodynamical
quantities.

The high temperature expansion is definitely not the best theoretical tool since the
coefficients of the expansion need to be computed case by case and the whole universality
character is hidden (as opposed to the renormalization approach), nevertheless it makes
explicit the connection between the high energy physics and the critical phenomena tak-

ing place at lower scales. Moreover, having in mind the connection between classical
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2.4. Critical exponents, scaling and universality

thermodynamics and quantum field theory pointed out in appendix C, the high tempera-
ture expansion is connected to the perturbative expansion of the path integral in powers
of B (or i in the Minkowskian formulation). The requirement that the coefficients are fi-
nite is therefore related to study the resummation of the loop expansion of the correlators

of the theory and their renormalization in the perturbative approach.
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3. Renormalization approach to critical

phenomena

The observations pointed out up to now suggest a few characteristics that will be at the
core of renormalization. The first aspect to take into account is that the long-range dy-
namics of fluctuations is responsible for critical phenomena and phase transitions. This
matches the interpretation of the transition as a sudden change of the path integral prop-
erties from its stable form at the microscopical level, where the energies involved are very
high and we are in the ultraviolet (UV) regime, to a new configuration taking over in the
infrared (IR) regime, where the energies involved are low and the wavelengths of relevant
fluctuations are large enough to correlate points far apart within the system giving rise
to collective excitations. In this perspective it is clear how, especially for a second order
phase transition, the key ingredient governing the transition is the correlation length &.
At the critical point & diverges and correlated clusters of all sizes appear. In this way,
zooming in and out the system (as long as we do not get to the atomic scales where the
degrees of freedom are still of the microscopical nature) one would see the same picture.
This is the way the system exhibits scale invariance from a certain finite scale on.

In synergy with these considerations we have the concept of universality. The fact
that different microscopical theories show the same critical behavior at lower energies
depending only on few parameters implies a loss of information about the fundamental
degrees of freedom. The more we look at the system in its infrared physics the harder
it is to infer the fundamental description. In a way, we can think about the system as
an impressionist painting where the color strokes have a very specific shape (e.g. points,
stars, polygons...). If we observe from very near the canvas we can see different shapes for
different paintings. As we make a few step back, the shape of the stroke becomes more
and more fuzzy, and we start to recognize the forms and subjects composing the painting.
If two paintings represent the same scene (we could say that the colors have the same
distribution) they would already appear the same, otherwise (supposing the art pieces
are very large, say infinite) we can get even farther until we totally lose the notion of the
intermediate figures too and the whole canvas appears as a confused abstract color layer.
At this level the relative abundance of each color is the only information we need in order
to predict what the painting will look like. If two canvas are made with strokes that can

be either red or yellow with some probability (the same for both the paintings), when

26



3.1. Non-perturbative approach: Wilsonian formulation

watched from very far they will both appear of the same shade of orange even though
strokes and intermediate shapes can be very different. In comparison with a thermody-
namical system, the role of the temperature!® is to change the probability distribution
between red and yellow. The idea of loosing information about the fundamental degrees
of freedom once that we look at the large scale physics of the system takes the name of
coarse graining and is formally implemented via the renormalization group.

In the following sections we will describe the main formulations of the renormalization
group. We will present the topic employing the momentum space representation of the
fields since this will allow for a straightforward understanding in terms of their Fourier
modes. Of course this description relies on translation invariance and therefore fails to
be valid once that gravity is included. Nevertheless, once that the interpretation of the
whole machinery is clear we will be able to rephrase it in direct space and adapt it to the
case of a curved background manifold.

For each of the approaches we are about to examine there is an extensive literature that
the reader may refer to. The discussion about Wilsonian group follows the presentation
of [121], other useful readings can be found in [5, 32-34, 38, 39]. For what concerns the
functional renormalization group excellent reviews are [42-51]. Perturbative renormal-
ization is of course standard textbook material. Interesting treatments can be found in
[5, 13, 34, 121, 125].

3.1. Non-perturbative approach: Wilsonian formulation

The formulation of the renormalization group given by Wilson [32, 33] implements coarse
graining by integrating the fast modes (with high momenta) in the partition function
obtaining a theory that only depends on the slow (low momenta) part of the spectrum.
We will refer to this procedure as integrating out the fast momenta since the theory
will not explicitly depend on them anymore. Since we want to compare the strength of
correlation functions for different modes a rescale of the fields and their momenta will
be necessary. This will lead to a transformation of the Hamiltonian that encodes the
relevance of the Fourier components and allows comparing them'”. Since the plan of this
thesis is to study the renormalization of quantum field theories we will now switch to the
field theoretical language and describe the theory in terms of an action S instead of the
Hamiltonian, where from the context it will be clear whether we refer to the Euclidean
formulation or the Minkowskian one.

We will suppose to have a coarse grained field ¢(x) for which the Fourier representation

16Tn a quantum system this would be the role of the energy of the interaction.
I"Notice that what is important is not the value of the momentum itself but rather the dependence of
the theory on the distribution of momenta.
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3. Renormalization approach to critical phenomena

reads:
o) = [ (qu) Ha)eie, (3.1)

where the Fourier modes ¢(q) are null for momenta with norm lower than some value gp.
Starting from a field which is already coarse grained may have different interpretations:
from a lattice point of view this would be the only notion of field available, from an
effective field theory perspective this could represent an optimization of the description
of the theory for some specific energy scale of phenomenon. In any case we should be
interested in investigating the ultraviolet completion of the theory.

In order to study the dependence of the partition function on the parameter ¢, we

write the probability distribution for the mode ¢(q) as:

p= Agexp [—S(¢, q0)] . (32)

for some normalization constant Ag. It is possible to define a parameter k such that
0 < k < 1 and formally integrate the distribution (3.2) for those momenta of norm

between k gy and qq:

= Avexp =500 ka0l = Ao [ ] dot@) exp[~5(6.a)] (3.3)

9=k qo

If the action is known, the transformation allows computing H(¢,k qp) for any value
of the parameter k. The transformation we just described is exactly a coarse graining

transformation, and we will indicate it as G(k):
S(o,kq) = G(k)S(¢,q) - (3.4)
The repeated application of coarse graining is endowed with a semigroup structure:
G(k1)G(k2) = G(k1k2) , (3.5)

but is lacking a well defined inverse transformation.
We act on top of the coarse graining with a scale transformation of the q variables and
the fields:

qa—dq =k"q,

(3.6)
o(a) = ¢'(k~'q) = Z(k) "¢(q).

If we represent the set of equations (3.6) as D(k) we have that the action transforms as
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3.1. Non-perturbative approach: Wilsonian formulation

follows:
D(k)S(¢(a).q) = S(Z(k)¢'(k™'a), k™'q) = S'(¢/(a),k'q). (3.7)
We call the consecutive application of G(k) and D(k) a renormalization operation:
R(k) = D(k)G(k), (3.8)
for which the action is transformed according to:

R(k)S(é(d,q0) = S'(¢'(a), q0) - (3.9)

The first transformation G(k) reduces the portion of the momentum space where the
Fourier components of the field are active, while the second transformation D(k) resizes
the domain to the original dimension modifying the field accordingly and leading to a
new action that can be compared with the previous one. The set of transformations R(k)
forms a semigroup as well but the established habit is to refer to it as the renormalization
group.

Let us try to understand how the Wilsonian renormalization group acts on the action
by studying a Gaussian initial distribution for the fluctuating field. Even though this
case might seem very naive it represents the distribution for a system far from criticality

where the thermodynamical regime is dominant. We thus consider an action of the form:

1 dq

S@.a) = [ (m + )o@ (3.10)
2 Jy<qo (2m)2

¢ being the speed of propagation of the fluctuations of the system. Since there is no

interaction between terms with different momenta the effect of the coarse graining trans-

formation is just to reduce the integration domain:

GWS(6.w) =S =3 [ S meado@P. @1

Applying a scale transformation we suddenly obtain a redefinition of the coupling constant
of the theory:

RS(.a0) = DOGHS(0.m) = 5 [ 85 (mco@P. (312

Thanks to the semigroup property of the renormalization transformations we can study

the limiting action simply taking the limit k£ — 0. For m # 0 we obtain a finite limit if
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3. Renormalization approach to critical phenomena

[SIIcH

Z = k™2

L1 dg 2
ST = §/q<q0 (27) m|¢(a)l”, (3.13)

while for m = 0 one finds the condition Z = —

If we are looking at the physics in a neighborhood of the critical region fluctuations
do not exhibit a thermodynamical behavior and the previous analysis becomes much
more complicated. It is useful to study the effect of an infinitesimal renormalization
transformation. Since all the effect of the renormalization group acts on the action
through the parameter k& we will use a lighter notation and write S = S(k). If we assume
that we already computed the flow of the action from the initial condition S(1) all the
way down to S(k) and we want to perform a further infinitesimal renormalization step

we have:

Sk — ok) = S(k(1 — %)) = R(1— %)S(k;) . (3.14)

Expanding the previous equation at first order leads directly:

AR(E)| g _ ,2S) _ 05 (H)

dk k=1 ok Ologk’

(3.15)

The left hand side of the previous equation represents a functional of the action and
thus depends on £ only through the implicit form of the action. We can thus define the
following quantities:

dR(k)

Bis) = ==| s (3.16)

such that equation (3.15) can now be written as:

oS

E—B[S],tzlogk;. (3.17)

Even though equation (3.17) looks simple it is actually a system of non-linear differential
equations for the constants defining the action S. A fixed point of the flow of the theory

can now be described as a root of (3.17):
B[S*] =0. (3.18)

We leave for later the discussion of the properties of solutions of the flow in proximity to
the fixed point.
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3.2. Non-perturbative approach: Functional

Renormalization Group

Another successful non-perturbative formulation of the renormalization method is given
by the Functional Renormalization Group (FRG) [40-51]. As is clear by the name of this
approach, FRG relies heavily on functional method and works out the renormalization
group at the level of the path integral instead of the microscopical action.

While in the Wilsonian approach we enforce a loss of information about the microscopic
degrees of freedom creating a theory for the slow modes, in FRG we adopt the opposite
point of view. In fact, in this case, one constructs a truncation that is supposed to be a
good description for the physics at some very high energy scale (defined by a ultraviolet
cut-off A) and freezes the propagation of slow modes up to some infrared cutoff k. Letting
the infrared cutoff low to zero we have an inclusion of less energetic modes that should
reflect the behavior of the theory at larger scales. The relevant modes will turn out to
control the flow of the theory while the inclusion of the irrelevant ones will affect the
phase diagram quantitatively but not qualitatively.

The idea behind this approach is that the fundamental physics is determined solely
by the microscopical degrees of freedom while the effective theories taking over at lower
energies are just the result of how modes combine themselves once that longer wavelengths
are included. The infrared physics, thus, arises dynamically rather than as a loss of
information.

In order to clarify the implementation of this method let us consider a path integral
for a scalar field theory defined by the action S[¢]:

Z[J) = / D¢ e~ SIH[ de J@3(x) (3.19)

where J(x) represents a classical source for the scalar field and we assume that the
functional measure entails an ultraviolet cutoff at some scale A. In order to decouple
the slow modes from the long range dynamics we assign them a very big mass via the

insertion of a infrared cutoff function of the form:

ASifd] = / dady é(x)Rilz — y)(y) (3.20)

The regularized path integral will thus depend on the scale £ and will be of the form:
ZulJ] = Wil = / Dep ¢~ SIA1-ASI61+[ ds J@)o(o) (3.21)

The momentum space representation of the regulator function Ry (q) will have to satisfy

the following requirements:
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3. Renormalization approach to critical phenomena

1. when the infrared cutoff is removed (k = 0) the path integral should coincide with

the original one:

ZiolJ] = Z|J] &  Riolg) =0, (3.22)

2. when k£ = A all the slow modes should be decoupled, meaning that the regulator

has to diverge for all momenta:
Ri—r(q) =00 Vq. (3.23)

Of course, in the case where the ultraviolet cutoff can be removed, the divergence of
the regulator will take place in the limit £ — co. An approximate method to freeze

all the modes at the scale A is to choose a regulator of order A? for all momenta,

3. when 0 < k < A the fast modes should remain unaffected by the regulator:

Ri(lg] > k) ~ 0. (3.24)

In order to properly take the regulator into account when considering the effective action,

we will have to modify the Legendre transform we use in the appendix A and define:

Pulg) = / de J(2)o(x) — WilJ] — ASile]. (3.25)

where ¢ is the expectation value of the field ¢ evaluated through the regulated path

integral:

Wi | _ (O (3.26)

plr) = 57 () ‘J:o 1y

We call the functional I'y, effective average action.
It will be useful to workout the relations between the regulated functionals. The first

variation of I'y will have a correction due to the regulator function:

or
s I = [y Bl =)o (3.27)
—J(z) — %&[ﬂw. (3.28)

This result can be employed to investigate the relation between the second variations of
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3.2. Non-perturbative approach: Functional Renormalization Group

W, and T'y:
do(x) Wy 6J(2)
dz—y) = = /dz
—/dz FWi [ O°Ty + Ri(z —y) |
0.J(@)J(2) [op()ely) |
showing that
-1
mﬁ”:[r?+&%] . (3.30)
Let us turn to study the exponential of the effective average action:
e Trlel —  WilJ]—[ Jo+ASk[g]
(3.31)

= [ Do exp {5101~ Al + [ Sloto) ~ oto] + Asifel}

We can define the fluctuation field x(z) = ¢(z) — ¢(x) for which we have (x(x)), = 0 by
construction. Changing variable from from ¢ to x does not affect the functional measure
since it is just a translation in field space. Expanding the regulator term and keeping in
mind that ASg[¢] is quadratic in the fields we find

ASklp + x| — ASk[¢]

—asilel+ [ar 2500 oy [ dedy (@) DAL ) - Ay
dp(w) lo=¢ S (1)dp(y) lo=e

B IASK[¢]

_/da: 50(0) ‘d):@)((x) + ASk[x] -

(3.32)

Inserting the last expansion into (3.31) we can rearrange the path integral as

= [ Dy exp{=slp - asi + [ao |50 - 2 o)

:/DX exp {—5[90+X] — ASk[x] + /da: i{;’“(gf)]x(w)} .

(3.33)

We are now able to extract a flow equation for the effective average action simply taking

the derivative with respect to the parameter k on both sides of the last equation:

kR, = e+l /DX kOy, (ASk[X] — /dx (;Ig;k(io)]x(a:)) e Sl tXI-ASK NS %X. (3.34)

It should be obvious that averages computed using the distribution (3.33) are propor-
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3. Renormalization approach to critical phenomena

tional to the regulated expectation values since they differ only by a constant, namely
exp{ | Je}, that can be absorbed in the path integral normalization and that is eliminated
upon inclusion of the normalization exp{['x}. Hence, equation (3.34) can be rewritten

as:

(kO ASE[X])r — (kO [ dz %2?5&(@%
(Lr

The second term on the right hand side is proportional to (x(x)); and can thus be set to

koW = (3.35)

zero. The first term yelds:

(kO ASKIX])k ;/dmy KO By (2 — 1) (x(@)x()x

o 5 (D
E (p(x)ow)e (D)
=5 /dxdy kOp Ry.(7 — y) (1), - (1)7 (3.36)
) 52W,, |
=3 /dxdy kopRy.(x — y)m

1 _
=3 / dedy kO Ri(z — y) [[® + Ry] ! (z,7).

Collecting all the results we can write the flow equation for the effective average action

as:
1 -1
KOy = SSTr [k&kRk (rﬁ? + Rk> } , (3.37)

where the super trace STr means that the trace over fermion sector is computed with en
extra minus due to the fermionic loop. Equation (3.37) is known as Wetterich equation
[40] and is an equation for the exact renormalization group. The term within the round
brackets represents the kinetic term of the full regulated theory and hence its inverse
coincides with the full propagator. Since we trace the propagator against an insertion of
the regulator function the Wetterich equation is a one-loop equation. Nevertheless, the
one-loop involved in (3.37) does not consists in an approximation since no expansion of
the path integral was done in order to obtain the result. It is therefore possible to give

a diagrammatic representation of equation (3.37) as follows:

koWl = 3 (3.38)

where with a double line we indicate the full propagator of the theory (as opposed to the
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3.3. Perturbation theory and fixed point analysis

one appearing in the perturbative expansion of the path integral) and with crossed circle
we refer to the insertion of the derivative of the regulator.

Equation (3.37) does not rely on any truncation of the effective average action and,
thus, represents a differential equation for a functional containing all possible operators
that are compatible with the symmetries of the theory. The number of these operators is
usually infinite and in order to do real computations we need to force a projection of I'},
onto a truncation. Is therefor important to identify the marginal and relevant operators
of the theory and to systematically add on top of them irrelevant deformations.

Moreover, the approach suffers from a scheme dependence inherited by the fact that
the regulator function is included by hand. Nevertheless this last ambiguity is removed
once the cutoff k is removed. As we will clarify in the next session most of the interesting
physics is encoded in the fixed point structure of the renormalization flow. Here the
cutoff can be safely removed without encountering any divergence and therefore any
result depending on the existence of a fixed point and on the flow in a neighborhood of

it would maintain its universal feature.

3.3. Perturbation theory and fixed point analysis

So far we have been mostly dealing with infrared physics, nevertheless the renormalization
picture offers us a broader perspective on where the ultraviolet completion an the infrared
phase structure of a model are just two faces of the same coin. The connection between
the high energy regime and critical phenomena was already clarified at the end of section
2.4 where we saw that the critical exponents, as well as the critical temperature, can
be found with an expansion of thermodynamical observables around T" = oo. From a
quantum field theory perspective this method corresponds to compute correlators from
a perturbative expansion of the path integral. Nevertheless, once that the computation
is pushed beyond tree level, correlation functions tend to show divergences in the UV
spectrum. This raises the question of whether a UV completion of the theory exists or
not. Formally we tackle the problem by studying the renormalizability of the theory in
terms of our ability to remove the divergences of the correlators.

From the point of view of the renormalization group the UV completion of a model
is, again, formulated in terms of the fixed point structure of the renormalization flow.
In figure 3.1 we have an example of a renormalization flow for a theory parametrized by
two operators. The fixed point I has one relevant direction (depicted in red) and one
irrelevant direction (in blue) which represents two different operators of the theory. We
can think about these two operators as a basis for our theory space'®. It is straightforward
to notice how a tuning of the initial value of the red operator (for example between the

three possible initial conditions Sy, Sz, and S3) leads to two different infrared behaviors

18 At least in a neighborhood of the point I
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3. Renormalization approach to critical phenomena

S

S;

Fig. 3.1.: Example of the renormalization flow of a theory, arrows point towards the infrared.
The fixed point U represents a ultraviolet sink for the flow while the fixed point I can
be a infrared or ultraviolet depending on the initial conditions of the flow. The blue
line represents an irrelevant coupling and identifies the critical surface of the phase
diagram, while the red line is a relevant coupling and, thus, controls the infrared
behavior of the model.

and distinguishes between two possible phases. The predictivity of a theory lies in the
presence of fixed points with a finite number of relevant directions since tuning them
determines the low energy physics. The blue trajectory separates the two possible infrared
outcomes and hits the fixed point I. This feature characterizes it as the critical surface
of the flow and scale invariance for the infrared regime of the model S; is manifest at the
fixed point /. It is important to realize that RG transformations are not physical: physics
always happens at the UV and IR scales at the same time and the renormalization group
only parametrizes the regime we are looking at. A physical transformation on the system
(for the Ising model this could represent a tuning of the temperature and the external
magnetic field) would cause a change of the initial conditions and is typically orthogonal
to the critical surface.

The fixed point U is a UV-sink for the flow in the upper half plane of the theory space.
This implies that in all the models with initial conditions on a trajectory connected to U
the ultraviolet cutoff can be safely removed. In the present case, the point U lies on the
critical surface and therefore represents a possible UV completion for both the phases.
In a different case we would expect a further phase transition for the divergent part of
the flow.

Finally, it is important to notice how the fixed point I might as well be regarded as an
ultraviolet completion for a theory with initial condition id S4. In this very special case
the theory would exhibit only one possible phase in its infrared regime and, in order to be
provided, requires a tuning of all the parameters of the model (relevant and irrelevant).

It is now clear how a perturbative expansion of the path integral can generate divergent

36



3.3. Perturbation theory and fixed point analysis

terms that need to be renormalized and how the renormalizability of the theory depends
on the presence of an appropriate fixed point. Let us consider a perturbative expansion
of the effective action. The functional I'[¢] can be expanded in powers /i (which we briefly
reinsert in order to keep track of the order of expansion) corresponding to the number of

loops in vacuum diagrams [5, 125]:

Te] = Sle] + Y A'Tr[e], (3.39)
o] = 5 Triog S¥[g). (3.40)
Dafp] = —1—12 —I—%

(3.41)

As pointed out in appendix C the functional derivatives of I' generate 1PI Feynman
graphs and, in this respect, %Fn[gp] generates n-loop contributions to the strongly con-
nected m-point functions'®. For example, in the case of the p*-theory with the truncation
(2.34)% the fourth variation of the effective action T includes all the quantum fluctu-

ations corrections to the quartic interaction. Diagrammatically we have:

T$V]g] = SW[g] = . (3.42)
e =3
(3.43)
Tafp]® =3 +1
+3
(3.44)

where factor of 3 takes into account the three possible channels for a 4-point function.
As we will shortly see, the loop contributions lead to divergences. This is due to the fact
that the theory is propagating incorrect degrees of freedom (bare fields and couplings)
which we will have to renormalize. The program of perturbative renormalization mainly

goes through three steps [5, 125]:

1. Compute regularized amplitudes:

190f course, since this procedure acts through the insertion of vertices of the theory, the generated
graphs will have to be compatible with the truncation of the theory.
200f course upon the identification ® = ¢.
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3. Renormalization approach to critical phenomena

in this step we identify and isolate the divergent part of diagrams appearing in the
loop expansion of I'™. This can be achieved either via the insertion of a cutoff or

with dimensional regularization (we will focus on the last method).

2. Give a prescription that relates bare quantities to renormalized ones:
since we are dealing with singular quantities we will have to face an evident ambi-
guity concerning the finite parts of our computations which encode the definition of
physical quantities. The freedom we have in defining the mapping between physical

and bare quantities will be referred to as scheme dependence of the renormalization

group.

3. Rewrite the amplitudes in terms of the new couplings:
this last step will provide amplitudes that are finite by construction and complete

the renormalization process.

In order to clarify these steps let us have a closer look to the one loop renormalization
of the self interaction of a ¢*-theory. Relying once again on the momentum space repre-
sentation and calling the diagram in equation (3.43) A(q) where ¢ is the total incoming

momentum, we have:

- d%p 1 1
_2
Alg) =2 / 2m) D p2+m? (p+q)2+m?’ (3.45)

where p is the loop momentum. The diagram is convergent for d < 4, hence, we regularize
it by analytically extend the dimensionality of the system slightly below the upper critical
dimension. We therefore insert a new parameter € and shift the computation tod =4 —¢
[5, 13, 121, 125]. To keep track of the dimension of the couplings we also add an arbitrary

mass parameter y and define the dimensionless coupling A as:
A=A\ e, (3.46)

Employing a generalization of Feynman parametrization for the integral in (3.45) [5, 125]:

/ dp 1 1 B
n)@ G + ) [(p+ ) + P
I(a+b—9)

_ ' 2 11— ) g22(1 — 2) - m2 4—a—b

(3.47)
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3.3. Perturbation theory and fixed point analysis

one can rewrite the A(q) as:

*2F(2 B g)

Alg) =X !

1
—= dz
(47T)d/2 /O [q22(1 i Z) + m2]2—d/2

:)\;f—r ) /ldz il ’
(4m)? J, ?z(1—2)+m2]

The divergence for d = 4 is evident from the pole of the Euler gamma function as ¢ is

(3.48)

sent to zero, while the integral is finite for any value of d provided that the mass is not

vanishing. Expanding the result in powers of ¢ we find:

Alq) = (Zg; E - /0 " o (qzz (14_“:)2 - m2> + 0(5)} o (349)

where 7 is the Euler-Mascheroni constant. At this stage we completed the first step in

perturbative renormalization. The divergence of the one loop correction to the coupling
A was identified and isolated in the form of a pole in the e expansion in dimensional
regularization.

In the last result the mass parameter p only affects the finite part of the diagram
(in the limit ¢ — 0) showing the freedom in the renormalization procedure. We can in

general define the form factor:

1 47T/,Lz
2 = dz 1 . 3.50
fla,m, ) /O 2los |\ A= T (3.50)
Taking into account the three possible channels available for a 2 — 2 scattering (all
of which are described at one loop by the same diagram we just evaluated) and the
coefficient in (3.43) we find:

F(4)(qi) —9W 4 F§4) + higher loops

. 3#5)\2 ,LLE)\Q
= A+ (471')28 + 2(47’(’)2 [f(s,m,u) +f(t7m7,u) +f(u7m7:u) _37] +hla

(3.51)

where the index 4 in the argument of '™ runs over the external legs of the diagram:
i=1,...,4.

Since we have an ambiguity in the finite part of the amplitude we need to give a pre-
scription to relate bare and renormalized functions. As stated before this is tantamount

to defining the physical coupling. In the case we are looking at, we could choose to define
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Aphys (at one loop) via a scheme that is independent on the incoming momentum:

< 33 [2

Aphys =T (g =0) = Apf 3 1+ = | = — 0 _ 3.52
Having a brief look at the action for the p*-theory we expect that at least three quantities
need renormalization: the coupling A, the mass m and the field ¢. With a procedure
similar to the one described until here we can study the renormalization of the kinetic
term from the two point function I'®. The momentum independent renormalization

conditions for the theory can be written as:

or®(q)

F(z) (q = 0) = mphys 3 aq2 q:O

and are known as Coleman-Weinberg renormalization conditions [126].

Even though this choice looks very natural from a mathematical perspective it does
not represent a very physical scheme because of the pathological choice of zero momen-
tum. One might thus be led to choose a different prescription which relies on a more
physical configuration. Typically this is performed according to the initial setup of an
experiment which can provide an experimental value for the coupling at some energy in
some configuration.

Finally we need to rewrite the amplitudes in terms of the renormalized couplings. This

can be done by formally inverting equation (3.52) and inserting A = A(Aphys) in (3.51).

2

The resulting 4-point function will be one-loop finite by construction. To the order j\phys

we have:
_ \2
T (q:) = Apiys + MEQ(Z—]:;Q [f(sym ) + f(t,m, ) + fuym, ) = 3£(0,m )], (3.54)
for which is straightforward to verify that I'(0) = Apuys.

The philosophy behind the procedure described so far is that the original couplings are
actually divergent and renormalization gets rid of unwanted singularities by subtracting
the singular part of the couplings and redefining the correlators in terms of the renor-
malized parameters of the theory. The couplings of the theory exhibit now a dependence
on the arbitrary mass parameter p which can be identified with the energy scale of the
observed phenomena. Hence, the derivative with respect to this parameter encodes the
evolution of the theory with respect to the scale at which we observe it. Having fixed
the definition of Xphys to a given scale, this will serve as an initial condition for the

renormalizatioin flow. Upon inversion of (3.52) we find (to lowest order in \):

3\

O =Tom

(3.55)
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It is natural to wonder whether it is possible to redefine the parameters directly at the
level of the action. We are thus wondering whether there exist an renormalized action
Srler] and a renormalized functional I'g[pg|, such that the n-point function generated
by I'r are finite by construction. We therefore introduce a counterterm action S.; and
postulate that it satisfies [5, 125]:

Sle] = Srler] + Sci.ler]- (3.56)

In order for this approach to result in a properly defined action formulation of our quan-
tum field theory in terms of renormalized objects we need to require that Sg[er| and
Set.[¢r] have the same functional form. This parametrization implicitly defines the coun-
terterms to coincide with the divergent part of the n-point function up to scheme depen-

dence. In the case of the scalar theory we are looking at we write:

1 1 A
Serler] = /dx {5(2“’ —1)(0pr)* + §(Zm — 1)mpeh + 4_?(2)\ —Dpg| - (357)

We thus have the following mapping between renormalized and bare quantities:

Lm < Ixs
Y = \/ZSOQOR, m = Z—mR, )\:Z—;\)\R (358)
¥ ®

If we expand the renormalization constants Z; in a loop series similar to what we did in

(3.39)

Zi=1+Y h"6Z, (3.59)

L=1

we obtain an expansion for the counterterm action which we graphically represent as:
Sealorl = n[1] +n2[2]+... (3.60)

Each term of the above series is responsible for removing a divergence in the expansion
of the effective action (3.39). The procedure of renormalization at higher order loop
expansion follows the same idea as the one loop case described so far but some subtleties
have to be taken into account. Beside the obvious technical difficulties concerning the
computation of the loop integrals, an important role is played by subdivergences. Defining

the superficial degree of divergence w as®!

w=dL—2I, (3.61)

21The definition given here only holds for the case of purely bosonic fields, however it can easily gener-
alized to include spinors.
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where L is the number of loops and I the number of internal legs, it turns out that
subdivergences are due to subgraphs with w < 0. While the cancellation of the leading
poles of n-loop diagrams is carried over by the n-loop counterterms, the cancellation of
subdivergences is implemented via m-loop counterterms inserted in (n—m)-loop diagrams
(of course m < n). For example one can compute again the diagram represented in (3.43)
but inserting the one loop coupling (3.52) in one of the two vertices obtaining a next to
leading contribution to the counterterms. This cancellation is, though, not granted at all
and needs to be checked for each model.

At this point one last thing needs to be checked. The method of subtraction of diver-
gences via counterterms relies on the possibility to keep the same truncation all along
the full loop expansion, meaning that all the n-point correlators can be renormalized via
a finite set of counterterms. If this is possible the theory is said to be renormalizable and
predictive since only a finite amount of parameters need to be measured in order to fix
the scheme dependence of the theory. Requiring such a possibility is fully equivalent to
require that a predictive fixed point has a finite number of relevant directions.

It is important to understand the connection between the perturbative formulation of
renormalization group and the FRG framework presented in section 3.2. In [52] the same
analysis we just applied to the effective action was performed on the effective average
action 'y of the functional renormalization group. Plugging the loop expansion of I'j
inside the Wetterich equation one obtains an infinite tower of differential equations that

can be solved recursively:

atSB[SO] = 07

1 —1
A1 klie] = SSTr [atRk <S](32) +Rk> } ,

| o - (3.62)
&J‘Q,k[ap] = §STI' FLkat (SB + Rk) s

The integration of these equations, though, requires a commutation of the trace with the
derivative with respect to ¢. In doing so one introduces ultraviolet divergences (previously
regularized by the presence of d;Ry) which require regularization. This can be achieved
via dimensional regularization. The introduction of the scale y then allows studying the
interplay between the two approaches. It turns out that the leading divergence of the ¢
expansion of each diagram does not depend on the parameter k of the FRG. This means
that the universal part of the g-functions obtained via the Wetterich equation coincide
with the MS scheme. Nevertheless the full S-functions (and the full renormalization
flow) will have non-universal properties. This is due to the mass dependence pf the FRG
scheme. The ability of mapping the results obtained via the functional renormalization

group to those of the MS scheme represents the technical foundation of what is known
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as functional perturbative RG [105, 106].

3.4. Fermionic systems and chiral symmetry breaking

So far we have only dealt with bosonic (scalar) degrees of freedom, nevertheless fermions
are not a stranger to critical phenomena. In order to introduce phase transitions in
fermionic systems let us consider theories of self interacting spinors. We can think of the
interaction of these models as the point-like limit of 4-point functions generated by a more
fundamental theory of fermions interacting via the exchange of a bosonic mediator where

we integrated away the bosonic degrees of freedom (see figure 3.2). The result consists of

Fig. 3.2.: Graphic representation of the point-like limit in four point functions in QCD.

self interactions of quartic order in the fermionic fields. If we denote the fields by ¥ (z)
and v(z) = 14, where the Dirac matrices satisfy the Clifford algebra Y, Wt =20,,1

for u,v =1...4, we can describe a four fermion interaction following in the form:

S0, 1] = A / d'z (d(x)O0np(x))” (3.63)

The interaction channels O; are listed and explained in appendix D.

The simplest model we can construct is known as the Gross-Neveu model [73]:
" 4 " Ao
Sexly ] = [ diz iy + S W) (3.64)

This theory has a discrete symmetry sometimes referred to as discrete chiral symmetry
which is explicitly broken by the inclusion of a bare mass term: ¥ — 51, 1 — —1hvs.
This action can easily be studied using mean-field techniques. In fact (3.64) is equivalent

to:

%)

_ 1 _
0] = [t {50 b0+ iho) v} (3.65)
where g and h are coupling constants. The equivalence becomes evident through the
elimination of the auxiliary field o(x) by means of the equations of motion and the

identification:

h2

A=

(3.66)
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Equation (3.66) shows that only the ratio of the two couplings is physical. The expecta-
tion value of o(x) is directly proportional to the chiral condensate (1)) and can therefore
be used as order parameter for the phase transition. Since the fermionic degrees of free-
dom appear only quadratically in the action they can be integrated out exactly from the

path integral. We thus extract the following effective action:

&ﬂﬂzz/ﬁﬁv{%fJQ—qkbg@a+imﬂ}. (3.67)

The method we followed to extract the effective action is know as bosonization of a
fermionic theory and is based on the Hubbard-Stratonovich transformation [127]. Since
the dependence on the condensate is now explicit, this method is particularly suited
to study the broken phase. We can look for the minimum of the effective potential of
(3.67). Assuming that the stable ground state coincides with a constant field configuration

o(x) = o one has:

%:iﬂPMW+mm*}

92
3.68)
1 dp . . -1 (
= ?Tr/ 2m) ih (2p+zh00) .

Using the fact that the Dirac matrices are traceless and explicitly inverting the operator

under the sign of integration we finally get to the result:

R\? [ dip o
—d, (2 .
JO Y <g) / (27T)4 p2 + hQO'g 9 (3 69)

d, being the dimension of the Dirac space. The previous equation still admits a trivial

solution but a deeper inspection reveals that it is unstable. A second solution for g # 0
is the actual minimum of the effective potential. Hence, the ground state is dynamically
shifted towards non-zero values of the chiral condensate breaking the symmetry and
generating an effective mass. Therefore, equation (3.69) takes the name of gap equation.
The expression for oy is logarithmically divergent in the UV (in d = 4) and requires
renormalization.

Another interesting model is given by the Nambu-Jona-Lasinio (NJL) in four dimen-
sions. This model was first introduced in [74, 75] in order to describe the low energy
physics of fundamental particles in analogy with the theory of superconductivity.

The simplest version of the NJL model we can take into account is described by the
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3.4. Fermionic systems and chiral symmetry breaking

following action®

_ _ Ao _
Sunlivl = [ faids+ 3 [0 - 7]} (3.70)
Using the projectors on the right and left components of the Dirac fields:
1+
Pri=— B (3.71)

for which vg = Prrt and vp; = ¥Ppg, it is easy to see that the action can be

rearranged as:

Snan[v, ¢] = /d490 {Oridvr + vridr + 22(vr) (VL) } | (3.72)

which exhibits a manifest invariance under independent transformations of the left and
right components by a complex phase: ¥ (x) — €24 (), Yr(z) — ePRip(x). Hence
the symmetry group of the model is U(1) x U(1) which includes the symmetry of the GN
model as a special case and is called (continuous) chiral symmetry. It is clear that a mass
term would explicitly break also this symmetry since left and right components would
mix. Here we focus on dynamical a breaking of the symmetry leading to an effective
mass generated as a chiral condensate. We refer to such a mechanism as chiral symmetry
breaking (xSB).

It is possible to implement an FRG approach to study the renormalization flow of .

Defining a sharp regulator of the form [128, 129]

Ry(p)=p <\/§ — 1) 0(k* — p?), (3.73)

k being the infrared cutoff, and employing the usual ansatz for the UV truncation of the

effective action:

D80 = S8 0]+ [ S0 ERp), (374

one finds that the regularized propagator is a 2 by 2 matrix over the field space:

—

6 _
it = M{ I [0, V] (
7

ot
(=%}

5 N;) (3.75)

1S

The S-function for the coupling A can then be extracted projecting the flow equation onto

22For the moment we consider only one fermionic flavor and ignore the relation between different channels
provided by the Fierz identities (see appendix D), since the most significant aspects of chiral symmetry
breaking are still captured in this approximation.
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3. Renormalization approach to critical phenomena

the interaction channel of the NJL model. For the cutoff function (3.73) the S-function

results in?® (see [50] for a review on the topic):

1
By = O\ =2) — —= A%, (3.76)

272

The quadratic structure of the S-function could be guessed from the structure of the one
loop diagram contributing to the vertex function which can only have two bare vertex

insertions. Beside the Gaussian theory, hence, there is a non-trivial fixed point of the

Bx

/\C\ A
Fig. 3.3.: Profile of the S-function for the fermionic self interaction. As is evident from the plot,

there is a non-Gaussian fixed point playing the role of a critical initial value for the
coupling flow.

renormalization flow (see figure 3.3). This fixed point separates two possible infrared
limits and, thus, two phases. If the initial condition for \ is smaller than 472 the model
flows towards the free theory, otherwise the flow diverges. Therefor we can use the value

of the non-Gaussian fixed point to define a critical coupling:
A\ = 477, (3.77)

Integrating the S-function for an initial condition A = AUV at the cutoff scale A, the

A ) AUV AUV
— 1— +
(&) (5%

= —%ﬁ,\‘ =2

A=Ae

solution looks like:

AE) = ATV

(3.78)

Inspecting (3.78) for AUV > X\, we notice that the coupling eventually diverges at a finite

23For the sake of simplicity we drop the contribution of the wavefunction renormalization.
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3.5. Introducing gravity

value of the renormalization scale k%*:

AUV /A, — 1

which identifies the scale of the transition between a symmetric and a broken regime. In
the following parts of this thesis we will review and study the contribution to this tran-
sition due to the presence of gravity taking into account the inclusion of many fermionic

flavors.

3.5. Introducing gravity

In the last section of this chapter we point out the main aspects concerning the general-
ization of what we explained so far to the case where gravity is included. Even without
considering gravitational fluctuations there are several details purely due to the presence
of a non-flat background manifold that need to be taken into account.

The first complication we encounter is that we lack translational invariance and, hence,
a momentum space representation of quantum field theory is not available. We therefore
need a formalism that allows us to perform computations directly in coordinate space.
Most of the computations we perform in quantum field theory and, in particular, in the
framework of renormalization rely on the possibility of explicitly using the propagator.
More generally we often need to compute traces of differential operators of some kind.
Once that we switch on gravity, though, translational invariance of the background is
lost and the Fourier transform with it. We therefore need a technique to represent such
differential operators, which does not rely on momentum space. Let us therefore consider
an elliptic differential operator O?° If we assume a basis for the orthogonal eigenfunctions
of O, ¢ (), such that

O¢m = /\mgbm(x) ’

(3.80)
/ QA ()M () = Sy

where M is an appropriate metric on the space of functions, then we can employ the

spectral theorem to decompose a function of the operator O over its eigenspaces:

£(0) = / A1) f o) B (3.81)

1(Am) representing the spectral measure associated with O and P, the projector oin the

24Here we assume that the initial condition is given at a very large scale A, larger than the transition
scale.
25The requirement of @ being elliptic only implies that the Cauchy problem is well defined.
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3. Renormalization approach to critical phenomena

appropriate subspace. If we further assume that f has a well defined inverse Laplace
transform £71(f), such that

ft) = /OO ds L7H(f)(s)e ™, (3.82)

1) = [“as [auiae (s e, (3.83)
_ /0 T ds £ (f) () (3.84)

Tracing on both sides provides us with a formula for functional traces:
Trf(O) :/ ds L7Y(f)(s)Tre ™% . (3.85)
0

The operator under the sign of integration is the formal solution of a diffusion equation

where the variable s represents the diffusion time:

d
(O + %)6_50 =0. (3.86)

Therefor we define the heat kernel Ky of the operator O as:

Ko(s;z,2') = (x|e™*C|a'), (3.87)
with initial condition
: —sO __ /
il_r)r(l)e =d(x,z'). (3.88)

In particular, if O is the kinetic operator of an action, the heat kernel allows for a direct

space representation of the propagator:
G(z,2) =0 Ya,2') = / ds Ko(s;x,2') . (3.89)
0

The price that we have to pay, though, is that we need to know the spectrum of the
operator O in order to perform any computation. It is nevertheless possible to give an
asymptotic expansion of the heat kernel valid for small propertime values (see appendix

The second main input we shall take into account is the presence of new operators due

to the coupling of dynamical fields to the background curvature. In this work we choose
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3.5. Introducing gravity

to perform dimensional analysis keeping the metric dimensionless?®. In this way the basic

curvature operators have the same dimensions regardless of the index distribution:
[B(2)] = [Ryw ()] = [Ryuwpo(x)] = 2. (3.90)

We notice that the non-minimal coupling of a canonically normalized scalar field to the
Ricci scalar curvature £p?(x) R(x) turns out to be a marginal operator in any dimension:
[€] = 0. As a consequence we will expect the coupling £ to affect the renormalization flow
of scalar field theories on curved space as well as their critical behavior. This investigation
constitutes an important part of the last chapter of this thesis.

As a second example of how the coupling to the background curvature can lead to
non-trivial physics we consider fermions on curved space. The common way of dealing
with such a theory is to define a set of maps between the local general coordinate frame
and a locally inertial (Lorentz) frame [130-133]. These maps are called tetrads e”(z) and
they transform as covariant vectors with respect to general coordinate transformations
through the index pu, while the index a transforms according to vector representations of

Lorentz group. They satisfy the following relations:

gu(@)eg ()ey () = Mab (3.91)

where 7, is the flat metric. In this formulation gravity is seen as a gauge theory with
gauge group given by the inertial frame group (d dimensional Lorentz group for a Lorentz
signature or SO(d) in Euclidean formulation). The introduction of tetrads allows us to
define a set of Dirac matrices for spinors on curved space starting from the more familiar

formulation on flat background:

V() = eg(x)7*, (3.92)
{7 (2),7"(2)} = 2Lef(x)ey (2) 1 = 219" (2) - (3.93)

An equivalent perspective would be to start from the definition of a Clifford algebra
for a generic metric g, and formulate the theory leaving the charts from the spacetime
manifold to a flat space be implicitly defined via the metric. This approach is known
in the literature as spin-base invariance [134—138]. Of course in both these cases the
bundle structure on the spacetime is enriched by fermionic degrees of freedom. Therefore
the generalized covariant derivative receives a contribution from both the Levi-Civita
connection I', acting on the tangent bundle, and the spin connection w,, acting on the

spin bundle, such that for a generic tensor T carrying a representation of the tangent

26Since the physical quantity is the dimensionality of the square interval di? = g (2)dxtdz” it is possible
(and equivalent) to assign mass dimensions to the metric field and keep dimensionless coordinates.
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3. Renormalization approach to critical phenomena

bundle through the index v and a spin representation through the index a we have:

V. Iy = 0,1 =T, T8 4w, T (3.94)
The covariant Dirac operator is then constructed via contraction of the covariant deriva-

tive and Dirac matrices:
YV =~*(x)V,,. (3.95)

While in the tetrad formalism there is a natural representation of the spin connection in

terms of the Levi-Civita connection:

wu'y = —eyoue, + quei@’z’ (3.96)
in the spin-base invariance framework there are more possible representation and metric
compatibility has to be required.

A lot of information about spinors in curved space can be deduced from the spectrum
of the Dirac operator and its heat kernel. In appendix E we summarize the case of
hyperbolic spaces (particularly relevant for this work) and its application to the Heat
Kernel. From equations (E.11) and (E.12) is already evident that the heat kernel of the
Dirac operator contains several contributions coupling spinors to gravity. In [70, 139]
it was shown that the infrared regime of the spectrum faces an effective dimensional
reduction from d 4+ 1 to 1 + 1 dimensions. This result affects in particular modes with
self interactions described by the covariant version of (3.63) since they are relevant in the
infrared.

The problem of phase transitions for self interacting fermions on a two-dimensional
manifold was studied in several works. In [53, 54] a mean field analysis of the Gross-
Neveu model with Ny spinor fields showed a curvature induced chiral phase transition.

The effective potential in fact is found to be:

o? A 212 N¢R 202
=—|1——12+1 ——logI' (1 .
V(o) 5 [ o ( + log NfR>:| +—5 " log ( + NfR) , (3.97)

o(x) being the auxiliary fields satisfying (on-shell) o =, /Nifzh/g A is the coupling for the
quartic self interaction and R the scalar background curvature. Already for small values

of R we see that the effective potential develops a minimum for o = oy with

RNy )
DYor

U
0o = [~ exp 2—7

O'g = 5’0(1 -

(3.98)
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3.5. Introducing gravity

for an arbitrary renormalization scale p, while g represents the condensate in flat space.
The computation was performed assuming a positive constant curvature (spherical back-
ground). We notice that large values of R help the restoration of chiral symmetry. A first
attempt to generalize the result to hyperbolic spaces already suggests that the negative
curvature favorites the broken phase.

A similar result was found for a larger class of models in two dimensions in [56]. Here,
a study of the temperature and curvature dependence of chiral symmetry breaking was
performed for a theory of massless fermions interacting with gauge fields, scalar fields
and pseudoscalar fields. For a manifold with constant positive curvature the gravitational

contribution to the chiral condensate can be computed and studied via an expansion:

s R
(Y Pr)) = aexp{ ——=R} as — —0, (3.99)
{ 12¢2 } m.,
and
R \ =7 m mm? R
Py =a | — ———R-— — 1
(" Prap) a(2m7) exp{ 4€2R 102 fy} as m7—>oo, (3.100)

with @ the flat space value of the condensate (¢"Pgrt), m, the dynamically generated
photon mass, g the pseudoscalar interaction and v the Euler-Mascheroni constant. Again
we see that the large positive curvature is responsible for an exponential damping of the
chiral condensate.

Heuristically we can understand the difference between positive and negative curvature
noticing that the size of a closed background represents a natural cutoff for the infrared
modes. These are exactly the degrees of freedom dragging the system towards the phase
transition and in this configuration their contribution is partially suppressed. Conversely,
hyperbolic geometry enhances infrared effects leading to the symmetry breaking with
weaker interactions.

Having in mind the dimensional reduction described above and considering the evi-
dences of the phase transition in 1+ 1 dimensions the natural expectation is that models
of fermionic self interactions will face chiral symmetry breaking regardless of the dimen-
sionality. In the next chapter we will discuss some evidence of this behavior coming from
a functional renormalization group analysis and discuss how this leads to the formulation

of a possible constraint for quantum gravity.
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4. Gravitational catalysis of chiral

symmetry breaking

In this chapter we study the role of gravity in dynamical symmetry breaking for chi-
ral models of fermionic matter on hyperbolic spaces. A key ingredient of the study is
the implementation of heat kernel techniques. The spinor heat kernel is introduced in
appendix E following the work of [140, 141]. The dependence of the phenomenon on
the dimensionality of the spacetime is investigated in general for the odd dimensional
case. The even dimensional scenario requires the implementation of numerical methods,
therefore we performed the analysis only for the most interesting cases. Finally the result
is employed to reduce the set of physical solutions for the ultraviolet fixed point of the

cosmological constant in the context of asymptotically safe quantum gravity.

4.1. Gravitational Catalysis

The great interest of the community in fermionic self interactions is mostly due to the
great renormalization properties they exhibit. Interactions of the form 3.63 share asymp-
totic freedom with QCD, a feature that can be investigated in the large Ny limit, and still
they provide a dynamical mechanism of mass generation. The phase diagrams of these
models were extensively studied for both pure fermionic models and theories coupled to
other fields. An example of coupling that plays an important role in chiral symmetry
breaking is given by the introduction of a magnetic field. The enhancement of mass
generation via an external magnetic field takes the name of magnetic catalysis [142-149].
This phenomenon is a result of an effective dimensional reduction of the dynamics of the
system fro d to d — 2 dimension. We can see that a lot of features of magnetic catal-
ysis are qualitatively matching the discussion made about gravity at the end of section
3.5%7. Therefore the curvature contribution to chiral symmetry breaking takes the name
of gravitational catalysis[53-72, 139, 150].

As we pointed out at the end of the last chapter the natural expectation is to detect
gravitational catalysis in four fermion theories in any dimension. Evidences for this

phenomenon have been provided in several works. In [55, 151] the effective potential

27One of the fundamental aspects of catalyzed chiral symmetry breaking is that the external force should
be attractive in order to favor bound states.
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4.1. Gravitational Catalysis

of the four dimensional NJL model in curved spacetime was studied using Riemann
normal coordinates and Schwinger’s propert time in the 1/N; expansion. In [57] the
same analysis was carried over for various models of four fermion theories in d = 2 and
d = 3. Similarly to the scenario taking place in two dimensions we have that positive
curvature contributes to symmetry restoration while negative values of R lead to an
enhancement of chiral symmetry breaking. In particular in the closed topology case is
possible to identify a critical value R, such that the symmetry is restored for R > R.,.. In
particular the symmetry is always restored for large positive curvature and alway broken
for large negative curvature.

Surprisingly, similar effects appear also when the curvature is only appearing in the
space like sections of the manifold. This is the case of the Lobachevsky plane where it
was shown ([71]) that the dynamical mass generated in the Gross-Neveu model receives
contributions from the spatial curvature in the weak coupling regime.

These results turned out to be in accordance with the picture provided by a renor-
malization approach to the phase transition. In [150] a FRG study of the Gross-Neveu
model was performed for both the hyperbolic space in d = 3 and the Lobachevsky plane.

The shape of S-function for the self interaction coupling appears to be parametrized by

il
k2

[B-function in the deep infrared regime and the non-Gaussian fixed point falls into the

the RG scale k& which always appears in the ratio This causes the collapse of the

Gaussian one. Consequently there is no real notion of subcritical initial condition for the
coupling since, at some scale k = k,, the critical value .. will cross the initial condition

and render it supercritical (see figure 4.1 for a sketch of the phenomenon).

B(A)

Fig. 4.1.: Sketch of the dependence of the S-function for the Gross-Neveu model in hyperbolic
three dimensional space on the scale k. The deeper we go in the infrared regime the
more the critical value of the coupling is pushed toward the Gaussian fixed point.

From a phenomenological point of view an important question arises. Supposing that
the average curvature of the spacetime is indeed negative and gravity contributes to
the fermion mass generation, the hierarchy of fundamental interactions would force the

transition to happen at high energy scales®® where gravity would be strong interacting.

28From this perspective, asymptotic freedom of QCD suppresses the gauge modes and the color structure
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4. Gravitational catalysis of chiral symmetry breaking

At this point the condensate is expected to receive contributions fro the cutoff of the
theory (this is typical also in magnetic catalysis). Since the natural cutoff for gravity is
the Planck scale we should observe masses not far from the Planck mass. Nevertheless the
observation we have so far for the masses of fundamental fermionic particles differ a lot
of orders of magnitude from this expectation. Is gravitational catalysis really compatible
with the observations of light fermions? This question was originally asked in [76, 152]
and represents the main subject of the investigation of this chapter. The prediction of
a negatively curved manifold is common to several quantum gravity scenario. The key
approach will be to identify a set of parameters of the theory such that gravitational
catalysis does not occur. This would imply a possible constraint for quantum gravity via

the infrared predictions of specific theories.

4.2. Mean field analysis

Let us start from a fermionic matter sector with a global chiral symmetry group U (N;)g X
U(Ni)r. As before N¢ represents the number of fermion species. This is reminiscent to
the fermionic sector of the standard model subject to the strong interaction with N
counting the number of flavors times the number of colors. Even without any further
gauge interactions, gravitational fluctuations, say in the (trans-)Planckian regime, will
induce effective fermionic self interactions. With gravity preserving chiral symmetry, a
Fierz complete local fermionic self interaction to fourth order in the fields is parametrized
by the action [76, 153]
7 n 5\* a a 2 a a 2
st = [ {ow0+ 5[ (50 + (F0) ]
~ (4.1)
+ Ta a 2 7a a 2
+7[<¢ Y > - <¢ VY5 ) ]}a

where the Latin indices represent different flavor species and Y is the covariant Dirac
operator. Denoting the vector interaction channel term with (V) = (¢7,%)? and the axial
one with (A) = —(¢,75%)?, we expect the transition to be triggered by the (V) + (A)

term which is equivalent to

(V) + (4) = =2((5") = (P)] (4.2)

simply counts the number of fermions in the model with no relevance difference from the flavor
symmetry.
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4.2. Mean field analysis

by means of a Fierz transformation (see appendix D). Here, (S’) and (P’) denote the

scalar and pseudo scalar channels in the space of flavor nonsinglet terms,

(8") = ("9")* = (“9") (P"y"),
(P') = (V50")* = (*0") (¥ 50%) . (4.3)

In fact, the structure (S”)—(P’) is familiar from the NJL model and further generic models
of chiral symmetry breaking. In such models, the onset of chiral symmetry breaking is
signaled by this channel becoming RG relevant. Hence, we concentrate in the following
on the NJL channel and ignore the (V') — (A) channel. The latter is expected to stay RG
irrelevant across a possible phase transition, justifying to approximate A_ ~ 0 for the
purpose of detecting the onset of symmetry breaking.

Using the projectors on the left and right chiral components (3.71), in a total similar
fashion as we did in section 3.4, the NJL channel can also be written as the following

interacting Lagrangian

Lin (1, 9) = 2\ WLUR)(WRYE) , A =2)4. (4.4)

By means of a Hubbard-Stratonovich transformation, the interaction term can also be

expressed in terms of a Yukawa interaction with an auxiliary scalar field,

Cint(¢7 JJ’ ¢) = @EQ[PL(QST)ab + PRQSab],lva + %tr(ngb) : (45)

The equivalence of (4.5) with (4.4) becomes obvious with the help of the equations of

motion for the chiral matrix fields ¢ and ¢,

(bab — _2;\'&Ib%¢ﬁ )
(&")ab = —2ML Y% - (4.6)

Note that the inclusion of flavor degrees of freedom reflects in the auxiliary field being
a tensor. From (4.5), it is obvious that the Dirac particles can acquire a mass if chiral
symmetry gets broken by a nonzero expectation value of the field ¢,,. The precise
breaking pattern is fixed by the nonzero components of (¢4;) which in turn is determined
by the minima of the effective potential for ¢. In the following, we assume a diagonal
breaking pattern, ¢., = @odap With constant order parameter ¢g, which for |¢g| > 0 breaks
the chiral group down to a residual vector symmetry familiar from QCD-like theories.
In the form of (4.5) read together with the fermion kinetic term, we can integrate out

the fermionic degrees of freedom and obtain the standard mean field expression for the
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4. Gravitational catalysis of chiral symmetry breaking

effective potential of the order parameter

U(6) = 5568 — Nelog det(¥ +du) = “Lf — S Trlog(-¥" +6d), (47

where we have made use of ys-hermiticity of the Dirac operator in the last step. Since
we are considering a homogeneous order parameter, the trace (as well as logdet) is
understood to be already normalized by a spacetime volume factor, such that we are con-
sidering local quantities throughout the computations. Using the Schwinger propertime
representation as explained in section 3.5, we write

Nf 2 Nf/oodS 42 VQ
Ulp) = — — — e %5 TreY 0, 4.8
(0) = pob+5 | e e (4.8)

where we encounter the trace of the heat kernel of the squared Dirac operator on the

manifold under consideration,

Tre¥™s =Ty K(z,2';s) = K, (4.9)
o
2]K — VK, lim K(z,2';s) = oz —7) (4.10)
Js s—0t \/g

In our analysis, the information about the nature of spacetime enters through the trace
(4.9). As this trace parametrizes the contributions of fermionic fluctuations on all scales,
the explicit evaluation of (4.8) would contain information about both the local and global
structure of spacetime.

Though the propertime integration has been introduced as an auxiliary representation,
the integrand can be interpreted as the result of a diffusion process of a fictitious particle
on the spacetime within propagation time s [154, 155]. The trace enforces that the
diffusion path is closed. For a finite propertime s, the fictitious particle traces out a closed
path in spacetime which is localized around a point x under consideration. This path can
be considered as the spacetime path of a virtual fermionic fluctuation; this perspective
can also be made explicit by introducing a Feynman path integral representation of the
heat kernel (worldline formalism) [156-160]. For instance, the mean average distance of
the diffusing particle from its center of mass in flat space is d = 1/s/6 [161], indicating
that /s can be considered as a typical length scale of the fluctuations at a fixed value of
s.

Aiming at a statement about spacetime in the (trans-)Planckian regime, we do not
want to make an assumption about its global properties, but intend to consider only
local patches of spacetime. This is possible by means of an RG type analysis of (4.8).

For this, we introduce a propertime regulator function f; inside the propertime integral
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162, 163,
fro=e " (4.11)

Here, the power p > 0 is a parameter specifying the details of the regularization and k
corresponds to an IR momentum space regularization scale. For instance, for p — oo,
all long range contributions for length scales y/s > 1/k are cut off sharply. For finite p,
the length scale 1/k becomes a smooth long range cutoff. The case p = 1 is special as it
corresponds precisely to a Callan-Symanzik regularization scheme. In the limit & — 0,
the insertion factor becomes fi_,o = 1 and the regularization is removed. This procedure
is in total analogy to the FRG approach described in section 3.2. The correspondence
can be made formal simply applying the propertime representation to the regularized
propagator (F,(f) + Rk>_1. Starting from the bare potential U at a high momentum

scale k = A, the potential at any IR scale kg can be constructed from

A
N,
UI{:IR = UA - / dk akUk, UA = ﬁﬂ%, (412)
A

kIR

where the RG flow of the potential can be computed from:

Ny [ d 2
8kUk = ?f/ ?S e_%sﬁk.kas . (413)
0

The subscript A to the bare coupling ) in equation (4.12) stresses the fact that the process
of defining a model goes through the definition of the initial condition for the interaction
coupling at the high scale A.

Since O f, ~ sP for small s, also the short range fluctuations are suppressed in (4.13),
such that the effect of the fermionic fluctuations can be studied in a Kadanoff-Wilson
spirit length scale by length scale. The evaluation of one RG step ~ 0y Uy, typically
receives contributions from length scales /s ~ 1/k. This implies that we do not have
to know the global structure of the spacetime, but our assumptions about the spacetime
properties need to hold only over these covariant length scales. More specifically, we
assume below that the spacetime can locally be approximated as maximally symmetric.

Though the analysis of the chiral interactions leading to (4.1) has been performed in
d = 4 dimensional spacetime, the study of the flow of the order parameter potential
of (4.13) can be performed in any dimension. What might differ is the relation to the
symmetry breaking channel which, in other dimensions, can be more involved or not
even unique, see [164] for an analysis in d = 3. In higher dimensions, the perturbative
non-renormalizability of Yukawa theories suggests that more relevant operators appear
near the Gaussian fixed point. The corresponding regularization of UV divergences may

require higher values of p for a stronger suppression of UV modes. Independently of these
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4. Gravitational catalysis of chiral symmetry breaking

technical complications, our analysis can in principle be performed for any value of d.

4.3. d = 3 dimensional space

Let us begin with an analysis of the RG flow of the potential for the case of d = 3
spacetime dimensions. This case is highly instructive from the viewpoint of the method:
it can be treated analytically in all detail, and does not involve further relevant operators.
Since gravitational catalysis can occur for negative curvature, we consider spacetimes that
can locally be approximated by a hyperbolic space for Euclidean signature, corresponding
to AdS spacetime for a Lorentzian signature. The analysis could similarly be performed
for spacetimes with negative curvature in the purely spatial part with quantitatively
rather similar results [71, 150]. In d = 3, the trace of the heat kernel reads [140, 141]

1 1,
Ki= (1 +5n s) , (4.14)
where R R
e = >0 4.15
T Tdd-1) T 6= (4.15)

denotes the local curvature parameter related to the Ricci scalar R.
Including the propertime regularization leads to an effective, scale-dependent potential

of the following form:

Nf 2 Nf /oo ds 42 1 9
U= —0o¢5+ — e ¢08fk<1+—/1 3). 4.16

2N " 2(47?)% 0 b 2 ( )
In d = 3, the Callan-Symanzik regulator is known to be sufficient to control the RG flow
of our model. Thus, let us first choose the exponent p = 1 for simplicity; the result for
general p will be given below. The regularized flow of the potential with respect to the

scale k then reads

OHUk(¢) = — 22(:7]:;f3 {/000 d—f e ks (e_q%s - 1> + % /OOO ds o—k?s (e—d%s _ 1)}

Upon insertion into (4.12), the effective potential at the scale kg can be computed,

yielding
Nf 1 1 kIR Nf 3 3
U, — _2(_______) _< 2 23 2 2—k3>
kiR 5 on S Y * 1ox (95 + kir)? 5 ROy — ki (418
N '
_ _167r K2 ¢(2) + kI2R — klR) s
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4.3. d = 3 dimensional space

where we have introduced the (scheme dependent) critical coupling A, = 47/A, and
dropped terms of order O(1/A).

The physics described by this effective potential can be read off term by term. The first
bracket controls the mass-like term in the potential?®. For subcritical coupling Ay < Aer,
the mass-like term remains positive for any kg implying that the system in flat space
remains in the symmetric phase with a minimum ¢y = 0 and does not develop fermion
masses. For supercritical couplings Ay > Aer, the mass-like term becomes negative below
a certain critical IR scale kg, indicating that the potential develops a nontrivial minimum
®3 > 0. The system hence exhibits chiral symmetry breaking and fermion mass generation
already in flat space with a mechanism rather similar to the one illustrated in Landau
theory in section 2.3. The second term does not contribute to the mass-like part of the
potential ~ ¢2. This is easily verified upon Taylor expansion. For large ¢ it grows like
~ +¢3, ensuring stability of the potential. The last bracket represents the gravitational
contribution, being manifestly negative. In the limit kg — 0, it is linear in the field ¢q
and thus dominates for small field amplitudes. In this way, it induces a nonzero ¢ and
inevitably drives the system to chiral symmetry breaking and fermion mass generation.

However, gravitational catalysis receives its relevant contributions from the deep IR,
i.e., the long-wavelength modes. In order to dominate the mass spectrum, the curvature
has to be such that the hyperbolic space is an adequate description also on large length
scales. Within our RG description, we make the less severe assumption that the hyper-
bolic space is an adequate description only up to lengths scales of order 1/kir. Whether
or not the potential develops a nonzero minimum then is decided by the competition
between the first and the third term of (4.18).

Since we are interested in curvature induced symmetry breaking, we assume that the
fermionic interactions are subcritical, Ay < Xcr, such that the mass-like term in the first

line is bounded from below by

N; 1 1 k Nek
. ngbg(__ IR) Z f IR¢8. (419)

Y w4 Z e

The only other term contributing to the Hessian of the potential around ¢g = 0 arises

from the curvature dependent part of (4.18):

N 9 9 2 B Nikir K2 2 4
T (V68 + ki — hun ) = =5 1568+ O(60) (4:20)

Comparing the last two equations tells us that gravitational catalysis does not induce

chiral symmetry breaking and fermion mass generation as long as the hyperbolic curvature

29Not to be confused with an indication of mass generation, a quadratic term in the order parameter
field is proportional to the expectation value of four spinors.
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4. Gravitational catalysis of chiral symmetry breaking

parameter satisfies

Ly (4.21)
IR

In terms of the negative scalar (spacetime) curvature, this implies
|R| = 6k < 24kf,, (for R <0). (4.22)

If the last inequality is respected the occurrence of a nontrivial minimum for the effective
potential is inhibited and fermion mass generation is less likely to happen as a consequence
of gravity®®. Equation (4.22) represents our first example of a curvature bound from
gravitational catalysis: in line with our assumptions we conclude that a fermionic particle
physics system will not be plagued by curvature induced chiral symmetry breaking, as
long as the local curvature of spacetime patches averaged over the scale of 1/kr satisfies
the bound (4.22).

Some comments are in order:

1. From the derivation, it is obvious that a study of the mass-like term ~ ¢3 is sufficient
to obtain a curvature bound. Of course, the global structure of an effective potential
could be such that a nontrivial minimum exists even for a positive mass-like term.
This could be the case of a first order phase transition. In that case, the true
curvature bound would even be stronger than the one derived from the mass-like
term. (In the present d = 3 dimensional system, this does not happen at mean field

level.).

2. The curvature bound is independent of the self-couplings due to our estimate per-
formed in (4.19). The equal sign holds for bare couplings exactly tuned to criticality,
i.e., the maximum value of the self interaction that does not lead to chiral symme-
try breaking in the IR. Therefore, the bound limits the regime where the system
is safe from the formation of the chiral condensate through gravitational catalysis.
Whether or not fermion mass generation sets in once the bound is violated depends

on further details of the system such as the fermion couplings.

3. The bound is naively scheme dependent in the sense that the prefactor (24 in the
present case) depends on the way the fluctuation averaging procedure is performed.
In the calculation so far, we used a Callan-Symanzik regulator that suppresses long
wavelength modes beyond the scale 1/kg exponentially. In fact, the calculation
can straightforwardly be performed for the general regulator (4.11). For general p,

we obtain
,‘@_2 2I(1 — i)

<= 4.23
ke — T+ L) (1429)

300f course it can still happen due to other interactions. This is not problematic, though, since the
dynamical masses would differ many orders from the Planck mass.
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4.4. d = 4 dimensional space

For p = 1, we obtain (4.21) and (4.22) again, whereas in the sharp cutoff limit
(p — o0) we find

|R| < 12k, (for p — 0o, R < 0). (4.24)

Comparing this to (4.22), the curvature bound naively seems to be stronger for p —
oo. However, this simply reflects the fact that the length scale of the fluctuations
1/kir is effectively shorter for the sharp cutoff than for the smooth exponential
regulator, where the fluctuations extending even further out are only suppressed
but not cut off. Hence, it is plausible to say that kig|,—oo is effectively larger
than kr|,=1%'. This goes hand in hand with the inversely behaving prefactor. We
consider this as an indication that the curvature bound itself might have a scheme
independent meaning: the scheme dependence of the prefactors in the bound should
be viewed as a parametrization of the fluctuation averaging process that has to be

matched with the procedure determining the averaged curvature.

4.4. d = 4 dimensional space

Let us now turn to the physically more relevant case of d = 4 dimensional spacetime. The
analysis is conceptually complicated by the appearance of two more relevant operators
coming along with physical couplings. It is technically more involved because of the
structure of the heat kernel. Nevertheless, it is possible to capture the essential behavior
analytically by making use asymptotic heat kernel expansions and a simple interpolation.
The full result is, of course, analyzed below by straightforward numerical integration. We
start with the representation of the heat kernel trace as a one parameter integral [140,
141]

o e,
) /0 du e u(u® + S)coth( ) (4.25)

K=
(47s)? Ky/s

Using the asymptotic expansions of the coth function, cf. Eqgs. (E.13) and (E.14), the

weak and strong curvature expansions of the heat kernel read

K, = @)’ ——(1+r’s+...), rs<l1, (4.26)
1 K383 3472 .
K :(47T8)2< e pstb ), KBS (4.27)

)

which, for fixed nuerical value of kg is

31A first check of this can be done by regard at f as a distribution and inspecting the average (

1)

r
were it peaks. For our ansatz we find <ﬁ> = 2(kT

monotonically increasing for integer p values. The global minimum is located between p = 1 and
p=2.

S
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4. Gravitational catalysis of chiral symmetry breaking

For a simple qualitative, still asymptotically exact estimate, we use an interpolating

approximation of the heat kernel that allows for a fully analytical treatment,

2 352
(1+ K2+

K, ~
(47s)? T

). (4.28)

Upon insertion of the heat kernel into Egs. (4.12) and (4.13), a first difference to the
d = 3 case is the occurrence of a logarithmic UV divergence of the type ~ ¢¢In A. This
is expected as ¢* is a marginal operator in d = 4, the coupling of which corresponds to
a new and independent physical parameter. The proper definition of the particle system
requires to also define an initial condition for the flow of this operator, i.e., to put a
counterterm at the high scale A. This is then fixed by demanding for a specific physical
renormalized value for the ¢* coupling in a long range experiment.

For our purposes, these details are, in fact, not relevant, as the ¢* coupling cannot
inhibit chiral symmetry breaking. Once, the mass-like term ~ @3 triggers the onset of a
chiral condensate, the ¢* coupling will take influence on the final value of the condensate
¢o; this is, however, irrelevant for the curvature bound. For consistency, we only assume
that the renormalized ¢* coupling is such that the potential is stable towards large fields.

As we have seen in the d = 3 case, we can obtain a curvature bound by solely studying
the ¢2 term of the potential. Using the approximate form of the heat kernel (4.28), we

obtain the analytic estimate to this order:

Nfcb%[l 1 F<1 1>(§i};2+£r(1;$>]

2 o (4.29)

again dropping terms of order O(1/A). As before, the diverging contribution coming
from the flat part of the heat kernel is indicative of the critical value of the coupling

constant,
B (47)?
ar(1-1)
P

As a new feature in d = 4, we observe a new logarithmically divergent term ~ In A in

Aer (4.30)

(4.29). This term corresponds to a new, power counting marginal operator of the form
$»?R, which again comes along with a new physical parameter to be fixed by renormal-
ization. Hence, we introduce an initial condition for this operator at the high scale with
a bare coupling &x:

Unlger = Ni€rd*R. (4.31)

Upon inclusion of (4.31), the effective potential at the scale kg receives an overall con-
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4.4. d = 4 dimensional space

tribution of the form

Ukirlg2r = — (§ANf zNQf 10g< A ))¢o|R|

= Nf€k1R¢O‘R’ ) (4'32)
where we have made use of the relation x? = %, R < 0, in d = 4. Here we have
introduced the long range parameter &, that, in principle, has to be fixed by a physical
measurement. For our analysis, we will consider it as a free parameter. As a consequence,
the curvature bound depends parametrically on this physical coupling. Assuming again,
that the fermion self interactions are subcritical Ay < 5\“, we obtain again a bound on

the curvature parameter for which no chiral symmetry breaking occurs:

5 1
;3 + i — k; < \/fu (4.33)
o 3014 4) " K r(1+4)

The divergence of the right hand side for p — 1, where the bound seems to disappear,
is an artifact of the Callan-Symanzik regulator which is insufficient to control all UV
divergences in d = 4. In order to stay away from this artifact, we consider regulators in
the range p € [2, o).

For a comparison with the d = 3 case, let us first set &, = 0 and consider limiting
regulator values,

Gl PRVEANC) i VT (4.34)

—_ < X
kigR p=2 2 F(%)’ ]{?%R p—oo 2

From (4.33), it is obvious that the bound gets stronger (weaker) for positive (negative)
coupling &, Most importantly, there is a nontrivial bound for any finite value of &, .
While (4.34) has been derived analytically based on the interpolating approximation
(4.28) for the heat kernel, a full calculation can be performed numerically. For this, we
first have to isolate the divergent pieces by hand and treat them analytically as before. In
fact, all divergent parts are related to the small curvature expansion of the heat kernel,
i.e., to the expansion coefficients displayed in (4.26). Treating them separately as before
leaves us with a triple integral over the heat kernel parameter u in (4.25), the propertime

25 and

s and the RG scale k. A transition to dimensionless integration variables t = k
o = k/k yields an integral representation depending only on the dimensionless parameter

ratio k/kr. The mass-like term of the effective potential then acquires the form

== A
i 5 2 >\cr AA A kIR P
— 12N¢&p, Pak? (4.35)

with the function A to be evaluated by numerical integration. Assuming subcritical
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4. Gravitational catalysis of chiral symmetry breaking

fermion interactions Ay < A, the curvature bound can be expressed as

1 K
iy | AR > )
2A<kIR,p> + 12, >0, (4.36)

in order to avoid fermion mass generation from gravitational catalysis. The function

————— Analytical —— Numerics

Fig. 4.2.: Scaling of the mass-like term of the effective potential: the function A, cf. (4.35),
(solid line) as a function of the inverse curvature parameter kig/k is compared to the
analytical approximation obtained, cf. (4.29), (dashed line) for the case p = 2. For
the case of &, = 0, positive values of A are compatible with the absence of chiral
symmetry breaking and the existence of chiral fermions at low energies. The zero
crossing corresponds to the curvature bound for gravitational catalysis.

A is plotted in Fig. 4.2 as a function of kg/k for p = 2 (solid line). For comparison,
the dashed line represents the result from the analytical interpolation matching the full
behavior qualitatively for all curvatures. The strong and weak curvature asymptotics
matches very well: we have checked that the leading powerlaws for both results are the
same with coefficients agreeing within an error below the 1% level. In the intermediate
curvature region, the deviations between the numerical result and the analytical estimate
are larger.

For &, = 0, the zero of the curve marks the curvature bound, since positive values
of A are compatible with the absence of chiral symmetry breaking. From the numerical

analysis we obtain the curvature bound,

Bl <1s99s, B <1577 (4.37)
IR |p=2 kIR pP—00

for the two limiting regulators, showing that the full solutions deviate from the approxi-
mated ones by about 40%.

A finite &, parameter corresponds to a linear vertical shift of the graph in Fig. 4.2
and a corresponding shift of the zero crossing marking the curvature bound. Figure 4.3
shows the curvature of the effective potential at the origin (normalized by N¢x?/2) as a

function of the curvature parameter x/kg for various values of &,,. Positive values are
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Fig. 4.3.: Scaling behavior of the curvature of the effective potential at the origin (normalized
by Nik?/2) as a function of the curvature parameter /kir for the case p = 2 and
different values of the marginal coupling . The zero crossing marks the curvature
bound which is strengthened for increasing values of .

compatible with the existence of light chiral fermions.

4.5. Higher dimensions

45.1. d=6

It is instructive to also study curvature bounds in higher dimensions. Perturbative non-
renormalizability implies that further relevant operators and thus physical couplings have
to be accounted for; still, for any finite dimension, also the number of additional cou-
plings is finite at mean field level. As before, we have to pay attention only to those
operators that couple to the mass-like term in the effective potential. Other operators
do not directly take influence on the curvature bound for chiral symmetry.

In d = 6 dimensional spacetime, one further divergence of this type is encountered
requiring to consider one more physical parameter. As before, the divergences are in
correspondence with the small propertime expansion of the heat kernel for which we
need to retain only the 0-th order of the hyperbolic cotangent expansion inside the heat
kernel,

. 1 >
K — E / du e u(u? + k%s)(u? + 4K%s)
0

(4ms
1 5 o 4.2
:(47rs)3(1+§f€ s+ 2K%s7). (4.38)

The divergencies associated with the curvature dependent terms are controlled by initial

conditions for the two operators
Uslgzrore = Ni€adgR + NixadgR® . (4.39)

Adding these two operators to the terms arising from (4.38), yields the following contri-
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4. Gravitational catalysis of chiral symmetry breaking

butions to the mass-like term in the effective potential:

] = (1 2) ¢ efioy o a2
4kt [ —1800x4 + ﬁ log (%)] } (4.40)
=_ NfT(ﬁg{% - (iﬁ%r@ - 2) — 2%, R — 2XkIRR2} .
Here, we have used that x? = d(lﬁl) = % in d = 6, and identified the critical coupling
Aer = _24m)° : (4.41)
ar(1-2)

The parameter &5 has positive mass dimensions ([€4] = 2) and thus the operator ¢ R is
now a power counting relevant operator, while ¢2R? is marginal and the corresponding
coupling yx has vanishing mass dimensions. The curvature dependent terms in the last
line of (4.40) are finite and need to be fixed by a measurement. As before, the divergence
hidden in the critical coupling will be balanced by the initial condition for the bare
coupling \y.

This concludes the analytical treatment of the divergent parts. The remaining regular
part of the effective potential can then be integrated straightforwardly by numerical
means as in the four dimensional case. In order to stay away from regulator artifacts,
we choose the regulator parameter in the range p € [4,00]. With the usual assumption
of subcriticality, the dependence of the resulting mass-like term of the effective potential
(normalized by N;x?/2) as a function of the curvature parameter /ki for the case p = 4

and all further couplings &, X, set to zero is depicted in Fig. 4.4,

Ui, {0)

051

K
1 . . . .

n n " n | I
1.0 T —— 20y

Fig. 4.4.: d = 6 scaling behavior of the curvature of the effective potential at the origin (nor-
malized by Nix?/2) as a function of the curvature parameter /kig for the case p = 4
and &g, = 0 = X - Positive values are compatible with the existence of light chiral
fermions. The zero crossing marks the curvature bound.

For a fair comparison of the curvature bounds for different spacetime dimensions, two
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4.5. Higher dimensions

conditions need to be met:

1. The physical parameters have to be chosen such that the relevant operator content

is comparable.
2. The same p parameter needs to be employed for the regularization procedure.

For the first condition, we simply set all independent scalar curvature couplings to zero,
&k = 0 = Xpyr- For the second condition, we first check p = 4 for numerical simplicity.

This results in

17039, d=4, &, =0, (4.42)
kg
K

— <1.2763, d=6, &:=0, Xin=0.
kir ' '

The same analysis can be performed in the p — oo limit. This scenario can be imple-
mented noticing that the cutoff function reduces to a Heaviside 6 function centered in

s = 1%2 and its derivative is therefore a Dirac ¢ distribution. In six dimensions, we obtain

< 1.0561. (4.43)

We observe that, for both values of p, the bound for the dimensionless curvature pa-
rameter decreases with increasing the spacetime dimensions (compare with (4.37)). We
verify this circumstantial evidence in the next section for all odd dimensions. A general

discussion follows below.

4.5.2. Odd dimensions: d =2n + 1

The odd dimensional case is more easily analytically accessible thanks to the absence of
the hyperbolic cotangent in the heat kernel (cf. (E.11) and (E.12)). In line with the
preceding studies, we associate the curvature bound with a possible sign change of the
mass-like term in the effective potential. Thus, it suffices to focus on the ¢2 order of the
effective potential. Inserting (E.11) into (4.12) and expanding in powers of the field, we

obtain

=U,

UkIR

o2

2 d—2 4 0o
— Nidy Apr /H do / dt tP=% g~ 1= (07
4 2 [amir(d) e o

d
41

X / du e H(u2 + j%t)
0

(4.44)

Y

1
2
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4. Gravitational catalysis of chiral symmetry breaking

where we have defined the dimensionless integration variable as o = E and t = k%s. The

effective potential can be decomposed into the following building blocks,

Uk = U

kIR,

+ U,
0 kIR

I + Ureg + UA ‘¢2Rn + UkIR ‘¢2R"’ (445)

K=

which we discuss separately in the following, concentrating on their quadratic part. The
first two terms correspond to the contribution from the flat space physics. By renor-
malizing the fermionic self interaction, these terms exhibit the balance between the bare
coupling Ay and the leading cutoff divergence. The latter arises from the monomial con-
taining the highest power of u in the product in (4.44) ~ u9!, and can be summarized

in the definition of the critical coupling

(4m)3(d — 2)

Aer = — - (4.46)
d—2 _d 1
20427 (1 - 4 + 1)
For the flat space part, we thus obtain
d | 1
Ua +U _ Nidg = =+ 2 P k| - (4.47)

L —
#2,5=0 162 k=0 2 1M e (4m)2(d — 2)

The only a priori UV-regular term in (4.44) comes from the u-independent monomial
arising from the product inside the last integral. It contains the relevant curvature

dependence for gravitational catalysis:

d
s | = - T / d"/ dtt”—%‘cf?p—le—(a%)/ du ot N2y
g3 2 (4@51“(%) kg 0 ; -
N 2 (D)T (14 5)
e (4.48)

2 AT)e /T kg

where we have taken the limit A — oo in the last line.

All other monomials in the product of (4.44) carry UV divergencies, thus indicating
the necessity to provide initial conditions for further operators. In total, we need d;Q?’
operators with scalar curvature couplings and correspondingly many physical parameters
to be fixed by a measurement. The required operators are of the form Ni&y ,,,¢*R". Here,
we choose conventions such that the index m corresponds to a specific monomial in the
above expression and &, ,, parametrizing the initial condition for the bare coupling to be

fixed. In order to analyze these contributions, we represent the polynomial part of the
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4.5. Higher dimensions

heat kernel as

Y

V]

(u® + jt) = Zcmu2mt zm (4.49)

N

j=

where C), denotes the numerical coefficients arising from the product. The resulting
curvature dependence for each m results in a power R" with n = % —m. The m =0
term corresponds to the regular monomial computed in (4.48), while the m = % term
equals the curvature independent part of the heat kernel, already dealt with in (4.47).
The remaining terms with 1 < m < (d — 3)/2 make up for the last two terms in our
decomposition (4.45) of the effective potential. They correspond to new operators where
the matter sector is coupled to the background scalar curvature. The computation of the

effective potential yields

2
—1—2m a-1_ d=1_ .,
UA‘¢(2)R7L+U’€IR|¢(2)Rn = —Nf¢32,§/d 1-2 {(_1) 2 1£A,m[d(d_1)] =

. C,.I' (m + %)F(l - ; + 2p> (Agmq kal)} (4.50)

(47r)%r<g)(2m ~1)
%
= _ Nfaﬁ% Z<_1)%7m715d7172m£km,m;
m=1

As before, the A-dependent terms combine with the bare couplings such that the long
range interactions &y, » are formed; for a physical system, the latter are finite and have
to be fixed by a measurement. It is clear that possible curvature bounds will depend
on these couplings. For the reason of comparing theories with different dimensionality,
we set all these couplings to zero &, m = 0 at the scale kig. Let us study two cases

explicitly.

d=5

Inserting Eqgs. (4.47) and (4.48) into (4.45) and using that (4.50) gives a vanishing contri-
bution for &y, m = 0, it is straightforward to obtain the following result for the mass-like

term of the scale dependent effective potential in d = 5 dimensional spacetime:

d=5
kIR

_Nf_qgg[l 1 (-2 . 3F(1+)

0

A Aa 4873 642 Kir ]

Assuming again a subcritical coupling as initial condition of the flow, we can identify

the bound for the ratio between the curvature parameter and the averaging scale, below
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4. Gravitational catalysis of chiral symmetry breaking

which symmetry breaking is not catalyzed gravitationally:

r(i-4)

4 4

(&) <) 45
R r(l + 2—p)

In order to stay away from artifacts arising from insufficient regulators, we choose p in

the interval p € [2,00]. For the two extremal cases, we have:

K 2
— < — ~1.154 for =2, 4.53
kFiw — V3 b (4.53)
2
o< /220816 for p=oo. (4.54)
b — V3

d=17

Similarly, the mass-like term of the effective potential in d = 7 dimensional spacetime

reads

d=T7
kIR

_Negd [ 1 r(1—2ip)k5 L1+ 55) &8

1
- —— . 4.55
93 2 {)\A e 320mz ¢ 51275k (4.55)

This time, a range of admissible regulators includes p € [3,00]. Assuming a subcritical
coupling, we can again read off the curvature bounds which for the extremal regulators

are given by

— <0928, for p=3, (4.56)
kr
<0689, for p=oo. (4.57)
kr

Dimensional dependence

As is obvious from all these examples, the curvature bound arises from a competition
between the screening of the long range modes parametrized by the last term in (4.47)
and the dominant curvature term given by (4.48). For general d, we need to use the
regulator with p — oo to ensure that we stay away from regularization artifacts in any d.
In order to perform a meaningful comparison, we set all possible nonzero scalar curvature
interactions terms ~ &g . . to zero. For this, the curvature bound can be expressed as

follows:

1

1

Ll v T
e S o (r(g)um) : (4.58)
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4.6. Constraining quantum gravity

exhibiting a monotonically decreasing behavior as is visible in Fig. 4.5. Asymptotically,
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Fig. 4.5.: Curvature bound (4.58) as a function of the spacetime dimensions in the odd dimen-
sional case for the regulator with p — oco.

the bound decays as ~ 1/v/d.

Of course, as soon as the couplings ~ &, m are switched on, the bound can be shifted
in both directions depending on the precise parameter values. Nevertheless it cannot be
washed away completely.

This result inspires to develop the following scenario: Let us assume that some funda-
mental theory of spacetime and matter can have a high energy phase of arbitrary dimen-
sion and allows for a regime where a metric description applies. If the theory in addition
exhibits fluctuating values of curvature k ~ O(1) when averaged over local patches, our
results suggest that it is unlikely to find higher dimensional regions that admit massless or
light fermions in the long range physics. Upon the onset of gravitational catalysis, higher
dimensional regions would then generically go along with a massive fermionic particle

content and without explicit chiral symmetry.

4.6. Constraining quantum gravity

As an illustration for the application of our curvature bound, we use a specific quantum
gravity scenario in d = 4 dimensional spacetime: asymptotically safe gravity [25-31, 165].
In this scenario, Einstein’s gravity arises as the low energy limit of a quantum field theory
of the metric, the high energy behavior of which is controlled by a non-Gaussian fixed
point in the space of relevant couplings. Typically the renormalization flow of local metric
theories is computed employing FRG techniques. The gauge degrees of freedom of the
spin 2 field are introducing several complications with respect to the analysis presented
in section 3.2, the most important of which is the fact that the regulator breaks gauge
invariance. The normal procedure is then to rely on background field gauge [166, 167]
with a fiducial but arbitrary background metric and compute the renormalization flow for

the fluctuating field on the background. This breaks the gauge group down to the group
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4. Gravitational catalysis of chiral symmetry breaking

of gauge symmetry for the background metric. After the cutoff is removed the result can
be reinterpreted in terms of the full quantum fields and the theory should recover the full
gauge invariance.

Among the universal properties of asymptotically safe (pure) gravity [168-173] we have
that the critical exponents around the ultraviolet fixed point are complex and trajecto-
ries result in spirals falling into the fixed point®2. This behavior, though, changes upon
inclusions of fermionic matter. In this case the position of the interacting fixed point is
pushed more and more towards smaller values of the cosmological constant until, even-
tually, this becomes negative (hence describing a hyperbolic scenario) and the critical
exponents become real.

For simplicity, we confine ourselves to the theory space spanned by the Einstein-Hilbert
action. A more comprehensive analysis suggests the existence of one further relevant
operator overlapping with an R?-term in the action [174-187]. For a first glance at the
consequences of the curvature bound, we also ignore the influence of the scalar curvature
operator ~ ¢*R, which is, in principle, calculable within asymptotic safety from the
fermionic operator content, i.e., schematically ~ (¢)?R.

In the simple Einstein-Hilbert truncation, the background metric itself is a solution to

the equations of motion derived from the scale dependent effective action [155],

R ((9)k) = Mg )k (4.59)

where A, denotes the scale dependent cosmological constant, and k is the coarse graining
or resolution scale, at which the spacetime is considered. Here, we have assumed the
absence of any explicit matter sources since we expect the symmetry to be unbroken
in the UV. The asymptotic safety scenario provides us with a prediction for the RG
trajectories for the cosmological constant Ay, as well as for the UV fixed point value
limg oo Ak /k* = A, being a finite number. In the fixed point regime, the solution to

(4.59) is given by
R

k2
This shows that the sign of the curvature in the fixed point regime is dictated by the sign

= 4\, (4.60)

of the fixed point value of the cosmological constant. Equation (4.60) exemplifies the
self similarity property of physical observables in the fixed point regime: the curvature
is proportional to the scale k at which the curvature is measured. Since the fixed point
value A, may come out negative for an increasing number of fermionic degrees of freedom
the spacetime structure appears locally as negatively curved for large N;. The asymptotic

safety scenario including matter degrees of freedom hence predicts that a local patch of

32The critical exponents themselves should be universal. Nevertheless the necessary approximations
introduce deviations from the universal values.
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spacetime in the (trans-Planckian) fixed point regime satisfies

= = for A, <0, (4.61)

Now, the precise value of the fixed point A, is scheme dependent, see, e.g., [168-173] for
comparative studies. With regard to (4.60) this is natural, since the result of a curvature
measurement is expected to depend on the coarse graining procedure that is used to
average over metric fluctuations. This is precisely the type of scheme dependence, we
expect to cancel the scheme dependence of our curvature bounds in order to arrive at a
scheme independent answer to the question as to whether or not there is gravitational
catalysis in a given theory.

For the remainder of the section, we simply identify the gravitational RG coarse grain-
ing scale k with the scale kg used for our curvature bounds and use results obtained in
the asymptotic safety literature. In fact, the typical fixed point scenario can already be
discovered within a simple one-loop calculation [31, 169], yielding the fixed point values
for the cosmological constant and the dimensionless Newton constant

3 2+4dy 127

=2 g = . 4.62
146—d, P T 464, (4.62)

Here, we used the results obtained from a so called type Ila cutoff [31]. The two param-

eters d, and dy are determined by the number of (free) matter degrees of freedom,
dg = Ng — 4Ny +2N¢,  dy = Ng + 2Ny — 4Ny, (4.63)

where Ng denotes the number of real scalar fields, Ny the number of gauge vector bosons
and, as before, N; the number of Dirac fermion flavors.

For gravitational catalysis to be potentially active at all, we need a negative fixed point
value A\, < 0, implying v w

S \Y
N¢ > §+T+7. (4.64)

This criterion is satisfied for the standard model with Ng = 4, Ny = 12 and Ny = 45/2,
as well as typical generalizations with right handed neutrino components, axion or simple
scalar dark matter models. It is also generically satisfied for supersymmetric models; for
instance, for the MSSM with two Higgs doublets, we have Ng = 53, Ny = 12 and N; =
65/2. This exemplifies that the curvature bound should be monitored in asymptotically
safe gravity-matter systems. However, the criterion (4.64) is typically not satisfied for
GUT-like non-supersymmetric theories where the contribution from larger number of
gauge bosons and Higgs fields for the necessary symmetry breaking exceeds that of the
fermion flavors.

For a given number of scalars and vectors, increasing the number of flavors drives the

73



4. Gravitational catalysis of chiral symmetry breaking

fixed point A, towards more negative values. Using (4.61) with k = kir, the averaged
curvature can eventually violate the curvature bound. Hence, the curvature bound trans-
lates into an upper bound Ny < N4 on the number of fermion flavors in order not to
be inflicted by chiral symmetry breaking from gravitational catalysis. For instance, for
a purely fermionic matter content, Ng = 0 = Ny, we find Ni4 ~ 17.58 for p — oo, and
Nige =~ 18.31 for p = 2, cf. (4.37). The scheme dependence of our curvature bound thus
has only a mild influence on the critical fermion number.

Similarly, fixing the bosonic matter content to that of the standard model, Ng = 4,
Ny = 12, the corresponding critical fermion number is N¢g. ~ 35.97 for p — oo. This
would still allow for a fourth generation of standard model flavors, but exclude a fifth
generation.

Interestingly, the MSSM with Ng = 53 and Ny = 12 would imply a critical flavor
number of Ni,. =~ 20.3 far below the fermionic content of the model Ny = 65/2, thus
indicating a possible tension between asymptotically safe gravity and a particle physics
matter content of that of the MSSM because of gravitational catalysis.

This analysis based on a simple one-loop calculation on the gravity side may be some-
what over simplistic. In fact, a number of more sophisticated analyses have been per-
formed for asymptotically safe gravity in conjunction with matter systems. A first study
on the consistency of asymptotic safety with matter [82] was based on the background
field approximation with some improvements for the anomalous dimensions. Using their
fixed point results, we find Ni,. o~ 8.21 for a purely fermionic model (Ng = 0 = Ny), and
Nige 2 26.5 for the standard model with Ng = 4, Ny = 12 (and anomalous dimensions
set to zero). The latter result includes the standard model fermion content without and
with right handed neutrino partners, but does not offer room for a fourth generation. For
the MSSM and other models there is not even a gravitational fixed point according to
[82]. Even if we artificially reduce the number of fermion flavors, we do not find a suitable
fixed point above Ny ~ 17. Here, A, has become negative but the curvature bound is still
satisfied.

The fixed point scenario found in [83, 92] is different. The calculation distinguishes
between the background field and the dynamical fluctuation field. The flow of the dy-
namical couplings which is driven by the dynamical correlators [188] is found to have
a gravitational UV fixed point for any matter content that has been accessible in this
study. This scenario hence does not rule out any particle physics content from the side
of UV compatibility with quantum gravity. Still, the predictions for the background field
couplings are qualitatively similar to those of [82]. The fixed point results of [83] upon
insertion into (4.61) and a comparison with the curvature bound suggest N¢,y. o~ 48.7 for
p — oo for a purely fermionic model with Ng = 0 = Ny; for p — 2, the results of [83]
lead to Nige >~ 50.9.

An analysis of gravity-matter systems was performed in [87] using an ADM decompo-
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Nf,gc
PF SM+ N¢ MSSM+ V¢
one-loop approx.
(type Ila) [31, | 17.58 35.97 20.3
169)]
background field
approximation 8.21 26.5 no FP
[82]
RG flow on foli-
ated 9.27 27.67 10.01
zpacetimels [87]
ynamica
FRG [83] 8.7

Tab. 4.1.: Summary of the critical number of fermion species Nt 4. below which particle theories
are safe from chiral symmetry breaking through gravitational catalysis, using the
p — oo regulator. Results are shown for theories with a purely fermionic matter
content (PF), the standard model and the MSSM artificially varying the number of
fermions (SM+Ng, MSSM+N;). For an estimate of the UV properties of quantum
spacetime, we use various literature results obtained within the asymptotic safety
scenario of quantum gravity, see main text for details.

sition of the gravitational degrees of freedom, yielding an RG flow on foliated spacetimes.
For both, gravitational as well as matter degrees of freedom, a type I regulator was used.
As argued by the authors, the use of different regulators can be viewed as yielding a
different map of the number of degrees of freedom Ng, Ny and N; onto the parameters
d, and dy; e.g., for the type I regulator, one gets [31, 87] d, = Ng — Ny — N;. It has
been argued that the type II regulator should be used for fermions in order to regulate
the fluctuation spectrum of the Dirac operator in a proper fashion [31, 189]. The basic
difference between these two approaches can be traced back to the well known identity:

v = -0+ % . (4.65)
The type I regulator regards the right hand side of the previous equation as a function
of —O of the form g(z) = = + £. The FRG cutoff function would then be a function of
just the box operator Ry = Ri(—0) and the Wetterich equation would read

-1

4

Applying the Schwinger representation we would deal with the heat kernel of —[] and

the Legendre transform of

T+ Rp(z) + &

(4.67)
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The type II regulator instead would see the right hand side of (4.65) as a single operator
with its own spectrum and heat kernel and the Wetterich equation would see a replace-
ment of Ry(—0) with Ry(—0O+ £). The conjecture that favorites one regularization over
the other comes from a comparison with results on maximally symmetric spaces, where
the spectrum of the squared Dirac operator is known exactly. Hence, we use the flows of
[87] but with a definition of the parameters d, and dy as in (4.63). To leading order, this
corresponds to a type I regularization of the gravity fluctuations but a type II regulator
for the matter degrees of freedom.

In this case, the possible onset of gravitational catalysis for a purely fermionic model
with Ng = 0 = Ny occurs at a critical flavor number N;,, = 9.27 for p — 00 (Ngye = 9.84
for p = 2). For a standard model like theory (Ng = 4, Ny = 12), we have Ngz. = 27.67
p — 00 (Ngge = 28.71 for p = 2). Finally, the minimally supersymmetric extension of
the standard model would lead to Nig. = 10.01 for p — 0o (Npge = 10.27 for p = 2),
if we artificially allow N; to vary independently in this model. Therefore the MSSM in
this approximation is an example for a model where gravitational catalysis could lead to
large fermion mass generation in the trans-Planckian regime; in fact, if N is set to the
physical value Ny = 65/2, the MSSM matter content in this setting does not lead to a
fixed point suitable for asymptotically safe quantum gravity, see also [173].

We summarize the critical values for the fermion numbers N¢g. for p — oo for the
possible onset of gravitational catalysis derived within the various approximations for
an asymptotically safe quantum gravity scenario in Tab. 4.1. Whereas the standard
model (e.g., also including right handed neutrinos) satisfies the bound from gravitational
catalysis in each of thee approximations, a standard model with a fourth fermion genera-
tion could already be affected by gravitational catalysis. Supersymmetric versions of the
standard model show already some tension with the bound within asymptotically safe
gravity.

Using the results of [87] as described above, we display the various regions in the space
of matter theories parametrized by d, and dy, cf. (4.63), in Fig. 4.6. In the upper orange
shaded region, the criterion analogous to (4.64) is not satisfied (in the calculation of [87],
it corresponds to dy > —16/3); here, we expect a spacetime in the fixed point regime
which is positively curved and thus not affected by gravitational catalysis. The curvature
bound translates into a line in the dy, d) plane, with the (white) region above that line
satisfying the bound. We observe that the lines for different regulators p € [2,00] are
rather similar and deviate significantly only for extreme particle numbers. The purely
fermionic model (PF) and the standard model are represented by dots in the plane. The
lines attached to the dots correspond to increasing the fermion number in these models.
The purely fermionic model starts at Ny = 0, while the standard model starts at its
physical value Ny = 45/2. The MSSM with Ny = 65/2 would lie deep inside the black

region to the right where no fixed point suitable for asymptotically safe gravity exists [87,
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173]. Note that the evolution of the standard model and the purely fermionic theory are
described by parallel lines since increasing the number of fermions have the same effect
on the number of modes of the theories. For a supersymmetric model, new fermionic
modes go hand in hand with new bosonic degrees of freedom and the slope of the line

describing its evolution in the theory space would be different.

R>0

Fig. 4.6.: Relevance of gravitational catalysis in different regions in the space of matter theories
parametrized by dy and dy, cf. (4.63). In the bright orange region we have A, > 0,
indicating that gravitational catalysis does not occur. Our curvature bound results in
a line with the (white) region above that line satisfying the bound; we observe a mild
regulator dependence for different regulator parameters p € [2,00]. The dots indicate
a purely fermionic model (PF) and the standard model (SM). The lines originating by
these theories (resp. blue and red) represent their evolution for increasing Ny. The
gray region indicates the region where gravitational catalysis can occur. The black
region does not have a non-Gaussian fixed point suitable for asymptotic safety [87].

Let us close this section with two remarks: the first remark concerns the regulariza-
tion scheme dependence which occurs at various places in this calculation. In case of a
fully consistent calculation this scheme dependence would cancel in the final result for
Nige. However, since different parts in the present estimates are performed with differ-
ent regulators, we observe various sources of scheme dependence. Whereas the scheme
dependence arising from our mean field RG calculation parametrized by p is rather mild,
a change of the regulator from type II to type I in the asymptotic safety scenario can
change the dependence on the fermion flavor content significantly as studied in the lit-
erature [31, 189]. Since our fermionic mean field RG calculation corresponds to a type
IT regularization, we find it reassuring that a consistent use of type II regulators for the
fermions leads to qualitatively and partly quantitatively similar results in the various
approximations.

Second, the asymptotic safety scenario suggests that at least one further relevant op-
erator of R? type should be included in the fixed point regime. As this could take a
significant quantitative influence on the effective equation of motion in the fixed point

regime, cf. (4.59), the relevance of the curvature bound for the asymptotic safety scenario
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may also change qualitatively. With these reservations in mind, the present discussion
should be viewed as an example how the curvature bound from gravitational cataly-
sis could potentially be used to constrain combined scenarios of quantum gravity and

quantum matter.
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5. Scalar fields and covariant

perturbation theory

This chapter is dedicated to the investigation of multicritical behavior in scalar field
theories near criticality. The analysis is performed coupling the theories to a generic
background manifold. The renormalization study carried over to determine the critical
structure of the phase diagram is based on dimensional regularization in its covariant
formulation. Thanks to a functional formalism it is possible to treat at the same time an
infinite tower of models and classify the corresponding universality classes. A particular

attention is payed to non-minimal coupling introduced in section 3.5.

5.1. Multicritical scalar field theories

The multicritical scalar models with ©?" interaction are the simplest and most straight-
forward generalization of the p* model. Much like the ¢* field theory captures the critical
properties of an universality class of models that includes the ferromagnetic Ising Hamil-
tonian, the ©?" field theory can be thought as describing a generalization in which the
Ising’s spin domains of plus or minus sign are potentially replaced by n distinct vacuum
states which become degenerate at the critical temperature.

The RG flow of the ¢*® models has been explored at length in the literature: perturba-
tively [104-106], nonperturbatively [107-109], and with non-canonical kinetic terms [110,
111]. For the most part the renormalization of the multicritical models generalizes the one
of the ¢* model, but the leading contributions to the critical exponents are determined
by multiloop computations in which the number of loops increases with n [105].

Throughout this thesis we always regarded the dimensionality of the system as given a
priori and tried to understand which operators need to be included in the truncation in
order to have a comprehensive description of critical phenomena. Following a somehow
opposite point of view we may wonder, given a certain truncation, in which dimension
does the theory exhibit non-trivial critical behavior and in which dimension does it be-
come Gaussian. According to the same principles described in section 2.4 we can define
for each multicritical model an upper critical dimension d,, such that the ¢©*" interactions
describe theories that are Gaussian for d > d, and logarithmic at d = d,, but have

non-trivial critical exponents for d < d,,. Moreover, it is well known that a consistent
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perturbative expansion in the coupling can be constructed at the upper critical dimension

d, =" (5.1)

n—1

It is easy to check that, as expected, the case n = 2 corresponds to the * interaction
which has upper critical dimension d = 4 [13]. A common practice is to compute such
perturbative expansion and critical exponents in the s-expansion described in 3.3, in
which one introduces the constant ¢ = d,, —d and uses it to parametrize the displacement
of the critical point from the Gaussian theory at d = d,, [13].

In section 3.3 we showed how to use the e-expansion to extract the critical behavior
near the upper critical dimension of the ¢* model and to define the theory in the limit
e — 0. Nevertheless, the parametrization allows for an analytic continuation of the
theory far from the critical dimension.

For example, among the ¢©** models the only ones with integer upper critical dimension
correspond to the case n = 2 discussed above and the case n = 3, with a ¢° interaction
known to describe the universal features of the tricritical Ising model with upper critical
dimension d = 3 [190]. All other models have purely fractional upper critical dimensions
[191] which asymptotically tend to d = 2. As a consequence d = 2 is the first physical
dimension in which all the models ¢*" are nontrivial; the continuation to two dimensions
is particularly relevant because they are known to interpolate with the unitary minimal
models arising as representations of the infinite dimensional Virasoro algebra [192, 193].

The only multicritical model that has nontrivial exponents in d = 3 is the ©* one unless
one includes the multicritical non-unitary models ¢?" ! [194].Specifically, ¢® and ¢ have
upper critical dimensions d = 6 [195] and d = % respectively, but they require the tuning
of an imaginary-valued magnetic field at criticality [196-198]. It is important to mention
that the d = 2 realizations of these models are all “far away” in a perturbative sense from
their Gaussian points even though d, — 2 for n — oo [105]. Nevertheless, the simple
existence of the sequence of multicritical theories provides a very interesting and valuable
link between purely field theoretical realizations and CFT representations [106, 199].

One natural and potentially interesting generalization of the above discussion is the
study of the renormalization of the ©?" models in curved space. As explained in section
3.5, if a scalar field theory is coupled with a background geometry, simple dimensional
analysis reveals that there is a new non-minimal marginal interaction with the curvature:
%{chR. One expects that in curved space the perturbative construction should thus
accommodate for some mixing between the ¢?" and p?R operators regardless of n. In
other words, the non-minimal interaction ¢?R holds a special status in that it is always
canonically marginal.

A guess on the value that the coupling £ can take at a curved space generalization

of the critical point could be made as follows: Consider a non-minimally coupled “free”
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scalar field with quadratic action

Solp] = %/ddx{g“” L0, + f(,OQR} ) (5.2)

Ideally, the above action captures the Gaussian limit of the ¢©?"* models which is realized
exactly at the upper critical dimension. The non-minimal action is invariant under a
conformal Weyl rescaling ¢, = Q*(z)g,, and ¢'(z) = 0% (2)p(x) iff the coupling &

takes the conformal value

e = % : (5.3)
Since conformal invariance implies scale invariance, the non-minimal action (5.2) is thus
scale invariant when £ takes the conformal value, but it is also expected to be a description
of the critical (scale-invariant) ¢*" model when the interaction becomes Gaussian at the
upper critical dimension.

Putting everything together we make the hypothesis which we intend to investigate:
the critical point of the coupling £ at the upper critical dimension, which emerges as fixed
point of the renormalization group, is the conformal value (5.3)33.

More generally, one would be tempted to extend the above statement to any dimension
below the upper critical dimension, having expressed the desire of analytically continuing
these models to d = 2. In this case, we would want to know the conditions under which
the conformal value (5.3) is always the critical value for ¢ even when the ©*" interaction
is non-Gaussian below d.. For this purpose it is instructive to recall the investigation by
Brown and Collins [114], in which it is shown that at the leading order our hypothesis is
true in the special case of the ¢* model, but beyond the leading order one has to exploit
the freedom of subtracting additional finite parts proportional to the leading counter
terms [115]. An analog renormalization condition has also been adopted for the ¢® model
[116] in d = 6, and it plays an important role in preserving conformal invariance in [113,
117]. Notice that, strictly speaking, the said two examples have not been concerned
with the analytic continuation below the upper critical dimensions d = 4 and d = 6,
while our interest is to bring the multicritical models down to d = 2 which does require
continuation. Assuming that we have the same freedom in changing the renormalization
condition, one might be tempted to conjecture the fact that the critical point of the
coupling ¢ determined through the e-expansion below the upper critical dimension can
always be tuned to match the conformal value beyond the leading order. An explicit

check of this hypothesis goes beyond the purpose of this thesis.

33 The conformal invariance of (5.2) is actually expected to be anomalous [200], but for our purposes it
is sufficient that scale invariance survives the quantization process. In even dimensions, the anomaly
is signaled by special non-local contributions appearing in the effective action [201, 202].
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5.2. Renormalization

We are interested in a simple self interacting canonically normalized scalar field ¢ which is
non-minimally coupled to a background metric g, in d dimensions. The straightforward

bare action is

St = [ o550 0uetue + Vo) + F@OIRY. (5.4)

Using the bare action we can formally construct the path integral. For later convenience
we shall do it in the background field approach [166, 167], thus by integrating the fluc-

tuations y over an arbitrary background ¢ as follows

7 = / Dy e St (5.5)

The background field method will allow us to renormalize the theory by means of solely
vacuum diagrams>*.

In flat space it is possible to construct a meaningful perturbative expansion for poten-
tials V(¢) which are polynomials of order 2n below the upper critical dimensions (5.1).
If we parametrize V (¢) = ﬁqﬁ?" +... and F(¢) = §¢*+... the ¢*" and ¢*R operators
are expected to mix because of statistical or quantum mechanical fluctuations. Thus our
truncation includes all the relevant and naively marginal operators of the model.

Since the order of the non-minimal interaction is only two, we can incorporate it easily

in a quadratic part of the bare action

Sl = 5 [ deVax (-9, + PO R)x. (5:6)

Note that in principle the full quadratic part of the action (5.4) should receive contribu-
tions also from the expansion of the potential around the background. Nevertheless, in
perturbation theory we can retain this insertion and treat it as a vertex. According to
the dimensionality, there are two possible leading contributions if the action of the path
integral is expanded perturbatively around Sy[x] for the ¢*" models in powers of V(¢):

the linear and the quadratic contributions,

Z:/DX e~ 5ol [1+/de(¢+x) (z)

(5.7)
+ % /dxdaj’ Vip+x) (2)V(6+x) (x’)] .

At the linear order and Taylor-expanding the potential itself we have a generalized

34 Actually the diagrams have in principle external legs but they appear only in the form of the back-
ground field which has no dynamics and thus plays the role of simple constants for the perturbative
expansion.
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tadpole-like contribution

_ / TN OB ﬁ Gz, 2) V) (b(x)), (5.8)

0<r<n

in which the number of closed lines is constrained to be even because of trivial topological
reasons. In dimensional regularization the linear term contributes to the renormalization
of the potential only if r = 1 and d = 2 as we show later in subsection 5.2.3. At the

quadratic order we have instead

5 [ Al de o) 3 V) Gy VOE). ()

0<r<2n

In (5.8) and (5.9) we introduced G(z, ") which is the Green function associated to the

operator of the quadratic part of the action

O=—-¢"V,0,+F'($)R,

5.10
0,G(z,2') = 6D (x, ') . (510)

As explained in section 3.5 it is possible to give a covariant representation of the Green
function for an operator of Laplace-type using the heat kernel. Even though for an
exact treatment of the propagator we should know the full spectrum of the heat kernel,
including non-local contributions arising in the long range processes, for the purposes of
perturbation theory an asymptotic expansion for small propertime values is enough. The
proper construction of such expansion is given in appendix F. For our present needs, the

representation simply shows that the Green function can be expanded
G(z,2') = Golz,2') + ar1(z,2") Gi(x, ")+ ..., (5.11)

in which we purposely neglected all further contributions which do not affect the relevant
operators. The leading Go(x,z’) term can be understood as a covariant generalization
of the standard Green function of flat space (see Appendix F for more details), while
ai(x,z") is the first correction due to curvatures and multiplies the subleading correction
to the propagator Gy (z,z').

In the following subsection we consider first the renormalization of the general ¢*"
universality class for n > 3, while the case n = 2 is deferred for later. The reason for
this is that the case n = 2 is special when it comes to the renormalization of the function
F(¢). In particular, the results for the general ¢** case often cannot be continued to
n = 2 because the subleading correction to the propagator is powerlaw for each d = d,,
with n > 3, but it is logarithmic in d = d,—o = 4. If the analytic continuation is

performed anyway, there is thus an additional “unbalanced” singularity which is seen as
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an additional 1/(n — 2) pole in the beta functions.

5.2.1. ¢*" universality class

The leading quadratic contribution to the path integral (5.9) is not a one-loop contri-
bution for all n > 3 models, but rather it involves (r — 1)-loops, which is a marked
distinction from the more familiar analyses of ¢* and Yang-Mills theory below the upper
critical dimension d = 4. To highlight this fact let us consider the first element of this
family, which is ¢°® for n = 3 and which has been already renormalized in curved space in
[203]: the leading contributions to the renormalization of the couplings come from two
loop diagrams and in general contributions come from every other loop order [204].

In general, not all loop contributions to (5.9) lead to 1 /e poles for all values of n. Using
the methods described in Appendix G and dimensional analysis, it is possible to infer
that 1/e poles arise for the cases r = n and r = 2n — 1, corresponding to (n — 1)- and
(2n — 2)-loop diagram respectively likewise flat space [105, 106]. In the case r = n, the
contribution arises solely from r lines of the leading Gy(x, 2’) term of the Green function.
In the second case the diagram can be either composed by 2n — 1 lines of Gy(z, z’), or by
2n — 2 lines of Gy(z,2") and one of G(z,2’). In practice, this makes for three multiloop
diagrams that must be evaluated by the methods described in Appendix G. The diagrams
are depicted in Fig. 5.1. Referring to 5.1a as A, 5.1b as B and 5.1c as C we have that in

d = d,, — € the three diagrams evaluate to

1 1

A= [VIV(0) Gy V() ~ e e Vo)
B =5y [ V0 G Vi)

~ et i) [{venepeer - 2 Sververr) 61
C =gt | VE0) GGy V()

~ ci"‘%”‘”)aqun__l)z%bg J (o - ghveorn

in which we suppress several coordinate indices on the left hand side for brevity. We
integrated by parts one derivative to cast the kinetic-like term of the second diagram in

a suitable form, and defined the constant

S r( ! ) (5.13)

n—1

The results of (5.12) are essentially the counterterms which must be inserted to remove
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the divergences of all the relevant operators of the ¢** model in curved space for n > 2.
The pole at n = 2 of the last counterterm is a clear indication of why we left the ¢*

models out of this general discussion.

V() V() (g) V=1 ()

n 2n —1
(a) (b) (c)

Fig. 5.1.: Diagrammatic representation of (5.12) in order of appearance. The first and second
diagrams are made of n and 2n — 1 lines of the leading contribution of the Green
function Go(z,z"). Trivially their symmetry factors are n! and (2n — 1)! respectively.
The third diagram is again made of 2n—1 lines, but one corresponds to the subleading
G1(z,2) line which is depicted as dashed. Its symmetry factor is (2n — 2)! because
there are (2n — 1) ways to choose the last line.

Since we are just considering a leading renormalization, the computation of the renor-
malization group flow is straightforward because it can be obtained by simply acting on
the counterterms with the logarithmic derivative with respect to the reference scale u%.
Naturally, we display the RG in the guise of functional equations. We also include a field
dependent wavefunction Z(¢) as renormalization of the kinetic term. The wavefunction
is generated by the flow and, while it includes irrelevant contributions for the most part,
the use of a boundary condition for Z(0) allows for the determination of the anomalous

dimension of the renormalized field. At the upper critical dimension we find

g tn—1)

By :Tv(n)(@z,

Bz =— % B0 (g)?, (5.14)
2 (n —1)? 1" In—1) [ 1\2

ﬂpz—m{(n—l)—”@”_l)F (gb)}V( )(Gb) .

In a rather standard fashion we switch to the dimensionless renormalized canonically-

normalized field

1

which includes a rescaling by the wavefunction renormalization constant Z, = Z(0)
which is generated by (7. The field ¢ is the natural argument for the dimensionless
renormalized functions v(p) = =V (), 2(v) = Z; ' Z(¢) and f(p) = p*>~?F(¢). Their
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renormalization group flow is

B, =—dv+ Ww’ + %(v(”))Q :

g =g S S D ey (5.16)
e RV I
By construction we have z(0) = 1, so the limit ¢ — 0 can be used to determine the

anomalous dimension n = —3dlog Zy/0log p directly from .| o—0 =0

5.2.2. ¢* universality class

The four dimensional case is special for three main reasons. Firstly, diagrams and coun-
terterms leading to the renormalization are not directly obtained as the analytic contin-
uations to n = 2 of the results of Sect. 5.2.1. Secondly, the subleading correction to the
Green function in four dimensions is logarithmic. This means that in the e-expansion an
additional divergence must be subtracted from the propagator as we show in (F.14). The
difference in the behavior of the subleading part of the propagator is the reason why a
ﬁ pole appears in the third diagram of (5.12). Thirdly, a simple dimensional analysis
reveals that operators quadratic in the curvatures have the same canonical dimension of
the operators ¢* and ¢?R, and hence must be renormalized together for consistency.
Here we try to follow the notation of [115] for the most part with some minor modifi-

cation. Let us first generalize the action (5.4) to accommodate the higher curvatures

Slg] = / ddx@{%gwamw +V(6) + F(@)R

(5.17)
—4F—bG—cR*— eVQR},
with the following invariants
.7-“:—2 R2——4 R, R"™ + R, g R""°
d—2)d—1)" d—2 ™ S (5.18)

G = R? — 4R, R" + R, ,p """ .

These invariants are chosen so that in four dimensions G integrates to a topological
invariant and F, which is the square of the Weyl tensor, transforms covariantly under

scale transformations.
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5.2. Renormalization

It is convenient to define one general function and its modification as follows

U(p,R) =V (o) + F(¢)R — aF — bG — cR* — eV*R,
. 1 (5.19)

At one loop, which is the leading order, the counterterm to U(¢, R) can be obtained by
a simple application of the heat kernel. One finds that the leading contribution to the
renormalization of U(¢, R) comes from the ay(z, z) coefficient given in (F.10)

—€

H Loon 2 1 1
e /{§8¢U(¢,R) + 507~ %g} , (5.20)

while the wavefunction renormalization is a two loop effect completely analogous to the

limit n = 2 of Sect. 5.2.1. The computation of the leading beta function is straightforward

1 (1, Lro L

Pv = W{E%U(qﬁ’ B + 107 - 360g} ’ (5.21)
By = —— 1y ()2 |
2 6(4m)4

1 " 2 o 1 4 2
bv = 2(47r)2v (@), Pz= _6(47r)4V( (OF
b =~ g~ FOJV@). (522)

as well as the beta functions for the higher derivative couplings

1 Ul 2
e = T b= 5 is ~ O
1 1 (1,
5= o000 be=—sapi; PO 6B

Since F'(¢) is at most quadratic we have that F”(¢) = F”(0) and the couplings ¢ and e
can be treated as numbers, even though the right hand side suggests otherwise.

In order to make this section on ¢* more self consistent, we briefly discuss some critical
property of the above system. This discussion anticipates some points that are made
later in the development of section 5.3. One can see that at the leading order the critical
value for the non-minimal coupling & = F”(0) is £ = % as one would naively expect
from continuing the general conformal value (5.3) to d = 4, thus proving the hypothesis
formulated in the introduction for the special case n = 2.

In general, it is not guaranteed that the critical value of £ remains a fixed point beyond

the leading order unless a further renormalization condition is exploited [114]. For the

87



5. Scalar fields and covariant perturbation theory

purpose of the analytic continuation of the theory, it would be interesting under which
circumstances at two loops and for d = 4 — ¢ the coupling takes the value
d—2 1 1
= —— == — —c+.... 5.24
¢ 4d—-1) 6 36 + ( )
One can prove, using naively the dimensionally regularized scheme at next-to-leading
order (NLO) and a straightforward subtraction, that the above value is not a fixed point
to order e. However, the freedom highlighted in [115] of redefining the potential U(¢, R)
by a copy of the one loop counterterms can be exploited to ensure that (5.24) is the fixed
point at NLO. The redefinition is a change of the renormalization conditions which thus
defines and links the metric and the field.

5.2.3. ¢ universality class: the Sine-Gordon model

The upper critical dimension d = 2 emerges as the limit d, — 2 of n — oo. The
renormalization of the path integral for the two-dimensional case is very simple, even
though it represents a special case likewise the ¢* one. It is convenient to borrow the
notation from the previous section and use the full potential U(¢, R). The computation
of the leading counterterms and beta functions necessitates only the use of the standard
heat kernel expansion of an operator of Laplace-type, and specifically of the coefficient

ai(x,z) given in (F.10). We find the leading counterterm at one loop

v / G20 (6, R). (5.25)

and deduce the very simple RG beta functional

1 ~
By = —EaiU(gb, R). (5.26)

Notice that there is no anomalous dimension renormalization coming from our leading
order computation.

In two dimensions the scale invariant solutions of this beta function become periodic.
It has been argued that the critical solution of this RG flow in flat space is periodic
and corresponds to the Sine-Gordon universality class [106]. Here we are observing a
generalization to curved spacetime for zero anomalous dimension as in [205]. Let us
first introduce the dimensionless potential u(p, R) = p~2U(p, p*R). Using the boundary
conditions u(p, R) = u(—¢, R) and 95U (¢, R)|s—o = m?, at the fixed point in d = 2 we
find

2
R
u(p, R) = —% oS (\/ 87rg0> + . (5.27)
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5.2. Renormalization

Notice that we have imposed the boundary conditions as a function of the scalar cur-
vature, therefore an implicit dependence on R might in principle be hidden in the mass
m? = m?(R). In this way we have ensured that the result agrees both with the assump-
tion that this solution generalizes the Sine-Gordon universality to curved space, and with

the expectation that the non-minimal coupling £ should be zero at the critical point.

5.2.4. 2d gravity at large-c

As a brief intermezzo we believe that it is interesting to show the relevance of the results
of Sect. 5.2.3 in reproducing some well-known result of two-dimensional quantum gravity
coupled to conformal matter. Let us recall that in exactly two dimensions the path
integral of gravity can be determined by integrating the conformal anomaly [206], which
leads to a renormalization procedure linked to a non-local action known as the Polyakov
action [201]. This action is especially relevant because the spacetime integral of the
Einstein term is a topological invariant in two dimension, and hence it cannot govern the
dynamics of the model.

However for general d (and specifically for d = 2 — ¢) the Einstein term is not a
topological invariant, and therefore it has been argued by Kawai and Ninomiya that
it should be possible to reproduce the results based on the Polyakov action by just
renormalizing the Einstein action in d = 2 — ¢ and then taking the limit ¢ — 0 [207].
The validity of this argument was shown through the course of several papers, which
ultimately lead to the two loop renormalization of the Einstein action in d = 2 — . For
more details we refer to [208] and references therein; notice however that in the literature
of 2d gravity it is often chosen d = 2 + ¢, therefore the replacement ¢ — —¢ is necessary
when comparing results.

The renormalization of dimensionally regulated two-dimensional gravity is slightly un-
conventional because it has to deal with the conformal factor of the metric, otherwise one
finds discontinuities when analytically continuing to ¢ — 0 [209]. In order to describe it,
let us first introduce the Einstein action interacting with ¢ distinct conformally coupled

fields ¢; in d dimensions
Slg.o) = [ aevi{-GR+ 53 (0000 + 60 R) ). (a9

We require that the coupling &, is determined by the conformal value (5.3) and assume
that this condition can be preserved through renormalization (see the discussion of sec-
tions 5.1 and 5.3 for more details on this point). The number c is often referred to as
“central charge” and it counts the effective number of matter degrees of freedom.

In two dimensions all possible metrics are related by a Weyl transformation, and there-

fore only their conformal mode is allowed to fluctuate. Close to two dimensions, instead,
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5. Scalar fields and covariant perturbation theory

it is customary to parametrize the metric g, — (¢/ 8)%/=apt/ g, into a conformal mode 1
and a metric g, which is not allowed to fluctuate in its trace part (by abuse of notation
we denote the transformed metric with g,,).* Using this normalization the mode ¢ of
the metric enjoys a Weyl invariant action, which is in form analogous to any of those of
the fields ¢;, if not for an overall negative sign which makes 1) an unstable “scalar” degree
of freedom. The idea of [211] is to transform (5.28) into

Slov0] = [ alei{- gL IR - J000% 4 5 Y 00696} (529)

G
and renormalize it such that the function L(1), ¢;) respects the conformal coupling. The
new function is normalized by L(0,0) = 1, which is a necessary condition to read off the
value of the Newton constant G.

Assuming that the instability of 1) can be cured by opportunely Wick rotating the
theory, it is possible to neglect the effects of the dilaton field ¢ as compared to those
of the multiplet ¢;; moreover one can argue that for large values of ¢ the fluctuations
induced by the fields ¢; dominate over those of g,, too. In other words, for large c it
should be necessary to integrate only the loops of ¢;, but this is exactly the multifield

generalization of what we have done in section 5.2.3 upon the identification

'Ust
G

L(¢i) R = U(éi, R) (5.30)

for the dimensionless versions of L and G. Notice that in the large-c limit we are dropping
any parametric dependence on the mode v to highlight the connection with the previous
section.

Now we use (5.30) inside (5.26) to determine the renormalization group flow of the
renormalized G and L(¢;). In order to separate the two beta functions we have to impose
that L(0) = 1 along the flow. Additionally, we impose that all fields ¢; are coupled in
the same way so that it will be sufficient to denote each one of them by ¢. We find

c
247
B =—5-G{1-Lio)} +

Bg = —eG + —G2 + —G L"(0)
47

{L0) L) - "(0)} o

c
4dT
The interaction with the fluctuating modes of g,,, can change the anomalous dimension of
the fields ¢; as n ~ G, but this contribution is also generally subleading in the limit of large
central charge. We follow the strategy of [211] and parametrize L = 1 + at) + bip? — £.¢°.

35 We find that the best recent review of this formulation appeared in [210], in which it has been named
unimodular Dirac gravity, or alternatively unimodular dilaton gravity. The gauge group Dif f*
of the formulation comes from the breaking of a semidirect product of diffeomorphisms and Weyl
transformations which is itself isomorphic to the diffeomorphisms group Diff x Weyl — Dif f* ~
Diff, but acts on ¢ and g, in a nonstandard way.

90



5.3. Criticality

It is straightforward to see that the beta functions of a and b have Gaussian solutions,

thus setting all couplings except for G at the respective fixed points we obtain

Bg = —eG + AG? (5.32)
with A = —5-. This result agrees with the large-c limit of the exact leading result in
which the constant A takes the value A = 22=¢ [207].

Notice that the general Euclidean result hinges on our ability of solving the problem
of the instability of the conformal mode, which in [211] is “Wick” rotated 1) — it). While
several solutions have been proposed there is no definite answer, nor general consensus
on how to approach the problem. In fact, proposals to solve the problem without a
Wick rotation of the dilaton mode have received renewed attention recently [212]. This
problem can be framed in the more general discussion of finding the universality class
of quantum gravity and exploring the corresponding conformal theory [213]. Here we
would like to mention another less explored yet interesting possibility that was outlined
in [214]: the path integral of 2d gravity could be “defined” starting with the path integral
of a fluid 2d membrane embedded in d bulk dimensions (which is essentially a non-critical
Nambu-Goto string) and analytically continuing to d — 0. In the membrane path integral
the correct counting of the degrees of freedom involves the propagation of modes of the

extrinsic curvature, which play a role analogous to the gauge fixing ghosts.

5.3. Criticality

We now resume the analysis of the RG system (5.16) of Sect. 5.2.1 representing the
general case of the multicritical model ¢** for n > 3. The ¢* model is an outlier, so we
anticipated a brief discussion of the critical properties of its non-minimal coupling to the

curvature already in Sect. 5.2.2. We find it convenient to rescale the potential

v(¢)—>£v(¢)=(4ﬂ)%( 1 )_nv«o), (5.33)

n—1 n—1 n—1
while leaving all other functions intact. The system (5.16) simplifies to

d—2+n , 1

By =—dv+ v’ + — (™),
i + " m2n—1) ( n—1 o) (5-34)
— _ I r_ ey 2n—1)\2
br=2=d)f+———¢f (n—2) (Qn)!{n(Qn— e }<” )

Using the boundary condition z(0) = 1 in the rescaled flow 3,, we also determine the
anomalous dimension of the scalar field n = 4v®™(0)2/(2n)!.

The critical couplings appear as the leading couplings of the potentials v(¢) and f(y).

91



5. Scalar fields and covariant perturbation theory

By construction, in the minimal subtraction scheme all other couplings are dimensionful,
and therefore are zero at the critical point. We therefore parametrize the potentials in

terms of the two almost marginal interactions
o) = G flo) =2¢". (5.35)

Using the above parametrization in (5.34), we find the following beta functions and

anomalous dimension

(2”>!)\2 4
(n!)2" 7 2n)!7

dn=1)  AnCn-1) (5.36)
(n—2)(2n)! (n—2)2n)!>"

fBr=—(n—1)eA+nnA +
Be =né —

It is clear that n contributes to the cubic order in A of ), which has no effect on the
determination of the order ¢ of the fixed point. However 7 has an important effect in 3¢
because its contribution scales with the same power of A as the other terms. Substituting

n we find

Br=—(n—1)eA+ ((i%); A2

_ 8(n*—-1) 1 )
b= =2y @n) (5 2(n+1))>\ '

The system has two different fixed points. On the one hand we have the Gaussian

(5.37)

fixed point at A = 0 which sets both beta functions to zero. In this case the natural fixed
point for £ is the subleading root of 5¢. On the other hand we have the non Gaussian
fixed point

(n—1) (n!)? 1

o) £, &=—— (5.38)

A= 2(n+1)

For both fixed points the coupling ¢ takes the critical value that is expected at the upper
critical dimension

d, — 2 1

S =S =Ty T ) (5.39)

which evidently proves the hypothesis given in the introduction. Interestingly, the only
outlier of our analysis is the case for n = 2, for which we have to use the set of beta
functions coming from (5.22) as discussed in Sect. 5.2.2. However, it is straightforward
to find that in this case £ = % which happens to coincide with the continuation of (5.39)
to n = 2. It is an easy check to see that the limit n — 2 in (5.39) gives £* = £ as shown
in [215].
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5.3. Criticality

The next step would be to test if the next-to-leading order correction to the non-
Gaussian fixed point of £ matches the e-expansion of conformal value for the coupling &
evaluated in d = d,, — ¢ instead of d = d,,. This would imply

? d—2 1 (n — 1)2

STAA=D T onel) Amrigc o (5.40)

which comes from the expansion of (5.3) to orders of ¢ using d = d,, — €. Following the
discussion of [114, 115], which we reproduced briefly in Sect. 5.2.2; we argue that ensuring
(5.40) probably requires a special choice in the renormalization conditions leading the RG
flow. In practice, the next-to-leading contributions to the RG flow can be changed by the
inclusion of terms which match the counterterms (5.12) and which can be used to change
the renormalization conditions leading to the fixed point value for £&. Let us include here
also a short remark on the steps that have led to (5.39). While the hypothesis formulated
in the introduction stated that we expected £ to take the conformal value at criticality,
the validity of the guess is not at all obvious from the initial form of the counterterms
(5.12). In particular, there is a very delicate balance among the terms appearing in the
renormalization (5.16) and the anomalous dimension which produces the form of J; in
(5.37) and which makes evident that the conformal value (5.39) is actually the critical
point.

We conclude this section by discussing the implications that the system of beta func-
tions (5.37) has on the infrared physics. For obvious reasons, we are mostly interested
in studying the renormalization group flow in a physical dimension. The first natural
dimension (smaller than d,,) in which almost all models for n > 3 are nontrivial is d = 2,
we therefore continue ¢ to the value ¢ = % to continue the ¢?" models to the physi-
cal dimension d = 2. Correspondingly, the fixed point value of the coupling A becomes
A = 2 in which we define A, = (2n)!/(n!)? which is simply the coefficient of the \2

An
term in ). The flow can be integrated as follows

Ao
) )
e4(s) -2 (5.41)

E(1) = En + (G — &) o DnI0 0052

Alp) =

in which we introduce B,, = 8(n* — 1)/((n — 2) (2n)!) that is the coefficient of S¢. The
flow satisfies the ultraviolet boundary conditions Ay = (o) and & = &(po), which can
be checked by setting = o in (5.41).

More interestingly, we can use (5.41) to explore the infrared limit g = 0. One can see
trivially that the second term in the denominator of A(u) drops for = 0 and therefore
we have A(0) = A\*. Slightly less trivial is to show that for © — 0 the integral appearing
in the exponential of £(u) diverges logarithmically implying that the second term drops;
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5. Scalar fields and covariant perturbation theory

we thus have £(0) = &,. These results are in line with the expectation that the nontrivial
fixed point (5.38)—(5.39) is of infrared nature in that it controls the large scale behavior

of the model near criticality.
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6. Conclusions

In this thesis we discussed several aspects of quantum systems undergoing critical phe-
nomena in presence of a gravitational interaction. The analysis uncovers phenomenology
of both geometrical degrees of freedom and matter degrees of freedom.

The gravitational catalysis of chiral symmetry breaking and fermion mass generation
was investigated on patches of hyperbolic spaces, corresponding to negatively curved
patches of AdS spacetimes in a Lorentzian setting.

The general phenomenon of gravitationally catalyzed symmetry breaking has long been
known to be driven by long range modes and their sensitivity to negatively curved space-
times. The novelty of this study consists in inspecting the competition between the
screening of these modes by a gauge invariant IR averaging scale kg and the effect of the
presence of an averaged curvature on this scale. This competition leads to a bound on
the local curvature parameter x ~ \/m in units of the averaging scale kig. Gravitational
catalysis does not set in as long as the bound is satisfied.

Built on RG type arguments, our analysis applies to local patches of spacetime and
hence does not require the whole spacetime to be hyperbolic, negatively curved or uni-
form. Rather, the resulting bound applies to each patch of space or spacetime with an
averaged negative curvature. Fermion modes in spacetime patches violating the bound
can be subject to gravitational catalysis. Of course, the precise location of the onset of
gravitational catalysis in parameter space depends also on further induced or fundamental
interactions of the fermions. In case of chiral symmetry breaking through gravitational
catalysis, the fermions generically acquire masses of the order of at least kg or larger
depending on the relevance of further effective interactions.

An application of these findings to a possible high energy regime of quantum gravity
results in the following scenario: let us assume the existence of a, say Planck scale,
regime where a metric/field theory description is already appropriate, but large curvature
fluctuations are allowed to occur. Our bound disfavors the occurrence of patches of
spacetime with large negative averaged curvature. In such patches, the generation of
fermion masses of the order of kg could be triggered. Since kig itself can be of order
Planck scale in such a regime, the fermion masses would generically be at the Planck scale
upon onset of gravitational catalysis. Even worse, gravitational catalysis would naturally
remove light fermions from the spectrum of particle physics models on such spacetimes.

Therefore, we argue that our bounds apply to any quantum gravity scenario satisfying
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these assumptions that aims to be compatible with particle physics observations: if a
quantum gravity scenario satisfies the bound, it is safe from gravitational catalysis in the
matter sector; if not, the details of the fermion interactions matter. In the latter case,
gravitational catalysis may still be avoided, if the interactions remain sufficiently weak.

As the curvature bounds refer to an IR cutoff scale kg, they are naturally scheme
dependent. In fact, this scheme dependence in the first place parametrizes the details
of how the fermionic long range modes are screened by the regularization scale. We ob-
serve that a finite curvature bound exists for any physically admissible regularization.
Moreover, the shifts of the bound due to a change of the propertime regularization agrees
with the behavior expected from the underlying propertime diffusion process. We there-
fore claim that the curvature bound has a scheme independent meaning. A fully scheme
independent definition might eventually need to take the prescription for defining the
averaged curvature of a local spacetime patch into account, which depends on the details
of the underlying quantum gravity scenario.

Having performed a mean field type RG analysis, our bounds may receive corrections
from further fluctuations that may be relevant at the scale kg including further inde-
pendent degrees of freedom or chiral order parameter fluctuations. Such corrections can
go into both directions: further interactions such as gauge or Yukawa forces typically en-
hance the approach to chiral symmetry breaking, whereas order parameter fluctuations
can have the opposite effect. Also, thermal fluctuations can inhibit the occurrence of a
chiral condensate at sufficiently high temperature. Effects that trigger symmetry break-
ing can effectively be summarized in terms of finite bare fermionic self interactions Ay
in our approach, whereas thermal fluctuations can be understood as moving the critical
coupling to larger values [50, 216].

An analysis of the dependence of the bound on the dimensionality of the system has
been performed. In general odd dimensions, we have derived a simple closed form ex-
pression. Since different dimensions can exhibit a different number of relevant scalar
curvature operators and thus a different number of physical parameters, a meaningful
comparison of theories in different dimensions is not straightforward. Assuming that all
further physical parameters are essentially zero at the scale kg, we observe that the re-
sulting curvature bound decreases with ~ 1/v/d for higher dimensions. This result shows
how quantum gravity scenarios with extended higher dimensional patches of spacetime
where the hypothesis for our bound are matched are less likely to admit the existence of
light fermionic matter.

Unfortunately, results from quantum gravity scenarios that could be checked against
our curvature bounds are rather sparse. Many approaches focus on the gravitational
sector leaving matter, and fermions in particular, aside. One of the most developed
approaches in this respect is asymptotically safe gravity. Concentrating on a simple

picture for the UV regime of gravity using the Einstein-Hilbert action as the scaling
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action, our curvature bound translates into a bound on the particle content of the matter
sector. In particular, the number of fermion flavors becomes constrained in order to
avoid gravitational catalysis. Our simple estimates based on various literature studies of
asymptotically safe gravity with matter indicate that the standard model is compatible
with asymptotically safe gravity and not affected by gravitational catalysis in the trans-
Planckian regime. This statement is nontrivial insofar that the matter content together
with the effective Einstein equation suggest negatively curved local patches of spacetime
in the fixed point regime. Still, the curvature is sufficiently weak to satisfy our bound. By
contrast, our estimates suggest that the standard model with an additional fourth flavor
generation would not satisfy the curvature bound within asymptotic safety. In order to
obtain more reliable estimates, the curvature dependence of correlation functions and its
interdependence with the matter sector in the trans-Planckian fixed point regime would
be welcome.

Furthermore, the leading order renormalization of the multicritical scalar models with
¢*" interaction in curved space has been studied. The analysis shows that for almost
all values of n one has to consider counterterms for the self interaction as well as for
the non-minimal interaction of the form ¢?R, while some additional counterterms based
on curvature invariants are needed in the special case n = 2. The counterterms have
been obtained from a computation of the é poles of dimensionally regularized covariant
Feynman diagrams of (n — 1)-loops for the self interaction, and (2n — 1)-loops for the self
energy and the non-minimal interaction.

The result generalizes the renormalization of the ¢* model in curved space, which we
have considered as a special case, but it also shows that the general case functions rather
differently. Specifically, the structure of the counterterms for the non-minimal coupling
displays a discontinuity for n = 2, which corresponds to ¢*. We have deduced a set
of functional beta functions which describes the scale dependence of a self interaction
potential and a generalized non-minimal interaction with the scalar curvature.

We have used the perturbative renormalization group flow to determine standard per-
turbative beta functions for the two canonically marginal couplings: A of the self inter-
action ¢?" and ¢ of the non-minimal interaction ¢?R. The system of RG flow equations
clearly shows that at the leading order the scale invariant fixed point of the non-minimal
coupling ¢ coincides with its dimension dependent conformal value &, evaluated at the
upper critical dimension. This result is in agreement with an educated guess enunci-
ated in the introduction. Importantly, the leading critical value for the coupling £ is an
ultraviolet attractive feature of the renormalization group flow.

We have also discussed the possibility that at the next-to-leading order the e-expansion
of the fixed point value of £ matches the expansion of the conformal value &, below the
upper critical dimension. Based on similar and already available results for the ¢* [114]

and ¢* models [113, 116, 117], we argue that one has to either follow a modified version
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of the prescription of Brown and Collins [114], or alternatively to subtract normally
while exploiting the freedom of redefining the renormalization group flow at the next-
to-leading order using the counterterms of the leading order [105]. In other words, one
might want to find the appropriate renormalization condition which ensures the validity
of the conjecture for the non-minimal coupling. We believe that this condition plays an
important role, especially in those cases where it is necessary to describe the model in a
conformal or Weyl invariant way.

A clearer understanding of the status of this conjecture and the necessary renormal-
ization condition requires further studies and the expansion of the analysis of this thesis

to the next-to-leading order contributions to the renormalization flow.
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Appendix A.

Legendre transform
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Fig. A.1.: Graphical interpretation of conjugate variables.

Given a convex function f(z) we can define its Legendre transform f*(p) as [5, 34,

123):
f(p) = sup {pz — f(2)}, (A1)

where the convexity ensures that for any given p the supremum exists for some finite x.
If f(x) is differentiable it is possible to introduce an auxiliary function of both z and

p
g(p,x) = pr — f(x) (A.2)

for which the supremum coinsides with its maximum. Checking the extrema of g with
respect to x:

dg(p, z) df(z)
=p— = A.
dx b dx 0 (4.3)
entails directly that
df(z)
= : A4
P=—1 (A.4)

The supremum condition, thus, turns out to be equivalent to p being the derivative of f.
On the other hand, the differential form of g reads:

dg = zdp + pdx — df = xdp. (A.5)
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As a consequence we have

_dglp,2)

o (A.6)

z(p)

In a similar fashion we can inspect the second derivative of the Legendre transform:

2 2 2 2 2
Qg _ P e &f (A dfd A7
dp?  dp? dp dz? \dp dx dp?
imposing (A.4) and (A.6) means to identify g with f* and we obtain:
d2 * d2 * d2 d2 %\ 2
/ =2 o4y / , (A.8)
dp? dp?  da? \ dp?
i.e.
de* d2f
— =1. A9
dp? dx? (4.9)

This last result shows that the Legendre transform does not affect the convexity of the
original function.

The generalization of this treatment to the case of functions of more variables is
straightforward since the Legendre transform can be performed independently on each
variable.
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Appendix B.

Thermodynamics and statistical
mechanics

In this appendix we recall the role of thermodynamical potentials and their relation to
the statistical ensembles. The presentation follows the exposition in [123]. As stated in
the main text, the system that we implicitly think about is that of a perfect fluid. Since
we will work with equilibrium thermodynamics it is important to keep in mind that
the differential equations we will be writing are not describing dynamical processes, but
rather the change of thermodynamical quantities between two configurations infinitesi-
mally apart. Suppose for example that we have an instrument able to directly measure
the internal energy of a system and we intend to do so for different values of the volume.
Ideally, after taking a measure we change the volume of a very small amount and let the
system settle down to its new equilibrium configuration before taking the next measure-
ment. The differential equations we will be dealing in this appendix represent the change
of internal energy (or of other thermodynamical quantities) under similar processes. The
procedure we just described is called quasi static process. Finally is useful to notice that,
exactly because of the interpretation we just pointed out, the variables we use to compute
thermodynamical functions represent the set of quantities that we have under access to
during an experiment. Thus, different thermodynamical potentials better fit to different
experimental setup, even though they entail the same information on the equilibrium
configuration of the system.
The fundamental equation for a fluid in the energy representation reads

U=U(S,V,N), (B.1)

where U is the internal energy and it depends on the entropy of the system S, the volume
V' and the particle number N. The differential version of (B.1) can be written as:

oU oU oU
AU = <%>V’N s + (W) o av + <3_N>v,s dN . (B.2)

By comparison with the conservation of energy law:
AU = AQ + AVVmech + AV[/vchem =TAS — pAV + MAN, (B3)

it is straightforward to see that we can identify the temperature 7T, the pressure p and
the chemical potential p with the partial derivatives of the internal energy:

oU oU oUu
T—(%)W’ p—‘(W)&N’ “—(a—zv)v,s' (B4)
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Appendix B. Thermodynamics and statistical mechanics

According to this identification we have that, in the energy representation, 7', p and
p play the role of parameters (as opposed to variables) and they turn out to be again
functions of entropy, volume and number of particles:

T =1T(S,V,N), (B.5)
p=p(S,V,N), (B.6)
p=pn(S,V,N).

In contrast with (B.1), the previous set of equations are not fundamental equations of
thermodynamics and they depends on the detail of the system under examination, hence
they are equations of state.

Since both the internal energy and its variables are extensive quantities the parameters
turn out to be intensive. We can generalize this property of the energy introducing the no-
tion of homogeneous functions. A function of m variables f(x1, ..., z,,) is a homogeneous
function of degree n in its variables if:

fAz1, . Ae) = A" f(21, ..oy @) (B.8)

for some number A. The internal energy is thus an homogeneous function of degree 1 in
its variables:

UAS,A\V,AN) = AXU(S,V,N). (B.9)
Differentiating with respect to A and setting A = 1 one finds:
U=TS —pV + uN. (B.10)

Inspecting the differential version of the last expression and imposing (B.2) and (B.4)
one finds:

SdT — Vdp + Ndpu = 0. (B.11)

Thanks to the extensiveness of entropy and volume we can rephrase the last result in
terms of densities and obtain:

dp = vdp — sdT, (B.12)
wherev = % is the specific volume and s = % the specific entropy. Equation (B.12) is
called Gibbs-Duhem relation and is a fundamental property of thermodynamics because
no equation of state was used in its derivation. Since this property is not spoiled by
integrating the differentials, we have that the chemical potential as a function of pressure
and temperature p = p(p, T') is fundamental as well while the specific volume and entropy
play the role of parameters.

Since the setup discussed so far relies on heaving experimental access to the arguments
of the internal energy we might want to map the whole framework to a language de-
pending on variables we can actually measure in an easy way. In order to do that we
employ the Legendre transform described in appendix A. Given that the derivatives of the
internal energy are given by (B.4) we can simply define the transform without the supre-
mum condition. The most interesting transforms provide the following thermodynamic
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potentials®

1. Helmholtz free energy:

F(T,V,N)=U-TS,

2. enthalpy:

H(S,p,N)=U+ pV,

3. Gibbs free energy

G(T,p,N)=U—-TS+pV, (B.13)

4. grand canonical potential (or Landau potential)

(T, V,u) =U —TS — uN . (B.14)

Even if we did not list the full set of possible Legendre transforms of a function of
three variables as the internal energy, it is worth to notice that, since the internal energy
is an homogeneous function of first degree in its variables, the simultaneous Legendre
transform in all of them would be zero:

U—TS+pV —puN =0. (B.15)

As a remark we point out that everything stated until this point has an equivalent
formulation in the entropy representation. In this case we solve the entropy with respect
to the internal energy:

5=5(UV,N),

1 P 7
= — —dV — =dN.
ds TdU+TdV Td

(B.16)

There exist, thus, a set of thermodynamical potential derived from Legendre transforms
of the entropy.

Let us now try to understand the connection between statistical mechanics and ther-
modynamics. To this end we consider the example of a canonical ensemble. This type
of system (we will call it &) can be understood as embedded into a microcanonical one
from which the degrees of freedom of the reservoir (say R) are integrated out under the
constraint that the only energy can be exchanged between the two. Since the integration
takes place over the reservoir variables, the probability distribution to find the system &
in a microstate j of energy E; will be proportional to the volume Qg = Qg (Eeur) that

36Even if we define the thermodynamic potential as a Legendre transform changed by an overall sign all
the listed potential reach a minimum at the equilibrium. To the careful reader this will not look like
contradicting the statement that the Legendre transform preserves convexity. In fact, the statement
is about the values of energy at equilibrium as a function of fixed entropy, volume and number pf
particles at equilibrium. If we were to consider out of equilibrium thermodynamics, other internal
variables should be included. We shall not discuss this treatment here.
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Appendix B. Thermodynamics and statistical mechanics

the reservoir microstates occupy in the phase space:
Pj = Qg(Ey — Ej), (B.17)

where c¢ is a normalization constant and Ej represents the energy of the microcanonical

ensemble. If we take the logarithm of P; and expanding for small values of the energy

E; we obtain:

IO (E)

— .. (—Ej)
OF |E=E,

2 3
Ej+O(E)7

log P; =log ¢ + log Qr(Ep) +

10%Qx
_|_ JR—
2 OF? |E=E,

(B.18)

where the expansion id of course justified by the assumption that the reservoir is assumed
to be much bigger than the system itself. Using the definition of the statistical entropy
S(E) = kplog Q(E) where kg is the Boltzmann constant we have that:

OFE kgT
PlosOr(E) 10 (1) (B.19)
OF2 kg OE\T ’

where use of (B.16) has been made and the limit in the second line of the last equation
represents the thermodynamical limit. Hence, the expansion (B.18) becomes:

log P; = C — BE;, (B.20)
which leads to:
e PEs
Zk e—BEL

The partition function Z for the canonical ensemble is defined by the normalization factor
of the probability distribution. If we take into account the possible energy degeneracies
of the microstates we are allowed to rewrite the sum in the partition function as running

P = (B.21)

over the energy values:
Z=Y e =3"Q(E)e ", (B.22)
k E

Since in the thermodynamical limit (and away from criticality) the energy fluctuations
become irrelevant, we can approximate the partition function by its maximal contribution
knowing that the approximation will become an exact equality once that the number of
particles is sent to infinity:

Z =Y exp{logQ(E) — BE} ~ exp { BS%p (TS(E) — E)} : (B.23)

where we recognize the definition of the Helmholtz free energy F':

7~ e P (B.24)
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or, in the thermodynamical limit:

1. 1
f(Tv) = ——V}\lzm Nlog Z(T,V,N). (B.25)

A similar treatment can be performed for other types of system, where different con-
straints are imposed on the microstates probability distribution. The most remarkable
results are for sure the grand canonical ensemble, the partition function of which is sur-
prisingly given by the grand canonical potential, and the pressure ensemble described by
the Gibbs free energy. This last ensemble is the one describing the Ising model. In this
case we should identify the total spin of the system as the total volume (it is indeed a
function of the number of sites of the system) and the external magnetic field as (minus)
the pressure. The external magnetic field is of course an intensive quantity and affects
the total spin which represents the response of the system to the external perturbation
and, for a non zero induced magnetization, is an extensive quantity. Since in an experi-
mental setup we think about the Ising model as embedded into a fixed external magnetic
field (or generalized pressure under this identification) then the correct thermodynamical
potential to describe the system is given by the Gibbs free energy.
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Appendix C.

Wick rotation

This appendix is dedicated to fill the gap between the formalism of statistical field theory
and quantum field theory and to set the conventions implicitly used in the text. Most of
the textbooks about quantum field theory contain similar discussions. A good exposition
can be found in [5]. Let us consider an action for a massive scalar field defined on a flat
manifold of Lorentzian:

il = [[ate |30 (-0-m?) ¢~ Vi) )

where O = 9,0". The action is defined in such a way that the eigenvalues for the kinetic
term are bounded from below for timelike momenta. For V() = 0 we can easily compute
the propagator in momentum space and check that the poles reproduce the relativistic
dispersion relation (in natural units):

py = p* +m’.

If we assume that the inclusion of V() does not spoil the well definiteness of the eigen-
values problem of the equations of motion, we can expect the poles of the propagator
to reproduce the relativistic dispersion relation in presence of a potential. Let us, thus,
call w the real part of the pole for pg, i.e., the momentum space propagator develops a
singularity for pg = fw. It is well known that the causal prescription to regulate this
divergence consists into shifting the poles of an infinitesimal imaginary part such that
they will lie in the second and fourth quadrants of the complex py plane. We can thus
consider the integration path shown in figure C.la. The arch contribution vanishes as
their radius is sent to infinity. Since the poles are left out of the contour we see that the
integration along the real axis is equivalent to the one along the imaginary one. This is
the core of the Wick rotation and it boils down to the substitution:

Po — iPo (C.2)

which renders a convergent integral for the Fourier transform of the Feynman propagator.

If we wish to perform a similar trick in direct space we first need to identify the location
of the poles. If we parametrize the causal prescription in terms of an infinitesimal rotation
of the complex plane:

_'6
Po — € "o,

sin(f) = (C3)

I

Elm
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Fig. C.1.: The figure shows the typical disposition of poles in the py complex plane (figure C.1a)
an the ¢ complex plane (figure C.1b)

we can identify the corresponding rotation in the direct space as:

0 0 O
txX — — e’ —

. C4
Opo dpo ( )

The resulting integration contour to be consider is shown in figure C.1b and corresponds
to the transformation:

t — —itg. (C5)

The transformation of the action (C.1) can be inferred inspecting the integration mea-
sure and the transformation of the d’Alembert operator:

1dt — die , (06)
o 9 o 9
—D_—a+8—x—>a—%+&:Dg, (C.7)
. 1
iS[p] — —Selyp] = — /ddxg {590 (-Oc+m*) o+ V(p)| . (C.8)

Hence, a Lagrangian formulation of a dynamical system is mapped into an Hamiltonian
formulation of a static problem. In order to complete this parallelism we should reinsert
the constants h and § = RBLT necessary to keep track of the correct dimensions of fields
and coupling

Z[J] = /Dgp erSleti ] Te /Dgo e PSelel ] Je (C.9)

In doing so we notice how they play a similar role as A is source for the quantum fluc-
tuations as much as the temperature is a source for the thermal ones. The quantum
path integral Z[J], functional of the classical source field J(z) is thus rearranged in a
statistical partition function.
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Appendix C. Wick rotation

Strong of the functional formalism we can now define the W[J] and I'[®]. The gen-

erating functional of connected Green functions W[J| = ihlog Z[J] is mapped to the
Euclidean side under the same rule of the action to We[J] = %log Z[J]. Tt is now clear
how W[J] plays the role of the free energy of the system. This equivalence persists to

the level of correlation functions. In fact the 2-point connected Green function

Ge(x,2') = (—ih)’ m log Z[J]‘JZO , (C.10)
becomes
. N 1 5 B 1 52 1 ,
G, ') = G srmeaan e 2N s = Barmea Ve ]’J:O = 3x(@2),
(C.11)

X(z, ") being the generalized susceptibility.

As we discussed in B, when the degrees of freedom are infinite the free energy takes
the form of a thermodynamical potential, which specific one depending on the boundary
conditions of the system and the specific experimental setup. The mathematical tool
to change the fundamental variable encoding the information about the system is the
Legendre transform. In the present case the conjugate variable of the classical source

for the functional We[J]*" turns out to be the normalized expectation value of the field:

B = W _ (o)

=57 = . Hence:

Te[®] = / dle J(2)0(x) — WelJ], (C.12)

for which we have the well known functional relation:

/ L OWeld]  oTelo]
dJ(2)0J(x) 0P(y)dP(z)

=d(x —y). (C.13)

Mapping the Legendre transform (C.12) to the quantum field theory side one finds the
definition of the quantum effective action to be:

r[®] = — / d'e J(2)0(x) — W[J]. (C.14)

/dz W 1J| 62T [P
0J(2)0J () 0P(y)oP(z)

=0(x—y). (C.15)

and we recognize in I' the generating functional for one particle irreducible Feynman
graphs.

Even though the sign in the Legendre transform might seem confusing we first need to
notice that with a Lorentzian signature we have that

W o) g
ORI O(z). (C.16)

The parallelism we just illustrated clarifies the role of Landau approach to phase tran-

37The Legendre transform is naturally defined in an Euclidean setting. Therefore we define it for the
statistical field theory first and use Wick rotation to map it back to the Lorentzian case.
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sitions and the connection to the renormalization program for the effective action.
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Appendix D.

Fierz transformations

Fierz transformations are a set of identities that allow to express spinor self interactions
constructed through a specific channel as a linear combinations of all the channels upon
reordering of the fermionic fields. The following results can be found, e.g., in [5]. Given
matrix space £ with a basis 'Y we have that an element of the space M € L acting on

a ds dimensional vector space can be decomposed as:

1 A\TA
M = £§tr(Mr 4. (D.1)

With a little algebra it is easy to extract the completeness relation and orthogonality

condition for the basis:
1
—tr(TAT5) = 6458 (D.2)
ds

1
ds Z Tl = Sl - (D.3)
A

In the case of spinors ¢ € § over a four dimensional manifold we have that the space
L =38 ®S is generated by the elements of the Clifford algebra:

i
Mell,, -

V5 = V1727374 -

M 14 77: ) )
[V, o) s iV Y5 75} (D.4)

In this case ds just becomes the dimension of the spin representation. Now let x, v, (,
and ¢ be spinors and let us multiply equation (D.3) by ¥m(I'P4), G (T'P€),. This leads
to a relation between quartic monomial weighted by a single element in (D.4) to a linear
combination of quartic monomials with shuffled fields:

(RTP0) (CT7%6) = —— 37 (RTAT5¢) (CT4TP) - (D.5)

_%A

If we wish to construct interactions which are invariant with respect to the manifold
symmetry group we need to entail covariance with respect to the Greek indices in (D.4).
Hence, it is useful to define the following interaction channels:

1. scalar channel:

(S) = (XOs1) (COsE) = (xv) (¢€) (D.6)
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2. vectorial channel:

(V) = (ROvY) (COvE) = (X7") (Cuf) (D.7)
3. tensorial channel:
(T) = (XOry) (COr€) = (Xo"¥) (Cows) (D.8)
4. axial channel:
(A) = (XOa¥) (COAE) = — (X" 75¢) (Chu5E) (D.9)

5. pseudoscalar channel:
(P) = (xOpv) (COpE) = (x15¢) (¢15€) - (D.10)

Working out the algebra of equation (D.5) we can summarize Fierz transformations in
terms of the above channels as a matrix law:

1 1 1 1 1
S i i B S A N
¥ = _% 8 (1) _05 13 ; D.11
=3 3 —3 , (D.11)
A -1 -+ 0 35 1 Al
1 1
P ar T s S S VAN

where the prime on the right hand side indicates the shuffle of spinor fields. In particular
we notice that if we construct an interaction out of rotational invariant terms of the form:

(V) + (A) = (@7"0) (nx) — (7" 15¢) (X75X) (D.12)
and apply Fierz transformations we end up with the following expression:
=2[(8") = (P)] = =2 [(¥x) (X)) = (¥sx) (Xrs9)] - (D.13)
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Appendix E.

Spinor heat kernel on hyperbolic spaces

For completeness, we summarize results for the heat kernel on hyperbolic spaces in this
appendix, as they are needed for the present thesis. The derivation and the conventions
mostly follow the pioneering work presented in [140, 141]. Hence, we start by normalizing
the inverse radius x of the manifold to 1. We will reinstate this curvature parameter later
on. The heat kernel for the squared Dirac operator on a d-dimensional hyperbolic space
can be written as:

K(z,2',s) = U(x, 2") fn(dg, s), (E.1)
por(d)
fnly.s) = Tj/o Pa(y)e™ u(\)dA, (E.2)

where U represents a parallel transport, and f ~ is a scalar function satisfying the following
equation:

- (- % + 0 — % _dd tanh?(y) ) fv(y) (E.3)
= (— %+Ld)fN(y>7 (E4)

with [; being the radial Laplacian. The eigenfunctions ¢, of the L; operator with
eigenvalues —\? can be written as

bipr =4 ©5)
d d d
Paly) = cosh g 2 (5 + 1A, 5 iX; ot sinh? %)

Here, o F} denotes the hypergeometric function, while the spectral measure p(\) reads:

T

92d—4T"2 <%l>
d
[12, (02452, d odd
2
a__
Acoth(m)) J?:11(/\2 +7?%), deven.

() (E.6)

In the main text, cf. Sect. 4.2, we only need the equal point limit of the heat kernel,
with 2/ — z and the geodesic distance dg — 0 goes to zero, i.e., y — 0 in (E.2). From
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equation (E.5) is clear that the coincident points limit leads to

lim p(y) =1, (E.7)

y—0
while the U reduces to the identity. Thus, we end up with
2190 (4) e
2 2
K= —" / dX e u(N)d\ . (E.8)
T2 0

In order to reinstate the curvature parameter, we make contact with the flat space
limit of the heat kernel, starting with the odd dimensional case. Plugging the definition
of 11(\) into equation (E.8), we get upon substitution

d_q
2 o 2 3
Kodd: —sA 2 -2
5 (47r)gl“<4>/0 det Ilode
2 J=3
2 2!

“ (D) [T T+ %) (E9)

(47rs)5F(—

and similarly for an even dimensional background:

2 o 2 U
m/o du e ucoth(w\/g)

x | | (v + 5%s). (E.10)

even __
K70 =

NI

[NJisH
[y

<.
Il

Recalling that in flat spacetime the heat kernel in the coincident points limit reads K, =
(47s)~! with s carrying mass dimension [s] = —2, we obtain the correct limit by rescaling
the propertime inside the integrals by a sufficient power of the curvature parameter with
[k] = 1; note that the integration variables has to remain dimensionless, [u] = 0. We
finally obtain,

4
2 o 2
K04 :T/ du e H(u2 + 7%k2s) , (E.11)
(47?5)5F(5> 0 1
Keven 2 /oo d —u? th( )
= u e " ucoth(m
’ (47?5)%F(%l> 0 Ry
4, (E.12)
X 1_[(u2 + 5%K%s) .
j=1

For an analytical approximation in even dimensions, the expansion of the integrand in the
two limits s ~ 0 and s &~ oo are useful. For small s, we rewrite the hyperbolic cotangent
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as:

Tnu

Uu > )
th(m——=) =1+ 2 "V E.13
co (WWE) + ;e (E.13)

The large s regime corresponds to the small u approximation of the hyperbolic cotangent,
thus, it suffices to consider the first few terms in the Laurent expansion of COth(ﬂ'#g) in
order to capture the behavior of K, for s around infinity,

coth(r ;&5) - ’;{f + 3:&‘5 +OWP). (E.14)

These two approximations are combined in section 4.4 to identify an analytic approxi-
mation for the heat-kernel trace in four dimensions.
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Appendix F.

Covariant representation of the Green
function

This and the next appendix follow roughly the presentation of [115] but summarize and
adapt it to the specific purposes of this thesis. We restrict our attention to simple scalar
fields, but the inclusion of internal indices and a gauge connection is straightforward. Let
us consider an operator of Laplace-type

O=—g"V,0,+E, (F.1)

in which we included a local endomorphism F = E(x) acting multiplicatively on the
scalar field’s bundle. Notice that the spacetime metric g,, appears both through the
inverse ¢g" and inside the Christoffel’s symbols I' of Levi-Civita connection V = 0 + I'.

In the background field approach to the Fuclidean path integral the curved space
propagator of the scalar field corresponds to the Green function of the operator O for an
opportune choice of the endomorphism E. The Green function is defined as

0,G(x,2") = 6D (z,2"), (F.2)

in which we introduced the biscalar d-function that generalizes the usual flat space Dirac
delta. The propagator that is used in the main text can be obtained by specifying the
endomorphism as F = F"(¢)R.

It is convenient to represent the Green function using the heat kernel method. The
heat kernel function is defined as the solution of the following differential equation

I K(s;x,2') + O K(s;z,2") =0,

F.3
K(0;z,2') = 6@ (z,2'). (¥-3)

If we solve the diffusion equation implicitly
K(s;z,2") = (2| 79 |z}, (F.4)

then the relation of the heat kernel function with the Green function is straightforward
G(z,x') = / dsK(s;z,z'). (F.5)

0
For all intents and purposes the above relation should be taken as our operative definition

of G(x,2").
The heat kernel representation is useful because the solution admits an asymptotic
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Appendix F. Covariant representation of the Green function

expansion for small values of the parameter s, known as the Seeley-de Witt expansion,
which captures the ultraviolet properties of the Green function. The expansion is gener-
ally parametrized as

Az, 2% _owa’)
K(S;I,ZE,) — W e 2s ZCLk(I,LEl) Sk . (FG)
k>0

We introduced several bitensors in the expansion. The most fundamental is o(z, '),
sometimes known as Synge’s or Synge-de Witt’s world function, which is half of the
square of the geodesic distance between the points x and 2’ [217]. The bitensor A(x, 2')
is known as the van Vleck determinant and is related to the world function and the
determinant of the metric as

Az, 2') = (g(z)g(z") V2 det (—0,0,0) .

Together, the bitensors o(z,2") and A(x,z’) ensure that the leading term of the Seeley-
de Witt parametrization covariantly generalizes the solution of the heat equation in flat
space with O ~ —92. Finally, the bitensors ay(z, 2') are the coefficients of the asymptotic
expansion and contain the geometrical information of the operator O, which includes
curvatures, connections and interactions.

It is well-known that ultraviolet properties are (and must be) local in renormalizable
theories. For the case of the heat kernel and the Green function locality corresponds to
x ~ 2’ and it is captured by the so-called coincidence limit in which z — 2. Given any
bitensor B(z,x’), its coincidence limit is defined

[B] = lim B(z,2'). (F.7)
Tr—x
Notice that covariant derivatives do not generally commute with the coincidence limit
V[B] # [V B], but rather satisfy a modified relation [217, 218].

The coincidence limits of the bitensors o(z,z’) and A(z,2’) and their derivatives can

be obtained by repeated differentiation of the crucial relations

oot =20, AVt 4201V AV = dAY? (F.8)

for which we suppressed bitensor coordinates and we used the notation in which sub-
scripts of o(z, ') correspond to covariant derivatives. Similarly, coincidence limits of the
coefficients ax(z,z’) can be obtained by differentiating and inductively using

kay, + o'V ,ap + ATVPO(AY2a,1) =0 (F.9)

with the boundary condition 0#V a9 = 0. In the relevant example of a simple scalar field
the first coefficient is trivial ag(x,2") = 1, because the Seeley-de Witt expansion solves
the diffusion equation in flat space. We give here the first two nontrivial coincidence
limits for the expansion of the operator (F.1) which are used in the computations of the
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main text

R
[aﬂ:€—E,
1, 1 1, 1, 1
— R _RE+-E*~ -V?(E_Z F.10

1 vpo 174
+ 1gg (B 77 = R M) .

Using (F.6) in (F.5), we obtain an analog expansion of the Green function

Gla,a") =Y Grlx,2")ay(w,2") . (F.11)

k>0

The leading Go(z,2") and the subleading Gy (z,z") for k > 1 are bilocal contributions
to the Green function and are determined by a simple integration over the heat kernel
parameter s

/ 9d—2-2k  A1/2 d
Gr(x,z") = (i) (20)d/2_1_k1“ (5 —1- k) . (F.12)

Depending on the theory and its dimensionality, the exponent d/2 — 1 — k inevitably
becomes negative for a certain value of k highlighting the fact that there is only a finite
number of Green’s function contributions which are singular in the limit z ~ 2.

It is very important to point out that in (F.12) we have implicitly assumed that the
Green contributions do not scale logarithmically with o(z,2’) at the critical dimension.
While they do not scale logarithmically for almost all the multicritical models considered
in this work (that is, for all ¢*" with 3 < n < o) they do, however, show a logarithmic
behavior if there are values of k for which d = 2 + k, which corresponds to poles of the
gamma function. In this case, one sees the failure of capturing the logarithmic behavior
explicitly through the e — 0 limit of (F.12) which is not regular even outside z ~ z’.

For this reason, when d = 2 + k one needs to subtract an e-pole to (F.12) for the
results to be valid at and close to the dimension d. For example, close to d = 2 the
leading propagator is already logarithmic and we subtract

AYV?2 T (d/2—-1) __ AY?

2—e AN
Go “(w,2) = (4m)d/i2 (20)d/2-1 o ore

(F.13)

As desired, the above expression is valid for d close to two dimensions and is regular in
the limit € — 0 for d = 2 — €. We report here the subleading part of the Green function
for d = 4 — €, which is also needed in the main text

AYV?2 T (d/2—-2) _ AY/?

4—e AN
G (o) = (4m)d/2 (20)4/2-2 HoSre

(F.14)

General expressions for leading and subleading parts can be found in [115, 118]. The
generalization to d = 6 — ¢, which requires subtractions starting from £ = 2, can be found
in [116, 117].

The need for a correct subtraction of the ¢ — 0 limit can be seen in the general
counterterms (5.12). In fact the (n — 2) pole of the third counterterm is a symptom of
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Appendix F. Covariant representation of the Green function

the fact that the general n > 3 results cannot be straightforwardly continued because
in d = 4 because the first subleading propagator becomes logarithmic. This is the main
reason why the renormalization of the ¢* universality class is an outlier.
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Appendix G.

e-poles in curved space

Covariant Feynman diagrams are constructed as products of propagators and hence of
Green functions. Taking advantage of the Seeley-de Witt representation given in Ap-
pendix F, we notice that diagrams are generally written as products of powers of o(z, z’),
A(x,z"), heat kernel coefficients and eventually other bilocal operators which could be
introduced by the theory’s vertices. In the case of a simple scalar field with a canonical
kinetic term and no derivative interactions the leading Feynman diagrams only have local
vertices and can be represented by products of “bundles” of propagators. In the applica-
tions investigated in this work, there is always just one bundle of propagators attached
to the same two spacetime points as seen in (5.12).

Generally, we want to obtain the dimensionally regulated divergent parts of covariant
structures of the form

1
o(x,z")?

Q(z,z")A(z,z') (G.1)

in which Q(z,z’) is an arbitrary bilocal operator, coming from the Seeley-de Witt coeffi-
cients, or the vertices, or other parts of the diagram. The constants a and b are arbitrary
powers that depend by the details of the diagram itself (for example by the number of
propagators and the value of the critical dimension). In the following, we shall briefly
describe an algorithm due to Jack and Osborn which was developed to treat this kind of
structures in dimensional regularization [115].

One starts with the basic relation

1 )
J(x,x’)g_“ cel(d/2)

w2 59Dz, 2, (G.2)

in which we introduced the symbol ~ to establish equivalence of the divergent parts of
both sides of the equation and a reference scale u to preserve the dimensionality of the
right hand side. It is easy to prove the above relation in flat space for which it is sufficient
to perform a Fourier transform and use the fact that o(z,z’) = |z — 2|?>/2; it is then
sufficient to argue that divergences are local and there cannot be curvature corrections
on the right hand side because of dimensional reasons. More generally, this relation can
be proven using Riemann normal coordinates in curved space [115].

Notice that if both sides of (G.2) are multiplied by the same bilocal operator, then
the Dirac delta on the right hand side allows for the substitution of its coincidence limit
Q(z,2)6D(z,2") = [Q]6(x,2'). The core of the algorithm is thus to transform all
possible inverse powers of the world function into those of the left-hand-side of the basic
relation, substitute them with the right-hand-side, and then sort all bilocal operators at
the numerator so that they enter in contact with the Delta function.

119



Appendix G. e-poles in curved space

Higher inverse powers of the world function can be manipulated inverting

A1/2 A1/2

2
(V - Y) ob -
Y (x,2') = ATV2VIAYZ

which can be proven easily using (F.8). For the purpose of this thesis we just need

1/2 4 e
N s (v2 _ 5) 5D (2, 2'), (Ga)
o(x,a)2tl-e  cedl(d/2) 6
which is obtained inverting (G.3) for b = d/2 and using the coincidence limits of the
biscalars [A/?] = 1 and [Y] = R/6.

Generalizations of (G.4) including higher inverse powers can also be easily obtained,
however further iterations of (G.3) typically exhibit bilocal operators which are separated
from the Dirac delta by the presence of covariant derivatives (imagine, for example,
placing Q(z,z’) on both sides of (G.4)) and hence their coincidence limit cannot be
taken. In such cases, it is necessary to integrate by parts all covariant derivatives so that
all bilocal operators come in contact with the Dirac delta. For example, if one covariant
derivative is located between the bilocal operator and the Delta we manipulate as follows

Q. 2) V0 (2,
=V, (Q(m,x')5(d)(x,x')) — V,.Q(z, 2")6 (z, 2) (G.5)
~ vu ([Q]é(d)(‘ra x/)) - [VMQ]é(d) (x7 :L“/) .

In the second line we have exploited the Delta to take the coincidence limit of the neigh-
boring operators. A similar manipulation can be performed for the case of two derivatives
and results in

Q(x, :v')VMVVcS(d) (z,2")
~ V.V, ([Q16'D(x,2')) + [V, V,.Ql6' (z, 2") (G.6)
-V ([VHQ](S(CO (z, xl>) -V ([VMQ]d(d)(x,x/)) :

In order to obtain further generalizations, one has to integrate by parts all derivatives one-
by-one, and take the coincidence limits only of operators which are in direct contact with
the Dirac delta. Generalizations of (G.5) are thus straightforward but rather lenghty.

Systematic applications of (G.3), to manipulate the inverse powers of the world func-
tion, and of (G.5), to take the local parts of the biscalars multiplying the divergences,
can reduce the divergence part of the arbitrary expression (G.1) into a simple sum of
dimensionally regulated poles.

We illustrate the use of the formulas derived in the appendix for the process of dimen-
sional regularization showing the basics steps involved in explicitly isolating the diverg-
ing part of the first diagram in (5.12). We recall that the leading order renormalization
comes from n propagators and that the upper critical dimension of the model ¢?" is
d, =2n/(n —1). The diagram is thus given by the nth power of the leading term of the
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covariant Green function (F.11). The integrand is proportional to

1 1
= d : (G7)

O-<x7 x/>n(g_1) U(x7x,)n%_n—%e

Our task is to cast the inverse power of the Synge function on the right hand side to
match either g or any integer displacement of the latter. Using again d = d,, — € and the
explicit form of the upper critical dimension we find

d, n n?—n’4+n n

My T TR T T T e (G8)
d, n d n-—1

=5 =y g ©

As anticipated we could identify the leading part of the exponent to be g, which allows us
to use (G.2). This is not a coincidence as it is related to the superficial degree of divergence
of the diagram under consideration; in practice we find a pole because n(%l — 1) ~ %l for
€ ~ 0. We are finally lead to

1 1

O.(I7x/)nd7"—n—%e - O'(ZE, x/)g—"T_le

N Ck
=0 (n—1)el' (d/2)

(G.9)

M(l—n)e(g(d) ({L‘, JZ’) 7

which was used to evaluate the right hand side of (5.12). Similar steps can be followed to
evaluate the other two diagrams of (5.12) which exhibit the pole given by (G.4) because
their leading power is %l + 1.
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