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With the first two detections in late 2015, astrophysics has officially entered into the
new era of gravitational wave observations. Since then, much has been going on in the

field with a lot of work focussing on the observations and implications for astrophysics
and tests of general relativity in the strong regime. However much less is understood

about how gravitational detectors really work at their fundamental level. For decades,

the response to incoming signals has been customarily calculated using the very same
physical principle, which has proved so successful in the first detections. In this paper

we review the physical principle that is behind such a detection at the very fundamental

level, and we try to highlight the peculiar subtleties that make it so hard in practice. We
will then mention how detectors are built starting from this fundamental measurement

element.

Keywords: Gravitational wave; detector; Michelson interferometer; frequency shift; rela-
tive acceleration; Riemann tensor; parallel transport.

PACS numbers: 04.80.Nn; 04.30.-w; 04.20.-q.

1. Introduction

Gravitational wave (GW) detectors have now officially entered into the era of GW

astronomy with the first ever observation of two signals from black hole binaries in

late 2015.1,2 These events alone have already produced stringent tests of general

relativity in the strong regime,3 and constraints on the source distributions and

evolution models for these unknown types of astrophysical sources.4

However, how GW detectors really work in detecting these waves remains a

bit obscure. We are so accustomed to observing the universe through the whole

electromagnetic spectrum, that observing it with GWs becomes now less obvious.

One striking difference is that we will never be able to produce direct images of GW

binaries. Instead, what we can certainly do is to infer their properties by looking

at how the detector responds to the incoming signal. Early work to answer this
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question focussed on resonant bar detectors, and the response was described in terms

of geodesic deviation and Riemann tensor.5,6 However, the approach of using the

metric perturbations took over in the 70s with the first ideas about interferometers,7

and also with spacecraft tracking experiments.8 The main problem with it lies in

the misusage of the metric perturbations to derive physical interpretations that are

often dependent upon the choice of the gauge transformation.9 Evidently this is not

the case of the early attempts with the Riemann tensor, which directly translates

into relative acceleration between test masses, and therefore behaves as a proper

physically observable quantity.

In fact little known is that any modern interferometric detector can, in principle,

be described in terms of the Riemann tensor acting on the fundamental measure-

ment element (see Fig. 1).9–11 This is composed by only three constituents: two

free falling test masses, two accurate clocks, and an accurate spacetime metre stick.

As simplified this could be, it would be already enough, with infinite accuracy, to

respond to a GW by producing relative acceleration between the test masses, and

record this motion.

δa/L ∼ ḧ

Fig. 1. Simple idealised mockup of the detection principle. A single arm gravitational wave detec-

tor – the measurement element – is composed by three key parts: two free falling test masses, two
accurate clocks, and an accurate spacetime metre stick. The fidelity of free fall and the perfectness
of clocks and metres are generally the limits for any gravitational wave detection. The response

of the system can be described in terms of relative acceleration in a fully covariant way – see text
for details – and the observed relative acceleration, δa, is proportional to the second derivative of

the metric perturbation, h.

The concept of relative acceleration is so general that it is a useful quantity to

characterise the physical observable in other experiments too. For instance, this is
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the case for tests of the strong equivalence principle with the Sun-Earth collinear

Lagrangian points12 (see Fig. 2). In effect, relative acceleration is at the heart of

gravitation and general relativity, in a way that it becomes particularly important

in all non-local calculations.

L1

δa/a = η∆Ω

Fig. 2. Not only is the relative acceleration between test masses a convenient quantity to describe

the effect of gravitational waves on detectors, but also the physical observable in other experiments

too, including tests of the strong equivalence principle with the Sun-Earth collinear Lagrangian
points,12 where planets act as test masses and their positions are tracked with radio signals. Note

that the observed relative acceleration is proportional to the Nordtvedt parameter, η, and the
difference between self-energies, ∆Ω.

In this paper we will give a flavour of what a detection really is, from the gener-

ated wave in the source’s reference frame (Sec. 2), to the traditional way of deriving

the detector’s response (Sec 3). We will go through the more recent revisitation10

of the traditional frequency shift calculation (Sec. 4) that clarifies how the detec-

tor responds to GWs, including other effects that act as nuisance for a detection.

Compared to previous work9,11 and more traditional work, this is done in a fully

covariant, gauge and coordinate independent way. The main advantage is that the

frequency shift can be derived directly from first principles in general relativity. We

will then mention how measurement elements are combined in different detectors,

both on ground and in space (Sec. 5).

2. Gravitational wave signals

We briefly review how GWs are produced up to the first parametrised post-

Newtonian (PPN) term. More accurate templates are of course calculated using

higher order corrections and numerical relativity. The interested reader is invited

to take a look at Ref. 13 for a more thorough discussion.

Pictorially, these waves are described as ripples in the spacetime fabric – in

practice they are first order perturbations of an underlying metric, which we assume

flat. Mathematically, gµν = ηµ + hµν +O(h2), where the perturbation evolves with

time. The evolution with time is given by the Einstein equations. To work it out, one

needs to calculate the Riemann tensor up to O(h2) and finally get to the following

wave equation

h̄ σ
µν, σ =

{
16πG
c4 Tµν inside the source

0 outside the source
. (1)
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It is worth noting that while the wave equation is gauge dependent – note that h̄µν is

written in the traceless-transverse (TT) gauge – any equation involving directly the

Riemann tensor, by construction, will automatically cancel out all the additional

gauge-dependent terms appearing at the level of the metric tensor. We will use

this fact later on in this paper to introduce a gauge independent formalism for the

detector response to GWs. Also please note that the physical significance of the TT

gauge is that, under the assumption of a weak wave, the propagation is transverse

(effects on test masses are orthogonal to the direction of propagation) and traceless

(there is no gravitational source term pumping up the wave).

Meanwhile let us take a look at how the signal is generated by a merging binary.

A so-called chirping binary is characterised by three phases:

(1) Inspiral : a slow increase in frequency/amplitude, fully described by analytical

formulae to the lowest PPN order – the two objects approach each other.

(2) Merger : a quick increase in frequency/amplitude in the last few cycles or so, be-

fore the actual merge, which can be described by higher PPN terms or numerical

relativity – the two objects start merging each other.

(3) Ringdown: an exponential decay in frequency/amplitude, where the merged

object is fully described, again, by analytical formulae – the final object loses

gravitational energy and moment of inertia until no further radiation is emitted.

It is important to distinguish between observed quantities and the same eval-

uated at the source’s reference frame, also called rest frame. The relation between

the two is pretty straightforward and it involves the source redshift. Therefore the

observed proper time, frequency, and mass of the binary are given by

dt′ = (1 + z)dt, (2)

f ′ = (1 + z)−1f, (3)

M ′ = (1 + z)M, (4)

where the primed quantities are observed, and the unprimed ones are in the rest

frame. These relations become important when dealing with sources at cosmological

distances, but even for the first ever detected source the correction is just ∼ 10% (as

z ∼ 0.1, assuming a ΛCDM cosmology). The other fact is that any detector measures

M ′, and therefore a direct measurement of M is impossible without assuming or

independently measuring the redshift.

The evolution of the GW signal is determined primarily by the its phase, Φ(t),

which is related to the frequency, f(t), by Φ(t) = 2π
∫
f(t′)dt′. The frequency is

given by solving the dynamical equation of motion of the binary, which can be quite

complex depending on the PPN order or accuracy of the full numerical relativity

calculation. However the differential equation that relates ḟ to f can be very simple

for an inspiral at the lowest PPN term,

df

dt
=

96

5
π

8
3

(
GM

c3

) 5
3

f
11
3 , (5)
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where M = (m1m2)3/5/(m1 + m2)1/5 is the so-called chirp mass that determines

the frequency evolution of the system at the same PPN term.

In the wave’s coordinate system (where the wave propagates along the z axis)

and in the TT gauge, the two metric components, i.e. the GW signal, are

h+(t) = A(t)
1 + cos2 ι

2
cos Φ(t), (6)

h×(t) = A(t) cos ι sin Φ(t), (7)

where ι is the inclination angle: ι = 0 for edge-on sources and therefore circularly

polarised signals; ι = π/2 for face-on sources and therefore linearly polarised signals.

Also A(t) is the signal amplitude that is inversely proportional to the luminosity

distance dL. Inspiral, merge, and ringdown are characterised by different evolutions

for A(t) and f(t). At the lowest PPN order, the same equations hold true for inspiral

and merge (although less accurately for the latter), and thus

A(t) =

{
4

dL(z) (GM(z)
c2 )5/3(πf(t)

c )2/3 inspiral+merge
4π2G
c4

I3f
2(t)

dL(z) ε ringdown
, (8)

where we have denoted M(z) = (1 + z)M ; I3 and ε are, respectively, the moment

of inertia and ellipticity of the oblate merged object.

Given the frequency evolution of the system, this model is already enough to

provide the signal template of a GW source just before detection – we are still

missing how the signal affects the detector’s dynamics.

3. Measurement principle: the traditional approach

The traditional approach when calculating the response of detectors to GWs can

be summarised in two alternative methods:

(1) Light travel. The response is calculated by integrating the null geodesic equation,

ds2 = 0, (9)

of light bouncing off free falling test masses. The effect of GWs is such that the

light travel time is changed with respect to the nominal delay corresponding

to the distance between the test masses. Therefore the observer detects light

phase differences.

(2) Geodesic deviation. The response is calculated by integrating the geodesic de-

viation,

D2δxµ

dτ2
= Rµαβγv

αvβδxγ , (10)

between two neighbouring world lines with 4-velocity vµ and separated by δxµ.

The effect of GWs is such that a relative acceleration is induced in addition to

the Newtonian acceleration. Therefore the observer detects differential forces.
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It is worth noting that the first method is the standard with interferometric detectors

and pulsar timing arrays, whereas the second was traditionally used in the past with

bar detectors.

As an illustrative example, let us consider an equal arm Michelson interferometer

with armlength δx. One can define a coordinate system (see Fig. 3) that is fixed to

the detector itself, with the x axis along one arm, y along to the other arm, and z

orthogonal to the detector’s plane. In the long wavelength limit a, the interferometric

response is described in terms of phase differences

δφ(t) =
4πδx

λlaser
h(t), (11)

where λlaser is the light wavelength, and h is the strain, which is given by a linear

combination of the wave components

h(t) = F+(θ, ϕ)h+(t) + F×(θ, ϕ)h×(t), (12)

and F+ and F× are the antenna response functions, both implicitly dependent on

time if the source’s angular position with respect to the detector, i.e. the angles θ

and ϕ, depends on time too. Explicitly,

F+(θ, ϕ) =
1 + cos2 θ

2
cos 2ϕ, (13)

F×(θ, ϕ) = − cos θ sin 2ϕ. (14)

We can now see that the effect of an incoming GW is to produce a phase difference

at the output of the detector, δφ. In the long wavelength approximation, this phase

difference is just a linear combination of the two metric components in the TT gauge,

which corresponds to a rotation from the wave’s coordinate system to the detector’s

coordinate system. If the position of the source with respect to the detector changes

with time (because the detector itself is moving around), then the coefficients are

time dependent. This time dependence is efficiently used for sky localisation. In fact,

as the detector moves around, a frequency/amplitude modulation of the incoming

wave is induced in the detector output. If the source is itself modulated (e.g. because

the binary is inspiralling), the combination of detector and source modulation allows

a much better sky localisation. Also, we can see that F+ = 0 for ϕ = ±π/4 and

F× = 0 for ϕ = ±π/2 or θ = ±π/2, therefore the detector is blind to either of the

two polarisations, with worse sky localisation. Clearly, sky localisation for a given

detector is a direct function of polarisation through angular position and detected

signal to noise.

Similarly, if one cannot work in the long wavelength approximation, and wants

to allow for the light travel delays to be fully taken into account, the response of

an unequal-arm Michelson interferometer is best described in terms of fractional

aWhen the GW frequency does not change significantly during the light travel and therefore

δx � λ, which is relevant for ground-based, but not for space-based detectors where the light

travel delay must be correctly taken care of.
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w

w

θ ϕ

x

y

z

Fig. 3. Schematic diagram of a Michelson detector and its coordinate system (axes in bold). The

incoming wave is described by the vector w, with colatitude θ and longitude ϕ. The response to
the incoming GW is worked out in this coordinate system – see text.

frequency shifts along individual arms.14 These are linearly combined, with proper

time delays accounting for the round trip of the photon along the arms, to cancel the

laser frequency noise exactly,15 which is nil by construction in an equal-arm inter-

ferometer. This complication becomes strictly necessary for space-based detectors,

whereas the equations introduced above would suffice for ground-based detectors,

but similar arguments hold true for sky localisation vs polarisation sensitivity. We

omit the relevant formulae here for brevity.

One drawback of the whole picture presented so far is that it lacks an explicit

description of the main measurement limitations: (i) geodesics are not real geodesics

– there are non-gravitational forces that perturb the test masses away from their

free fall; (ii) geodesics are never infinitely close to each other; (iii) detector noise

always affects the measurement, e.g. interferometry, thermal noise in bar detectors,

or timing jitter in pulsar timing array; (iv) as test masses are not in free fall, they

must also be subjected to inertial forces as well.

4. Measurement principle: a more recent perspective

As already seen in the previous section, there are two approaches one may take

when working out the detector’s response to GWs. The first relies on the metric

to calculate the phase shift induced by a change of the optical path; instead, the

second is based on the Riemann tensor to derive the relative acceleration induced

by a change of the underlying metric. Of course, they are radically different, but

somehow related one to the other. In this section we will review the equivalence

between the two in a more unified way.

The geodesic deviation approach has been predominantly used during early at-

tempts with resonant bars, until the interferometric approach with the metric per-

turbations took over in the 70s. Because interferometers employ rate of change in

the optical path to quantify the effect of incoming GWs, it does make sense to use

the light travel approach, thus the metric itself. However, using the metric per-

turbation may be very dangerous. As this quantity is gauge dependent, assuming

a gauge in the first place might take to ambiguous gauge-dependent results. Evi-

dently the metric itself is not a proper physical observable of the system. This has
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led to a variety of somewhat coloured descriptions of how a detector responds to a

GW, as cleverly pointed out in Ref. 9, where we defer the interested reader to. All

of these descriptions are obviously wrong, but of course they hide a partial truth

underneath.

Recent attempts to address this problem tried to revisit the traditional calcula-

tion of the light frequency shift with alternative approaches.9,11 Now geodesics are

more physical than ever, with non-gravitational forces acting upon them, and light

rays bouncing on and off tests masses in quasi free fall. Yet again, although these

approaches show very similar results, there is a substantial difference in that one

method solves the problem by using a non-standard time-like congruence between

geodesics, and the other one employs a null congruence between present and past

geodesics. An even more recent paper10 showed that the frequency shift can be di-

rectly related to the Riemann tensor – the only meaningful physical observable – in

a fully covariant and gauge independent way that does not need any formulation of

a congruence at all. Instead, everything can be derived from first principles, such as

the parallel transport of 4-vectors. That seems to be enough to relate the frequency

shift to the Riemann tensor. However, in doing so, other effects pop out, whose

physical interpretation will now become clear.
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Fig. 4. Adapted from Ref. 10. Instantaneous Minkowski diagram for the thought experiment
of two test masses exchanging light rays and measuring the corresponding frequency shift. Null

geodesics connect the emission event “e” to the reception event “r”. These intersect the emitter
and receiver’s geodesics at those specific events in spacetime. 4-velocities, 4-forces, and the light

beam’s 4-momentum are also shown. A variation of the fractional frequency shift between “e” and
“r” is induced by a change in the Riemann tensor, which arises from a parallel transport of vectors
between those events. Other contributions also affect the measurement, including fictitious forces.

Let us go through the thought experiment already presented in Ref. 10 and

also shown in Fig. 4. The key measurement element of a GW detector is based on

two test masses exchanging light rays. This is true for all interferometric detectors,
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both on ground and in space, and also for pulsar timing array (except that the

observable is the pulse timing instead of the frequency shift), but it is not strictly

applicable to bar detectors b. At a given time, a test mass is treated as the emitter

of a single light pulse, and the other one as the receiver of the same pulse at a

later time. Therefore two events, emission “e” and reception “r”, live separately in

the spacetime, and they are casually connected through the light’s null geodesic. In

fact, the emitter’s geodesic, with 4-velocity uµ, intersects the null geodesic at “e”,

and the receiver’s geodesic, with 4-velocity vµ, intersects it at “r”. Also, both test

masses are not in free fall, i.e. they are subjected to non-gravitational forces (per

unit mass) fµ and gµ. If kµ is the light 4-momentum, the receiver will measure the

light frequency ωr = kµ(r)vµ(r), whereas the emitter will measure ωe = kµ(e)uµ(e).

Therefore their difference returns the frequency shift that should be sensitive to

gravitational effects.

The full calculation is described in length in Ref. 10, but here we report on

the main result. If one works in the reference frame of the receiver – as it should

do as measurements are made in this reference frame – and parallel transports all

quantities from “e” to “r”, the first derivative of the frequency shift with respect to

the proper time of the receiver, τr, yields

dδω

dτr
= kµ(r)Rµ +

Dkµ
dτr

[vµ(r)− uµ(e)] + kµ(r) [gµ(r)− fµ(e)] + γfict (Γ) . (15)

Here Rµ is the Riemann tensor, contracted with both 4-velocities and the light’s

4-momentum, integrated over the light path from “e” to “r”. This is the main

result: the first time-derivative of the frequency shift gives an integrated measure

of the Riemann tensor through a non-local integral. Of course, this term recovers

to standard results when we consider the case of two neighbouring geodesics, low

velocities, and the calculation is done in the local Lorentz frame. But what should

also strike our attention is the additional terms:

(1) Doppler term due to the rotation of the line of sight : this is caused by the

apparent motion of the emitter in the reference frame of the receiver.

(2) Differential non-gravitational forces: these are the cause of the non-free-fall

motion of both test masses.

(3) Inertial forces: these depend on all Γs and therefore vanish in the local Lorentz

frame.

This fully covariant and gauge free framework shows what the measurement ele-

ment of GW detectors is sensitive to. Along with GWs obviously entering into the

Riemann tensor, other effects are also picked up – notably, non-gravitational forces

and inertial forces.

It is worth noting that, in order to derive the above result, we have employed

only first principles, with no further approximations. It should now be clear that

bAlthough an alternative formulation might be derived and adapted to this case too.
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the effect of an incoming GW on the measurement element – at the fundamental

level – is to translate a variation of the Riemann tensor into a net displacement

of vectors when parallel transported along the null geodesic connecting emission to

reception, and the observable effect is always a relative acceleration.

5. Detectors as combinations of the fundamental measurement

element

We will now focus our attention on real detectors, and mention how they can be

constructed as clever combinations of the fundamental measurement elements. For

instance, the equal arm Michelson interferometer introduced in Sec. 3 comprises

two measurement elements. The laser light is first split, and then recombined at the

output to make interferometry and, by construction, this configuration suppresses

the laser frequency noise.

The first example is a ground-based detector, like LIGO that detected GW

signals from binary black holes inspirals.1,2 It is a Michelson interferometer that

works in the 10 Hz− 1 kHz band with typical armlength of 3− 4 km. Here Fabry-

Perot resonant cavities improve the laser power such that the shot noise – the

main noise source at mid-high frequency – is reduced by two orders of magnitude,

down to 10−23 Hz−1/2 in strain sensitivity. Other noise sources are: thermal noise,

due to the fact that big mirrors acting as free-falling test masses are suspended

with fused silica; and, above all, seismic noise that limits all measurements below

10 Hz, and is mitigated with high quality factor multi-stage pendulums, which the

mirrors are suspended to. The outputs of more detectors are combined at the level

of measurement likelihoods to further mitigate noise sources, and help discriminate

real signals from spurious signals. The current network of advanced detectors include

the two LIGOs and VIRGO. The future of ground-based detectors lies in the ability

to improve the hardware, and efficiently develop a bigger network of detectors. One

key example is the Einstein Telescope16 where two types of interferometers, making

a total of six, are combined in a triangle shaped underground configuration of size

100 km. The high frequency detectors would use the same technology employed in

the current detectors, whereas the low frequency detectors would use cryogenic, low

power, squeezed light, thus extending the frequency band down to 1 Hz. Combining

multiple detectors, better of different types, ultimately improves sensitivity and sky

localisation, especially at low frequency.

The same principle of combining multiple measurement elements is also true

for the planned space-based detector LISA,17 whose key technologies and instru-

ment noise have been successfully tested with LISA Pathfinder.18,19 In this case

the frequency band is much lower, 0.1 − 100 mHz, with a much bigger armlength,

∼ 106 km. A simple argument for going into space is the following. As M ∼ f−8/5,

and dL ∼ f−2, at lower frequencies the detector becomes more sensitive to bigger

masses and bigger luminosity distances, impossible to see on ground as seismic noise

limits all measurements below 1 Hz. Typical detectable sources would be merging
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supermassive black hole binaries at cosmological distances, galactic binaries (either

monochromatic or chirping), and extreme mass ratio inspirals. The instrumental

noise sources of such a detector c are completely different from ground experiments:

force noise limits all measurements especially at low frequency, mostly coming from

Brownian noise and electrostatic actuation; interferometry and shot noise become

more important at mid-high frequency. The design of LISA is such that three lin-

early dependent unequal arm interferometers, in orbit around the Sun, are combined

in a way that the strain sensitivity would be at around 10−21 Hz−1/2 or better, and

a sky localisation of 1 deg2 or less. All the six individual outputs of the measure-

ment elements are time shifted and linearly combined to derive the three synthetic

interferometers that beat down the laser frequency noise – this makes the LISA

detector.

Much beyond in the future, and yet to be an approved mission, is BBO,20 a

network of GW detectors in space that would combine more LISA-like interferome-

ters, with shorter armlengths. The focus would be on GW cosmology, by measuring

cosmological parameters with less than a percent accuracy. One master detector

would comprise two overlapping LISA-like detectors – this would give better strain

sensitivity, which becomes critical for primordial background detection. Further two

slave detectors in opposition would give a longer baseline, therefore a better angular

resolution necessary for foreground subtraction.

All these examples of detectors, from ground to space, show that the measure-

ment element of GW detectors is always the same – two test masses and a laser

beam – and yet the way it is combined in a detector, or a network of detectors, can

address very different GW science with very different measurement problems.

6. Conclusions

In this paper we have briefly reviewed the essence of GW detection at a very fun-

damental level, emphasising how the measurement element – comprising two test

masses and a laser beam – is sensitive to GWs. This measurement element responds

to fluctuations of the Riemann tensor integrated over the light path from emission

to reception, which is a somewhat different approach compared to traditional cal-

culations. The main advantage is the covariant gauge-free formulation, which eases

the physical interpretation. The physical observable becomes the rate of change in

the frequency shift, which is directly related to relative acceleration. However, this

quantity also picks up other nuisance, e.g. non-gravitational forces that act on the

test masses and disturb their free fall, and inertial forces that appear as observations

are not made in an inertial reference frame. It is worth noting, though, that inertial

forces do not play a significant role in ground-based detectors as the frequencies at

which this affect becomes relevant are much lower than the measurement band. A

cBearing in mind that a foreground of unresolved galactic binaries will be effectively treated as an

additional noise source at low frequency.
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different situation would be for space-based detectors as the effect falls in band –

this should be taken into account and ultimately corrected for in the calculation of

the detector’s response. We have reviewed, far from being exhaustive, how detec-

tors are built as combinations of the fundamental measurement element. We have

mentioned their main differences and peculiarities, how different combinations ad-

dress different science questions, and yet the fundamental measurement principle is

ultimately the same.
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