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The validity of General Relativity, after 100 years, is supported by solid experimental

evidence. However, there is a lot of interest in pushing the limits of precision by other
experiments. Here we focus our attention on the equivalence principle, in particular the

strong form. The results of ground experiments and lunar laser ranging have provided

the best upper limit on the Nordtvedt parameter η that models deviations from the
strong equivalence principle. Its uncertainty is currently σ[η] = 4.4 × 10−4. In the first

part of this paper we will describe the experiment, to measure η, that will be done by
the future mission BepiColombo. The expected precision on η is ≈ 10−5. In the second

part we will consider the ranging between the Earth and a spacecraft orbiting near the
Sun-Earth Lagrangian points to get an independent measurement of η. In this case, we
forecast a constraint similar to that achieved by lunar laser ranging.

Keywords: Relativity; Radioscience; Mercury.

PACS numbers: 04.80.Cc, 95.30.Sf, 95.55.Pe, 96.30.Dz

1. Introduction

The equivalence principle (EP)1 states the equivalence between inertial and gravi-

tational mass. This fact is a mere coincidence in classical physics, but it has some

important consequences, for example:

• the free fall of any object in the same gravity field depends only on their

initial status and not on their composition or structure;
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• it is impossible to detect the difference between a uniform static gravi-

tational field and a uniform acceleration: free-fall and inertial motion are

physically equivalent.

As a consequence, the EP allows the geometrical description of spacetime, which is

at the basis of General Relativity (GR).

The weak form of the EP (WEP) is limited to strong and electroweak inter-

actions. It can be verified by measuring the free fall of test masses with different

chemical compositions. Tests are performed on ground with, for instance, torsion

balances2 or in space with low Earth orbits (e.g. with the MICROSCOPE mission3).

The strong form (SEP) extends the validity of the weak principle to self-graviting

bodies. The EP violation for the body i can be parametrized as follows4,5

mG
i = mI

i (1 + δi + ηΩi), (1)

where mI
i (mG

i ) is the inertial (gravitational) mass, and

Ωi =
Eg
mI
i c

2
= − G

2mI
i c

2

∫∫
dm′

G
i dm

′′G
i

||r′ − r′′|| , (2)

where c is the speed of light, and Eg is the self-gravity energy, which is obtained

by double-integrating over the mass of the body. The WEP involves only the case

Ωi = 0 and corresponds to δi = 0, while the SEP is valid, for each Ωi, when both

δi and η are equal to zero.

With experiments on ground, the typical Ωi can be so small (see Table 1) that

only the WEP can effectively be tested. The only means by which the SEP can be

constrained is evidently in space involving celestial bodies.

Table 1. Self-gravity coefficients Ωi for some celes-
tial bodies and a reference test mass.

Sun −3.52× 10−6

Jupiter −1.21× 10−8

Earth −4.64× 10−10

Moon −1.88× 10−11

test mass (1 kg, size 5 cm) ≈ −8.90× 10−27

Thanks to retroreflectors placed on the facing side of the Moon it is possible to

measure the Earth-Moon distance and detect a possible SEP violation signal. This

experiment was proposed by Nordtvedt.6 In this case, a violation of the SEP will

introduce a signal in the Earth-Moon range, its amplitude being proportional to

ΩEarth − ΩMoon.

Over the last 46 years, the Lunar Laser Ranging (LLR) project has carried

out a long sequence of range measurements, and the precision on the Earth-Moon

relative differential accelerations is currently7 σ[δa/asun] = 1.3 × 10−13, but this

result includes possible violations of both SEP and WEP. Since ground experiments

can test only the weak form of the EP, the parameter η can be measured only by
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using the results of both experiments, ground and LLR. No disproofs of the SEP

have still been found and the error associated to η is currently7 σ[η] = 4.4× 10−4.

The BepiColombo mission is expected to improve this result by about an order

of magnitude8 – a prediction is given in the first part of this paper. Instead, an

alternative ranging experiment towards the Sun-Earth Lagrangian points – recently

proposed in Ref. 9 – could easily reach the LLR’s performance in a very short time

span, which is investigated in the second part of the paper.

Therefore we will describe two experiments for the estimation of η. The first one

in Section 2 is the well-known Relativity experiment of the BepiColombo mission,

while in Section 3 we will study the same measurement performed on range data

between the Earth and a spacecraft (SC) orbiting around a Sun-Earth Lagrangian

point.

2. MORE with BepiColombo

BepiColombo (BC) is a joint ESA/JAXA mission to Mercury with challenging ob-

jectives regarding geophysics, geodesy, and fundamental physics.10 Currently, the

launch is scheduled for the end of 2018, with a nominal duration of one year plus a

possible one-year extension.

The Mercury Orbiter Radioscience Experiment (MORE) is one of the on-board

experiments that focus on gravimetry, rotation and Relativity.4,11,12 The goal is the

measurement of key parameters by means of orbit determination techniques using

the Earth-MPO a radio link observables, i.e. range and range rate. The parameters

for gravitation and rotation experiments are the Mercury gravity field coefficients,

Love numbers, obliquity and libration. Instead the Relativity experiment consists

in the measurement of the Parametrized Post-Newtonian (PPN) parameters, which

account for possible small deviations from GR – η is one of them.

All parameters will be estimated by a global nonlinear least-squares fitting of

all the observed signals (range, range-rate, accelerometer readings, etc.) along with

the computed signals that are calculated by using mathematical models as accurate

as possible. The main characteristics of the Radioscience experiment are summa-

rized in Table 2. For further details see Refs 4, 13. The observed data of gravity

and rotation experiments are primarily range-rate signals, which are poorly corre-

lated with those of the Relativity experiment, i.e. Earth-MPO range only, because

the frequency domains are very different. Since we are interested in the Relativity

experiment, we can neglect the motion of the MPO around Mercury (the orbital

period is approximately 2 hrs) and consider only the Mercury-Earth range.

2.1. Analytical model and sources of uncertainties

We aim at calculating the expected root-mean-square (RMS) error of η after the

whole duration of the BC mission. Since the dare are obviously not available, we

aMercury Planetary Orbiter.
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Table 2. Summary of the main characteristics of the radioscience experiments on-board Bepi-

Colombo.

gravimetry rotation Relativity

parameters - gravity field coeffs - longitude libration - γ, β, α1, α2, η

(up to the 25th deg.) - obliquity - µ0, µ̇0/µ0, J2�
- k2 - initial cond. of

Earth and Mercury

observables range-rate range-rate range

precision 3.0× 10−4 cm/s 3.0× 10−4 cm/s 30 cm @ 300 s
@ 1000 s @ 1000 s

freq. domain & 1.2× 10−4 Hz & 1.2× 10−4 Hz ≈ 10−7 Hz

(MPO mean motion) (MPO mean motion) (planetary mean motions)

need to simulate them. To this end, we are going present a simplified heliocentric

analytical model that yields the perturbations on the Earth-Mercury range due

to η and all the parameters that are expected to correlate with. This is a typical

Fisher/covariance analysis: the RMS of the parameters will be given by the square

root of the diagonal elements of the covariance matrix.

We adopt the notation of Ref. 14: we define rij = rj − ri and rij = ||rij ||,
where ri is the coordinate of the ith-body in an inertial reference frame. Planets

are numbered from 1 (Mercury) to 8 (Neptune), while 0 refers to the Sun. We also

define the gravitational parameters for all bodies in the same way: µi = GmG
i . The

equations of motion for the ith-planet i, in the case η 6= 0, are4,8, 9, 13,15,16

r̈0i = −µ
?

r30i
r0i +

∑
j 6=i 6=0

µj

[
(1 + ηΩi)

rij
r3ij
− (1 + ηΩ0)

r0j
r30j

]
, (3)

where the summation includes all solar system bodies (planets, dwarves planets,

asteroids, etc.), and µ? = µ0 +µi+η(µiΩ0 +µ0Ωi). We can write a similar equation

for body k and afterwards calculate the range ρik = ||r0i − r0k|| where i and k

are Earth and Mercury. Since Ωi � Ω0 for all i, the leading term is the last one,

which is proportional to Ω0. It is an apparent term, essentially a perturbation on the

acceleration of the Sun with respect to the Solar System Barycenter (SSB). Note

that there is a non-zero signal even if Ωi = 0, which means that the experiment

can be done also if the body i is a drag-free test mass, e.g. a SC with an onboard

accelerometer (see Section 3). It is worth mentioning that the signals due to other

PPN parameters, such as β, γ, α1, α2, along with the effect due to ζ (the rate of

change of µ0), J2� (gravitational “flattening” of the Sun) and the initial conditions

of Earth and Mercury (see Ref. 8 for details), must all be calculated and included in

the global fit. Also from Eq. (3), a high correlation among planetary perturbations

(proportional to µjs) and SEP violation is evident.

In order to avoid systematic effects, the µjs must be added to the set of param-

eters to be estimated, and their errors must be taken into account in terms of prior

constraints in the global covariance analysis. Current uncertainties of planetary µjs

range from 2.8 × 10−4 (Mars) to 10.5 km3/s2 (Neptune).17 Regarding asteroids,
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their relative errors can be very large (50% or more).

To summarize, we will calculate the signatures on the Earth-Mercury range due

to all the following effects:

(1) initial conditions of Earth and Mercury;

(2) SEP violation – free parameter: η;

(3) planets/dwarf planets/asteroids – free parameters: µj ;

(4) secular variation of the Sun’s gravitational parameter µ0 – free parameters: δµ0

(bias of the measured µ0 from the true value at the starting epoch), and its rate

of change in time ζ = µ̇0/µ0,

(5) PPN – free parameter: β̄ = β − 1,

(6) Sun’s quadrupole coefficient: free parameter J2�, whereas higher order terms

are negligible.

The PPN parameter γ, which is related to the curvature produced by unit rest

mass, has not been considered here for simplicity. However, this is not reductive

since the best estimate of γ (σ[γ] = 2.0× 10−6) is expected to be given right after

the dedicated superior conjunction experiment (SCE) during the cruise phase of BC.

The value of the Nordtvedt parameter can be derived from the Nordtvedt quation

η = 4β − γ − 3, (4)

which will be used as a prior. We also neglect the preferred frame parameters α1

and α2 since they are poorly correlated with the other parameters of the Relativity

experiment, in particular η. For more details compare the results of experiments A,

B, C and D in Ref. 4. Finally, we assume that the unperturbed orbits of planets

and asteroids are circular with radius R0i, and co-planar. We define q as the vector

of all Np parameters, qmδri,m is the displacement from the circular reference orbit

Ri = R0iu
i
r for the ith-body due to the (linearized) force qmδfi,m relative to the

(small) parameter qm.

The procedure is as follows:

(1) write the heliocentric position of the ith-body as

ri = Ri +

Np∑
n=1

qnδri,n; (5)

(2) for each qm, decompose δri,m and the perturbative force δfi,m into radial, along-

track and out-of-plane components

δri,m = xiu
i
r + yiu

i
t + ziu

i
w,

δfi,m = Rimuir + T imuit +W i
muiw;

(6)

(3) solve the Hill’s equations for i = 1 and i = 3

ẍi − 2niẏi − 3n2ixi = Rim,

ÿi + 2niẋi = T im,

z̈i + n2i żi = W i
m,

(7)
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where ni is the mean motion of the ith-body;

(4) finally calculate the Earth-Mercury range as

ρ13(t,q) = ||r13|| ≈ R13 +
∑
n

qn
δr13,n ·R13

R13
(8)

where δr13,n = δr3,n− δr1,n and the factor 1/R13 can be rewritten in Legendre

polynomials Pn

1

R13
=

1

R03

∞∑
l=0

(
R01

R03

)l
Pl(cos Φ13), (9)

where Φij = (nj − ni) t+ ϕj − ϕi.

Due to visibility windows, range and range-rate data contain several gaps. A gap

occurs approximately every day and lasts about 9.3 h. A low-frequency sampling

(fs = 10−4 Hz) is therefore sufficient for our purposes since the involved signals have

frequencies of the same order of planetary mean motions. We can then calculate the

range at epochs ti and obtain the looked-after Np × Np Fisher matrix, or normal

matrix. Including all prior information, it is given by

Fjk =

N∑
i=1

1

σ2
i

∂ρ13(ti,q0)

∂qj

∂ρ13(ti,q0)

∂qk
+

1

2

∂2P (q)

∂qj∂qk
, (10)

where N is the number of range measurements; σi is the RMS error on each data

pointb; P (q) is a function that contains all prior information (the Nordtvedt equa-

tion Eq. (4) and the uncertainties on all the µms) and is given by

P (q) =
(η − 4β̄)2

σ2
N

+
∑
m

(µm − µPm)2

σ2
µm

; (11)

µPm are the measured values of µm and σµm
are the corresponding errors; the sum-

mation over m is extended to all GMs; σN = 2.0 × 10−6 is the expected RMS

error of γ after the expected performance of the SCE. The inverse of Fjk yields the

covariance matrix, whose diagonal elements give us the expected RMS errors, and

correlations, of all the parameters.

2.2. Results

As well as standard parameters, we include the µjs of all the planets and the 343

more massive asteroids (the total number of parameters was 362). Since some of the

µjs are expected to be improved by GAIA19 and JUICE, we calculate the global

covariance by using the expected RMS errors of µj at the epoch of the mission. The

RMS error of all parameters, including the initial conditions of Mercury and Earth,

are reported in Table 3. Regarding the SEP violation, we found σ[η] = 3.13× 10−5.

bFor the Ka-band we adopted σi = 15
√

300fs cm = 2.6 cm.18
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If we were to compare this result with the “idealistic case” where the µjs have all

zero errors,4,20,21 we would find that the uncertainties degrade the precision of most

of the PPN parameters by about an order of magnitude. However, since the current

RMS error of η, from LLR measurements, is σ[η] = 4.4 × 10−4, we can conclude

that the BC Relativity experiment will improve the current constraint on η by a

factor of 10 at least, having included uncertainties on the planetary masses.

Table 3. Expected formal errors for

the Relativity experiment on-board Bepi-

Colombo.

parameter units RMS error

β - 7.81× 10−6

η - 3.13× 10−5

µ0 [cm3s−2] 5.50× 1013

J2� - 8.03× 10−10

ζ = µ̇0/µ0 [yr−1] 1.78× 10−14

X1 [cm] 2.49× 103

Y1 [cm] 1.18× 104

Z1 [cm] 5.15

Ẋ1 [cm s−1] 2.36× 10−3

Ẏ1 [cm s−1] 1.68× 10−3

Ż1 [cm s−1] 4.72× 10−6

Ẋ3 [cm s−1] 1.77× 10−3

Ẏ3 [cm s−1] 9.41× 10−5

3. An opportunity with the Lagrangian points

When testing for a SEP violation, the advantage of the ranging between two planets

over that between Earth and Moon is twofold: a longer baseline (≈ 1 vs ≈ 3 ×
10−3 AU) and δa/asun ∝ Ω0 instead of Ωearth − Ωmoon. This in turn implies a

much bigger ranging signal amplitude (about three orders of magnitudes better

than the Nordtvedt effect15,22). In fact, even if the time span and the precision of

the data will be worse, a bigger self-energy and a stronger signal will certainly allow

better measurements of η. For example, consider the BC experiment: the expected

measurement precision on the SEP is σ[δa/asun] ≈ 10−11, which will be roughly two

orders of magnitude worse than WEP measurements achieved by LLR and torsion

balances experiments.2 However, since the signal is ∝ Ω0, the parameter η will be

constrained with an accuracy of 10−5–10−6 (see Section 2 and also Ref. 4), which is

of course better than LLR. This is also the case of the Lagrangian points ranging,

with the only difference that a smaller baseline will give us an RMS error that will

be similar in magnitude to LLR.
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�
Sun

ÅEarth

Moon

L1 L2

j-th
planet

�SC

r03

r3p

X

Fig. 1. Spacecraft ranging towards L1 or L2 as a means by which to test the SEP (not in scale).
We calculate the SEP signature as a perturbation on the Earth’s orbit around the the Sun (r03)

as well as on the SC ranging (r3p). We also include perturbations from other planets.

3.1. Detailed calculations

In the Earth’s reference frame, the positions of the collinear Lagrangian points are

the solutions of the following equation

− µ0

|R−X|3 (R−X) + µ3

(
X

|X|3 −
1

R2

)
+ n23(R−X) = 0, (12)

where R is the Eart-Sun distance, and n3 is the mean motion of the Earth. Eq. (12)

has three solutions: X1,2 ≈ ±0.01 AU that correspond to L1 and L2, and X3 ≈ 2

AU that corresponds to L3. We will consider only the case of L1 and L2 as these are

the spots where many missions fly to. Consider a SC, hereafter identified with the

index p, near L1 (or L2). Its mass and self-gravity energy are negligible with respect

to those of the Sun and all planets. The SC’s equation of motion relative to the Sun

can be obtained by Eq. (3) after this substitution: (Ω3, µ3, r03, r3j)→ (0, 0, r0p, rpj).

We subtract the SC’s equation of motion from Eq. (3) to finally derive the relative

motion, r3p, between the SC and Earth, which is given by

r̈3p = −µ0

(
r0p
r30p
− r03
r303

)
− µ3

r3p
r33p

+
∑
j 6=0,3

µj

(
rpj
r3pj
− r3j
r33j

)
+ ηΩ3

∑
j 6=3

µj
rj3
r3j3

, (13)

where r0p = r03 + r3p. It is worth noting that we are in fact solving the equation

of motion for the observed SC ranging, r3p. As it was done for the Earth-Mercury

range in the previous section, we decompose r3p = {δx, δy} in radial and along-track

components (but now only δx can be measured). For simplicity we assume that the

SC is very near to the Lagrangian point, such that the gravity field can be linearized

in this case, and all trajectories are Lissajous orbits. Details of the calculation can

be found in Ref. 9. In Fig. 2 we plot δx (normalised to η = 1) for the two scenarios

of a SC orbiting around either L1 or L2.

In order to compute our prediction for a measurement of the SEP around the

Lagrangian point, we assume we have N equally-spaced observations of the SC’s

range distance, over a total observation of T = 5 yr, sampling interval δt = 1 hc. We

cHereafter we assume an hour integration time for all range measurements.
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0 2 4 6 8 10
time [yr]

−4

−2

0

2

4
δx

[m
]

L1 ranging

L2 ranging

Fig. 2. Range perturbations (normalised to η = 1) for a SC orbiting either L1 or L2.

can then calculate the Fisher matrix from Eq. (10). The free parameters considered

in our analysis are: η, the initial position and velocity of the Earth and the initial

position and velocity of the SC. We distinguish between two possible scenarios. In

the realistic scenario (A) we use a nominal range error typical for two-way ranging in

the X-band, σi = 0.1 m d. Additionally, we assume the following prior uncertainties

on the orbital initial conditions:

(1) 2 m and 3× 10−5 m/s for the Earth’s heliocentric radial position and velocity,

from a great abundance of radio tracking data;24

(2) 145 m for the Earth’s heliocentric along-track position as this is less well con-

strained;24

(3) no assumed prior on both the Earth’s heliocentric along-track velocity as this is

very weakly constrained by current data, and the parameters of the SC’s orbit

relative to Earth.

In the optimistic scenario (B) we use the range error typical of the Ka-band, σi =

0.04 m, as well as a factor 10 improvement in the knowledge of the Earth’s initial

position and velocity, 0.2 m and 3× 10−6 m/s, which is likely to be achieved in the

near future.

3.2. Results

Neglecting errors in planetary masses and ephemerides, we forecast σ[η] = 6.4(2.0)×
10−4 (5 yr integration time) via Earth-L1 ranging in a realistic (optimistic) sce-

nario depending on current (future) range capabilities and knowledge of the Earth’s

dAs obtained from a degradation of a conservative factor 2.5 of the Ka-band range error σi =

0.15
√

300/δt ≈ 0.04 m,20,21,23 owing to the lower frequencies typical of the X-band.
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ephemerides. A combined measurement, L1 + L2, gives instead an improved con-

straint of 4.8(1.7)× 10−4, which would be comparable with those already achieved

by LLR. It is worth noting that the performances could be much improved if data

were integrated over time and over the number of satellites flying around either

of the two Lagrangian points. We point out that some systematics (gravitational

perturbations of other planets or figure effects) are much more in control compared

to other experiments. This SC ranging would be a new and complementary probe

to constrain the strong equivalence principle in space.

3.3. Conclusions

In this work we described two experiments devoted to testing the SEP in space. In

both cases we performed a global covariance analysis based on simulated data.

The first test is the BC Relativity experiment: we calculated the effect of the

uncertainties on the masses of the Solar System’s bodies on the estimation of PPN

parameters. We forecast a degradation for the RMSs of all parameters, including η

for the strong equivalence principle, of about an order of magnitude with respect

to the nominal case where uncertainties are not taken into account. Nonetheless

this result, in terms of η, represents an improvement of a factor 10 over the current

precision achieved by LLR.

In the second part of the paper we calculated the signal due to SEP violation on

the ranging between a ground station and a SC orbiting near an Earth-Sun collinear

Lagrangian point. With a covariance analysis based on a 5 years mission, we forecast

an RMS error for η that would be around the same level of current measurements by

LLR and ground experiments. We conclude that this recently proposed experiment

would serve as a direct test of the SEP that is both independent from other exper-

iments, and at least comparable in terms of performances achieved in a relatively

short time span.

Acknowledgments

FDM acknowledges the advice and support of the Celestial Mechanics group of

Pisa. GC acknowledges support from Hertford College, Harding Fund, the Beecroft

Institute for Particle Astrophysics and Cosmology, and Oxford Martin School. The

results of the research presented in the first part of this work have been performed

within the scope of Contract No. ASI/ 2007/I/082/06/0 with the Italian Space

Agency.

References

1. C. W. Misner, K. S. Thorne, J. A. Wheeler, Gravitation, San Francisco: W. H. Freeman,
ISBN 978-0-7167-0344-0 (1973).

2. E. G. Adelberger, J. H. Gundlach, B. R. Heckel, S. Hoedl, and S. Schlamminger, Prog.
Part. Nucl. Phys. 62, 102 (2009).



November 12, 2018 18:9 WSPC/INSTRUCTION FILE
FDM˙GC˙proceedingsLecce2016

SPACE TESTS OF THE STRONG EQUIVALENCE PRINCIPLE 11
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