
 

 

 
 

 

Edinburgh Research Explorer 
 
 

 
 

 
 

 
 

 

 
 

 
 

 
 

 
 

 
 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Multivariate Multiscale Dispersion Entropy of Biomedical Times
Series

Citation for published version:
Azami, H, Fernandez, A & Escudero, J 2019, 'Multivariate Multiscale Dispersion Entropy of Biomedical
Times Series', Entropy, vol. 21, no. 9, 913. https://doi.org/10.3390/e21090913

Digital Object Identifier (DOI):
10.3390/e21090913

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
Entropy

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 23. Oct. 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Explorer

https://core.ac.uk/display/228379701?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.3390/e21090913
https://www.research.ed.ac.uk/portal/en/publications/multivariate-multiscale-dispersion-entropy-of-biomedical-times-series(91e82b00-a6ad-4bb1-a7ff-bfbf7198174a).html


Article

Multivariate Multiscale Dispersion Entropy of
Biomedical Times Series

Hamed Azami1,2,∗, Alberto Fernández1, and Javier Escudero3

1 School of Engineering, Institute for Digital Communications, University of Edinburgh, Edinburgh, King’s
Buildings, EH9 3FB, United Kingdom. (emails: hamed.azami@ed.ac.uk, javier.escudero@ed.ac.uk).

2 Department of Neurology and Massachusetts General Hospital, Harvard Medical School, Charlestown, MA
02129, USA.

3 Departamento de Psiquiatría y Psicología Médica, Universidad Complutense de Madrid, Madrid, Spain. He
is also with Laboratorio de Neurociencia Cognitiva y Computacional, Centro de Tecnología Biomédica,
Universidad Politecnica de Madrid and Universidad Complutense de Madrid, Madrid, Spain and with the
Insitituto de Investigación Sanitaria San Carlos (IdSSC).

* Correspondence: hazami@mgh.harvard.edu

Academic Editor: name
Version September 10, 2019 submitted to Journal Not Specified

Abstract: Due to the non-linearity of numerous physiological recordings, non-linear analysis1

of multi-channel signals has been extensively used in biomedical engineering and neuroscience.2

Multivariate multiscale sample entropy (MSE - mvMSE) is a popular non-linear metric to quantify the3

irregularity of multi-channel time series. However, mvMSE has two main drawbacks: 1) the entropy4

values obtained by the original algorithm of mvMSE are either undefined or unreliable for short5

signals (300 sample points); and 2) the computation of mvMSE for signals with a large number of6

channels requires the storage of a huge number of elements. To deal with these problems and improve7

the stability of mvMSE, we introduce multivariate multiscale dispersion entropy (MDE - mvMDE),8

as an extension of our recently developed MDE, to quantify the complexity of multivariate time9

series. We assess mvMDE, in comparison with the state-of-the-art and most widespread multivariate10

approaches, namely mvMSE and multivariate multiscale fuzzy entropy (mvMFE), on multi-channel11

noise signals, bivariate autoregressive processes, and three biomedical datasets. The results show that12

mvMDE takes into account dependencies in patterns across both the time and spatial domains. The13

mvMDE, mvMSE, and mvMFE methods are consistent in that they lead to similar conclusions about14

the underlying physiological conditions. However, the proposed mvMDE discriminates various15

physiological states of the biomedical recordings better than mvMSE and mvMFE. In addition, for16

both the short and long time series, the mvMDE-based results are noticeably more stable than the17

mvMSE- and mvMFE-based ones. For short multivariate time series, mvMDE, unlike mvMSE, does18

not result in undefined values. Furthermore, mvMDE is faster than mvMFE and mvMSE and also19

needs to store a considerably smaller number of elements. Due to its ability to detect different kinds20

of dynamics of multivariate signals, mvMDE has great potential to analyse various signals.21

Keywords: Complexity; multivariate multiscale dispersion entropy; multivariate time series;22

electroencephalogram; magnetoencephalogram.23

1. Introduction24

Multivariate techniques are needed to analyse data consisting of more than one time series [1–3].25

The majority of physiological and pathophysiological activities, and even many non-physiological26

signals, include interactions between different kinds of single processes. Thus, we expect that27

parameters or measures with different origins are considered in a multivariate way [1,4]. Furthermore,28
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recent developments in sensor technology enabling routine recordings of multi-channel signals have29

led to an increasing popularity of this kind of analysis on physiological data [1–3,5,6].30

Advances on information theory and non-linear dynamical approaches have recently allowed the31

study of different kinds of multivariate time series [3,7–9]. Due to the intrinsic non-linearity of diverse32

physiological and non-physiological processes, non-linear analysis of multivariate time series has33

been broadly used in biomedical signal processing with the aim of studying the relationship between34

simultaneously recorded signals [3,7,8].35

Multivariate multiscale entropy (mvMSE) as a powerful non-linear measure is based on a36

combination of multivariate sample entropy (SampEn - mvSE) and the coarse-graining process [8].37

mvSE characterizes the likelihood that similar multi-channel embedded patterns, which consider both38

the time and spatial domains, within a time series will remain similar when the pattern length is39

increased [3]. mvMSE, by taking into account both the spatial and time domains, shows the complexity40

of multi-channel signals [8]. Complexity reflects the degree of structural richness of time series [8,10]41

and is different with that of irregularity or uncertainty defined from classical entropy methods such as42

SampEn [11], permutation entropy (PerEn) [12], and dispersion entropy (DisEn) [13]. That is to say,43

neither completely regular or certain nor completely irregular (uncorrelated random) time series are44

truly complex, since none of them is structurally rich at a global level [8,10,14–16].45

The multivariate multiscale entropy-based analysis is interpreted based on: 1) the multivariate46

time series X is more complex than the multivariate time series Y, if for the most temporal scales, the47

mvSE measures for X are larger than those for Y; 2) a monotonic fall in the multivariate entropy values48

along the temporal scale factors shows that the signal only includes useful information at the smallest49

scale factors; and 3) a multivariate signal illustrating long-range correlations and complex creating50

dynamics is characterized by either a constant mvSE or this demonstrates a monotonic rise in mvSE51

with the temporal scale factor [8].52

Although the mvMSE is a powerful and widely-used method, when applied to short signals, the53

results may be undefined or unreliable [17]. To alleviate this shortcoming, multivariate multiscale54

fuzzy entropy (mvMFE) based on multivariate fuzzy entropy (mvFE) and the coarse-graining process55

was suggested [18]. To decrease the running time of the mvMFE proposed in [18], we have recently56

proposed an mvMFE with a new fuzzy membership function [17]. Nevertheless, the mvMFE is still57

slow for real-time applications and may lead to unreliable results for short signals, as shown later.58

To overcome the problem of unreliable values for mvMFE and mvMSE, multivariate multiscale59

PerEn (mvMPE) was proposed [19]. To have more information regarding the amplitude of60

multi-channel signals, multivariate weighted multiscale PerEn (mvWMPE) has recently been61

developed [20]. However, both the mvMPE and mvWMPE do not take into account the cross-statistical62

properties between multiple input channels and do not follow the concept of complexity for some63

signals such as white Gaussian noise (WGN) and 1/ f noise [8,14,17].64

mvMSE and mvMFE have growing appeal and broad use. They have been successfully65

used in a number of biomedical and mechanical engineering applications, such as, to characterise66

electroencephalogram (EEG) signals in Alzheimer’s disease (AD) [21,22], to quantitatively distinguish67

different horizontal oil–water flow patterns [23], to analyze mechanical vibration noise to stimulate68

the patient’s feet while wearing the shoes [24], to analyze the multivariate cardiovascular time series69

[25], to characterize focal and non-focal EEG time series [17], to analyze the complexity of interbeat70

interval and interbreath signals [8], and to analyze the postural fluctuations in fallers and non-fallers71

older adults [26].72

However, mvMSE and mvMFE have the following shortcomings: 1) mvMSE and mvMFE values73

may be unreliable and unstable for short signals (300 sample points); 2) they are not quick enough for74

real-time applications; and 3) computation of mvMSE and mvMFE of a signal with a large number75

of channels needs to have large memory space, as shown later. To address these drawbacks and76

due to the advantages of multiscale dispersion entropy (DispEn - MDE) over the state-over-the-art77

multiscale entropy techniques in terms of distinguishing different kinds of dynamics of univariate78
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synthetic and real time series and computation time [27–29], we propose four algorithms to extend our79

recently developed MDE to its multivariate forms, termed multivariate MDE (mvMDE). To evaluate80

the mvMDE methods, we use both synthetic and real multivariate datasets. Our results indicate that81

mvMDE is noticeably faster than the existing methods, leads to more stable results, better discriminates82

different kinds of biomedical time series, does not lead to undefined values for short multivariate time83

series, and needs to store a considerably smaller number of elements in comparison with mvMSE and84

mvMFE.85

2. Multivariate multiscale dispersion entropy (mvMDE)86

In this study, we propose and explore three different alternative implementations of mvMDE87

until we arrive at a fourth and preferred one. All the mvMDE implementations include two main88

steps: 1) coarse-graining process for multivariate time series; and 2) multivariate DispEn (mvDE), as an89

extension of our recently developed DisEn [13]. It is worth noting that for all the mvMDE algorithms,90

the mapping based on the normal cumulative distribution function (NCDF) used in the calculation of91

mvDE for the first temporal scale factor is maintained fixed across all scales. In fact, in the mvMDE, µ92

and σ of the NCDF are respectively set at the average and standard deviation (SD) of the original time93

series and they remain constant for all temporal scale factors. This fact is similar to r in the mvMSE and94

mvMFE, setting at a certain percentage (usually 15%) of the SD of the original signal and remaining95

constant for all scales [8,17].96

2.1. Coarse-graining process for multivariate signals97

Assume we have a p-channel time series U = {uk,b}b=1,2,... ,L
k=1,2,... ,p of length L. In the mvMDE

algorithms, for each channel, the original signal is first divided into non-overlapping segments
of length τ, named scale factor. Next, for each channel, the average of each segment is calculated to
derive the coarse-grained signals as follows [8,17]:

xk,i
(τ) =

1
τ

iτ

∑
b=(i−1)τ+1

uk,b, 1 ≤ i ≤
⌊

L
τ

⌋
= N , 1 ≤ k ≤ p (1)

where N denotes the length of the coarse-grained signal. The second step of mvMDE is calculating the98

mvDE of each coarse-grained signal.99

2.2. Background information for the mvDE100

We build four diverse alternative implementations of mvDE (mvDEI to III and mvDE) until we101

arrive at a preferred (or optimal) one, i.e., mvDE. However, we here present all the simpler alternatives102

(mvDEI to mvDEIII), since they can still be useful in some settings and allow for clearer comparisons103

with other current approaches.104

2.2.1. mvDEI105

The mvDEI of the multi-channel coarse-grained time series X = {xk,i}i=1,2,... ,N
k=1,2,... ,p , which is based on106

the mvMPE algorithm [19], is calculated as follows:107

a) First, X = {xk,i}i=1,2,... ,N
k=1,2,... ,p are mapped to c classes with integer indices from 1 to c. To this aim,108

there are a number of linear and nonlinear mapping approaches [30]. The simple linear mapping109

technique may lead to the problem of assigning the majority of xk,i to limited classes when maximum110

or minimum values are noticeably larger or smaller than the mean/median value of the image [30].111

The weak permanence of DispEn with linear mapping for the characterization of syntactic and real112

data was illustrated in [13].113

A large number of natural processes illustrate a progression from small beginnings that accelerates114

and approaches a climax over time (e.g., a sigmoid function) [31,32]. When there is not detailed115

information, a sigmoid function is often used [30,32–34]. The choice of sigmoid function in the context116
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of DispEn was discussed in [30]. We here use NCDF as a well-known sigmoid function like in [13].117

Note that using NCDF for each channel also deals with the shortcoming of the amplitude values of118

each of series xk (k = 1, 2, . . . , p) may be dominated by the components of vectors coming from the119

time series with the largest amplitudes. The NCDF maps X into Y = {yk,i}i=1,2,... ,N
k=1,2,... ,p from 0 to 1 as120

follows:121

yk,i =
1

σk
√

2π

xk,i∫
−∞

e
−(t−µk)

2

2σ2
k dt (2)

where σk and µk are the SD and mean of time series xk, respectively. Then, we use a linear algorithm122

to assign each yk,i to an integer from 1 to c. To do so, for each member of the mapped signal, we use123

zc
k,i = round(c · yk,i + 0.5), where zc

k,i denotes the ith member of the classified signal in the kth channel124

and rounding involves either increasing or decreasing a number to the next digit. Note that, although125

this part is linear, the whole mapping approach is non-linear because of the use of NCDF.126

b) Time series zm,c
k,j are made with embedding dimension m and time delay d according to zm,c

k,j =127

{zc
k,j, zc

k,j+d,+ · · ·+ zc
k,j+(m−1)d}, j = 1, 2, . . . , N− (m− 1)d [13][11][12]. Each time series zm,c

k,j is mapped128

to a dispersion pattern πv0v1 ...vm−1 , where zc
k,j = v0 ,zc

k,j+d = v1 ,. . . , zc
k,j+(m−1)d = vm−1. The number of129

possible dispersion patterns that can be assigned to each time series zm,c
k,j is equal to cm, since the signal130

has m members and each member can be one of the integers from 1 to c [13].131

c) For each channel 1 ≤ k ≤ p and for each of cm potential dispersion patterns πv0 ...vm−1 , relative
frequency is obtained as follows:

p(πv0 ...vm−1) =
#{j
∣∣∣j ≤ N − (m− 1)d, zm,c

k,j has type πv0 ...vm−1 }
(N − (m− 1)d)p

(3)

where # means cardinality. In fact, p(πv0 ...vm−1) shows the number of dispersion patterns of πv0 ...vm−1132

that is assigned to zm,c
k,j , divided by the total number of embedded signals with embedding dimension133

m multiplied by the number of channels.134

d) Finally, based on the Shannon’s definition of entropy, the mvDEI is calculated as follows:

mvDEI(X, m, c, d) = −
cm

∑
π=1

p(πv0 ...vm−1) · ln
(

p(πv0 ...vm−1)
)

(4)

In case all possible dispersion patterns have equal probability value, the highest value of mvDEI is135

obtained, which has a value of ln(cm). In contrast, if there is only one p(πv0 ...vm−1) different from zero,136

which demonstrates a completely regular/certain signal, the smallest value of mvDEI is obtained. In137

the algorithm of mvDEI, we compare Np dispersion patterns of a p-channel signal with cm potential138

patterns. Thus, at least cm + Np elements are stored.139

To work with reliable statistics to calculate MDE, it was recommended cm <
⌊

L
τmax

⌋
[27]. Since140

mvDEI counts the dispersion patterns for every channel of a multivariate time series, it is suggested141

cm <
⌊

pL
τmax

⌋
. mvDEI extracts the dispersion patterns from each of channels regardless of their142

cross-channel information. Thus, mvDEI works appropriately when the components of a multivariate143

signal are statistically independent. However, the mvDEI algorithm, like mvPE [19], does not consider144

the spatial domain of time series. To overcome this problem, we propose mvDEII based on the Taken’s145

theorem [17,35].146

2.2.2. mvDEII147

The algorithm of mvDEII is as follows:148

a) First, like mvDEI, X = {xk,i}i=1,2,... ,N
k=1,2,... ,p are mapped to Z = {zk,i}i=1,2,... ,N

k=1,2,... ,p based on the NCDF.149
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b) To take into account both the spatial and time domains, multi-channel embedded vectors
are generated according to the multivariate embedding theory [35]. The multivariate embedded
reconstruction of Z is defined as:

Zm(j) = [z1,j, z1,j+d1 , . . . , z1,j+(m1−1)d1
,

z2,j, z2,j+d2 , . . . , z2,j+(m2−1)d2
, . . . ,

zp,j, zp,j+dp , . . . , zp,j+(mp−1)dp ]

(5)

where m = [m1, m2, . . . , mp] and d = [d1, d2, . . . , dp] denote the embedding dimension and the time150

lag vectors, respectively. Note that the length of Zm(j) is ∑
p
k=1 mk. For simplicity, we assume dk = d151

and mk = m, that is, all the embedding dimension values and all the delay values are equal.152

c) Each series Zm(j) is mapped to a dispersion pattern πv0v1 ...vmp−1 , where zc
1,j = v0, zc

1,j+d = v1,. . . ,153

zp,j+(m−1)d = vmp−1. The number of possible dispersion patterns that can be assigned to each time154

series Zm(j) is equal to cmp, since the signal has mp members and each member can be one of the155

integers from 1 to c.156

d) For each of cmp potential dispersion patterns πv0 ...vmp−1 , relative frequency is obtained based on
the DisEn algorithm [13] as follows:

p(πv0 ...vmp−1) =
#{j
∣∣∣j ≤ N − (m− 1)d, Zm(j) has type πv0 ...vmp−1 }

N − (m− 1)d
(6)

e) Finally, based on the Shannon’s definition of entropy, the mvDEII is calculated as follows:

mvDEI I(X, m, c, d) = −
cmp

∑
π=1

p(πv0 ...vmp−1) · ln
(

p(πv0 ...vmp−1)
)

(7)

In the algorithm of mvDEII, at least cmp + Np elements are stored. Thus, when p is large, the157

algorithm needs huge space of memory to store elements. To work with reliable statistics to calculate158

mvMDEII, it is recommended cmp <
⌊

L
τmax

⌋
. Thus, although mvDEII deals with both the spatial and159

time domains, the length of a signal and its number of channels should be very large and small,160

respectively, to reliably calculate mvDEII values. To alleviate the problem, we propose mvDEIII.161

2.2.3. mvDEIII162

The algorithm of mvDEIII is as follows:163

a) First, like the mvDEI and mvDEII approaches, X = {xk,i}i=1,2,... ,N
k=1,2,... ,p are mapped to Z =164

{zk,i}i=1,2,... ,N
k=1,2,... ,p .165

b) Multivariate embedded vectors Zk,m(j) with length m + p − 1 are generated according to the166

Taken’s embedding theorem [35] with p embedding dimension vectors mk = [1, 1, . . . , mk, . . . , 1, 1]167

(k = 1, . . . , p), where mk denotes the kth element of m. For simplicity, we assume mk = m and dk = d.168

c) Each series Zk,m(j) is mapped to a dispersion pattern πv0v1 ...vm+p−2 . The number of possible169

dispersion patterns that can be assigned to each time series Zk,m(j) is equal to cm+p−1, since the signal170

has m + p− 1 members and each member can be one of the integers from 1 to c [13]. Since we count171

the number of patterns for each of p different mk leading to a considerable increase in the number of172

dispersion patterns, compared with mvDEII, we have more reliable results for a signal with a small173

number of samplthan those fore points, as shown later.174

d) For each channel 1 ≤ k ≤ p and for each of cm+p−1 potential dispersion patterns πv0 ...vm+p−2 ,
relative frequency is obtained as follows:

p(πv0 ...vm+p−2) =
#{j
∣∣∣j ≤ N − (m− 1)d, Zk,m(j) has type πv0 ...vm+p−2 }

(N − (m− 1)d)p
(8)
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e) Finally, based on the Shannon’s definition of entropy, the mvDEIII is calculated as follows:

mvDEI I I(X, m, c, d) = −
cm+p−1

∑
π=1

p(πv0 ...vm+p−2) · ln
(

p(πv0 ...vm+p−2)
)

(9)

mvDEIII assumes embedding dimension 1 for all signals except one, which might limit the potential175

to explore the dynamics. Moreover, in the algorithm of mvDEIII, at least cm+p−1 + Np elements are176

stored. Although this number is noticeably smaller than that for mvDEII, the algorithm still needs177

to have large memory space for a signal with a large number of channels. To work with reliable178

statistics to calculate mvMDEIII, it is recommended cm+p−1 <
⌊

pL
τmax

⌋
. Therefore, albeit mvDEIII takes179

into account both the spatial and time domains and needs to smaller number of sample points in180

comparison with mvDEII, there is a need to have a large enough number of samples and small number181

of channels. To alleviate these deficiencies, we propose mvDE.182

2.3. Multivariate dispersion entropy (mvDE)183

The mvDE algorithm is as follows:184

a) First, like mvDEI to III, the multivariate signal X = {xk,i}i=1,2,... ,N
k=1,2,... ,p is mapped to c classes with185

integer indices from 1 to c.186

b) Like mvDEII, to consider both the spatial and time domains, multivariate embedded vectors187

Zm(j), 1 ≤ j ≤ N − (m− 1)d are created based on the Taken’s embedding theorem [35]. For simplicity,188

we assume dk = d and mk = m.189

c) For every Zm(j), all combinations of the ∑
p
k=1 mk elements in Zm(j) taken m at a time, termed190

φq(j) (q = 1, ...(mp
m )), are created. The number of the combinations is equal to (mp

m ). Therefore, for all191

channels, we have (N − (m− 1)d)(mp
m ) dispersion patterns.192

d) For each 1 ≤ q ≤ (mp
m ) and for each of cm potential dispersion patterns πv0 ...vm−1 , relative frequency

is obtained as follows:

p(πv0 ...vm−1) =
#{j
∣∣j ≤ N − (m− 1)d, φq(j) has type πv0 ...vm−1 }

(N − (m− 1)d)(mp
m )

(10)

e) Finally, based on the Shannon’s definition of entropy, the mvDE is calculated as follows:

mvDE(X, m, c, d) = −
cm

∑
π=1

p(πv0 ...vm−1) · ln
(

p(πv0 ...vm−1)
)

(11)

In fact, mvDE explores all combinations of patterns of length m within an mp-dimensional embedding193

vector. In the mvDE algorithm, at least cm + Np elements are stored. This number is noticeably smaller194

than those for mvDEII to III, leading to more stable results for signals with a short length and a large195

number of samples. As the number of patterns obtained by the mvMDE method is (N− (m− 1)d)(mp
m ),196

it is suggested cm <
⌊

L(mp
m )

τmax

⌋
to work with reliable statistics. It is worth mentioning that if the order of197

channels in a multi-channel time series changes, although the assignment to each dispersion pattern198

obtained by the mvMDE-based methods may change, the entropy value will stay the same.199

2.4. Parameters of the mvMDE, mvMSE, and mvMFE methods200

In addition to the maximum scale factor τmax described before, there are three other parameters201

for the mvMDE methods, including the embedding dimension vector m, number of classes c, and202

time delay vector d. Although some information with regard to the frequency of signals may be203

ignored for dk > 1, it is better to set dk > 1 for oversampled time series. However, like previous204

studies about multivariate entropy methods [2,8], we set dk = 1 for simplicity. Nevertheless, when the205

sampling frequency is considerably larger than the highest frequency component of a time series, the206

first minimum or zero crossing of the autocorrelation function or mutual information can be utilized207
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Table 1. Ability to deal with spatial domain and characterization of short signals (300 sample points),
typical number of elements to be stored, and typical number of samples needed for each of the mvSE,
mvFE, and mvDE algorithms for a p-channel signal with length N sample points.

Methods Spatial domain Short signals Typical number of elements stored Typical number of samples
mvSE [3] yes undefined (Np

2 ) + Np(pm + 1) 10m < N
mvFE [17] yes unreliable (Np

2 ) + Np(pm + 1) 10m < N
mvPE [19] and mvWPE [20] no reliable m! + Np m! < N

mvDEI no reliable cm + Np cm

p < N

mvDEII yes unreliable cmp + Np cmp < N
mvDEIII yes unreliable cm+p−1 + Np cm+p−1

p < N

mvDE yes reliable cm + Np cm

(mp
m )

< N

for the selection of an appropriate time delay [36]. We need 1 < c to keep away the trivial case of208

having only one dispersion pattern. For simplicity, we use c = 5 and mk = 2 for all signals used in this209

study, although the range 2 < c < 9 leads to similar findings. For more information about c, mk, and210

dk, please refer to [13,30].211

In this study, dk, mk, and r for the mvMSE and mvMFE were respectively set as 1, 2, and 0.15212

of the SD of the original time series following recommendations in [8,17]. The maximum scale213

factor for mvMSE and mvMFE also follows [8,17]. In the algorithm of mvSE and mvFE, at least214

(Np
2 ) + Np(pm + 1) elements are stored (the mvSE code available at http://www.commsp.ee.ic.ac.215

uk/~mandic/research/Complexity_Stuff.htm). Matlab codes of mvMFE and mvMSE are available at216

http://dx.doi.org/10.7488/ds/1432. Overall, the characteristics and limitations of the mvSE, mvFE,217

and mvDE algorithms for a p-channel signal with length N are summarized in Table I.218

3. Evaluation signals219

In this section, the descriptions of correlated and uncorrelated noise signals, bivariate autoregressive220

(BAR) process, and real time series used in this study are given.221

3.1. Synthetic signals222

The irregularity of multivariate 1/ f noise is lower than multivariate WGN, whereas the complexity223

of the former is higher than the latter [8,14,17]. Thus, 1/ f noise and WGN signals have been commonly224

used to assess the multivariate multiscale entropy techniques [8,17,37]. For more information about225

the algorithms used for multivariate 1/ f noise and WGN, please refer to [8,17].226

To understand the behaviour of the mvMDE methods on uncorrelated WGN and 1/ f noise, we first227

generated a trivariate time series, where originally all three data channels were realization of mutually228

independent 1/ f noise. Then, we gradually decreased the number of data channels representing 1/ f229

noise (from 3 to 0) and at the same time, increased the number of variates representing independent230

WGN (from 0 to 3) [37]. The number of channels was always three.231

To create correlated bivariate noise time series, we first generated a bivariate uncorrelated random232

time series H. Afterwards, H was multiplied with the standard deviation (hereafter, sigma) and then,233

the value of the mean (hereafter, mu) was added. Next, H was multiplied by the upper triangular234

matrix L obtained from the Cholesky decomposition of a defined correlation matrix R (which is235

positive and symmetric) to set the correlation. Here, we set R =

[
1 0.95

0.95 1

]
according to [8,17]. An236

in-depth study on the effect of correlated and uncorrelated 1/ f noise and WGN on multiscale entropy237

approaches can be found in [8,10].238

Based on the fact that the larger the order of an autoregressive process, the more complex the AR239

process [8], we evaluate the mvMDE, mvMSE, and mvMFE methods on a BAR(α) process with the240

maximum lag α describing the evolution of a set of two variables as a linear function of their past241

values according to:242

http://www.commsp.ee.ic.ac.uk/~mandic/research/Complexity_Stuff.htm
http://www.commsp.ee.ic.ac.uk/~mandic/research/Complexity_Stuff.htm
http://www.commsp.ee.ic.ac.uk/~mandic/research/Complexity_Stuff.htm
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yn = en +
α

∑
γ=1

yn−γAγ (12)

where yn = {yn(1), yn(2)} is the nth sample of a bidimensional time series, Aγ denotes the 2× 2 matrix243

of parameters corresponding to lag order γ, and en is the 2× 1 vector of error terms assumed to be244

WGN[38].245

3.2. Real biomedical datasets246

1) Dataset of Stride Interval Fluctuations: To investigate the ability of the proposed mvMDE methods to247

reveal the long-range correlations and dynamics of multivariate signals, the stride interval recordings248

are used [2,39]. The time series were recorded from ten young, healthy men. Mean age was 21.7 years,249

changing from 18 to 29 years. Height and weight were 1.77 ± 0.08 meters (mean ± SD) and 71.8 ±250

10.7 kg (mean ± SD), respectively. All ten participants provided informed written consent walking for251

1 hour at slow, 1 hour at normal, and 1 hour at fast paces and also walking a metronome set to each252

subject’s mean stride interval. Three walking paces were considered as different variables from the253

same system. In this way, we expect to be able to discriminate between the metronomically-paced and254

self-spaced walking. For further information, please refer to [39].255

2) Dataset of Focal and Non-focal Brain Activity: The ability of the mvMDE methods, in comparison256

with mvMFE and mvMSE, to differentiate focal from non-focal recordings is evaluated using a257

publicly-available EEG dataset [40]. The dataset includes 5 patients and, for each patient, there258

are 750 focal and 750 non-focal bivariate signals. The length of each recording was 20 s with sampling259

frequency of 512 Hz (10240 sample points). Further information can be found in [40]. Before computing260

the aforementioned methods, all recordings were digitally filtered employing an FIR band-pass filter261

with cut-off frequencies at 0.5 Hz and 40 Hz.262

3) Surface MEG Recordings in Alzheimer’s Disease: We analysed resting state MEG time series recorded263

with a 148-channel whole-head magnetometer. All 62 participants agreed for the research, which was264

approved by the local ethics committee. To screen the cognitive status, a mini-mental state examination265

(MMSE) was done. There were 36 AD patients (age = 74.06± 6.95 years, all data given as mean266

± SD, and MMSE score = 18.06± 3.36) and 26 controls (age = 71.77± 6.38 years, and MMSE score267

= 28.88 ± 1.18). The difference in age between two groups was not significant (p-value = 0.1911,268

Student’s t-test) [41]. The distribution of MEG sensors is shown in Fig. 2 in [41]. For each participant,269

five minutes of MEG resting state activity were recorded at a sampling frequency of 169.5 Hz. The270

signals were divided into 10 s segments (1695 samples) and visually inspected using an automated271

thresholding procedure to discard epochs noticeably contaminated with artifacts. All recordings were272

digitally band-pass filtered with a Hamming window FIR filter of order 200 and cut-off frequencies at273

1.5 Hz and 40 Hz. For more information, please see [41].274

4. Results and discussions275

4.1. Synthetic signals276

4.1.1. Uncorrelated white Gaussian and 1/ f noises277

We first apply the proposed and existing methods to 40 independent realizations of uncorrelated278

trivariate WGN and 1/ f noise, described in Section 3. The number of sample points for each of279

the 1/ f noise and WGN signals were 15000. mvMSE and mvMFE are based on conditional entropy280

[2,8,17]. On the other hand, mvMDE is based on the Shannon’s entropy definition applied to dispersion281

patterns. This means that the methods work on slightly different principles. However, the comparison282

of mvMDE with mvMSE and mvMFE is meaningful because the latter two are the most common283

multivariate entropy algorithms and MDE has been shown to have similar behaviour to MSE when284
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(a) mvMDEI
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(c) mvMDEIII
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(d) mvMDE
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(e) mvMSE
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Figure 1. Mean value and SD of the results using (a) mvMDEI, (b) mvMDEII, (c) mvMDEIII, (d) mvMDE, (e)
mvMSE, and (f) mvMFE computed from 40 different uncorrelated trivariate WGN and 1/ f noise time series with
length 15000 sample points.

analysing real and synthetic signals [27]. Thus, we compare the mvMDE methods with mvMSE and285

mvMFE. The average and SD of the results for mvMDEI, mvMDEII, mvMDEIII, mvMDE, mvMSE, and286

mvMFE are depicted in Fig. 1(a) to 1(f), respectively. Using all the existing and proposed methods,287

the entropy values of trivariate WGN signals are higher than those of the other trivariate time series288

at low scale factors. However, the entropy values for the coarse-grained trivariate 1/ f noise signals289

stay almost constant or decrease slowly along the temporal scale factor, while the entropy values for290

the coarse-grained WGN signal monotonically decreases with the increase of scale factors. When291

the length of WGN signals, obtained by the coarse-graining process, decreases (i.e., the scale factor292

increases), the mean value of inside each signal converges to a constant value and the SD becomes293

smaller. Therefore, no new structures are revealed at higher temporal scales. This demonstrates a294

multivariate WGN time series has information only in small temporal scale factors. In contrast, for295

trivariate 1/ f noise signals, the mean value of the fluctuations inside each signal does not converge to296

a constant value.297

For all the methods, the higher the number of variates representing 1/ f noise, the higher complexity298

the trivariate signal, in agreement with the fact that multivariate 1/ f noise is structurally more complex299

than multivariate WGN [8,14,17]. Here, for multivariate 1/ f noise and WGN, τmax was 20 for mvMDE,300

according to Section II.301

To compare the results obtained by the mvMDE, mvMSE, and mvMFE methods, we used the302

coefficient of variation (CV). CV, as a measure of relative variability, is defined as the SD divided by303

the mean of a time series. We use such a metric as the SDs of time series may increase or decrease304

proportionally to the mean. We investigate the results obtained by uncorrelated noise signals at scale305

factor 10, as a trade-off between short and long scale factors. As can be seen in Table II, the smallest306

CV values for uncorrelated trivariate 1/ f noise, an uncorrelated combination of bivariate 1/ f noise307

and univariate WGN, an uncorrelated combination of bivariate WGN and univariate 1/ f noise, and308

trivariate WGN are achieved by mvMDE, mvMDEII, mvMDEII, and mvMDEI, respectively. Overall,309

the smallest CV values for trivariate 1/ f noise and WGN profiles are reached by the mvMDE methods,310

showing the superiority of the mvMDE methods over mvMSE and mvMFE in terms of stability of311

results.312
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Table 2. CV values of the proposed and existing multivariate multiscale entropy-based analyses at scale factor 10
for the uncorrelated trivariate 1/ f noise and WGN.

Time series mvMDEI mvMDEII mvMDEIII mvMDE mvMSE mvMFE
All three channels contain 1/ f noise 0.0028 0.0025 0.0037 0.0022 0.0405 0.0355

Two channels contain 1/ f noise and one contains WGN 0.0042 0.0032 0.0036 0.0044 0.0283 0.0274
One channel contains 1/ f noise and two contain WGN 0.0066 0.0052 0.0058 0.0061 0.0305 0.0292

All three channels contain WGN 0.0072 0.0080 0.0092 0.0101 0.0232 0.0211
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(c) mvMDEIII
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(d) mvMDE
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(e) mvMSE
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Figure 2. Mean value and SD of the results obtained by (a) mvMDEI, (b) mvMDEII, (c) mvMDEIII, (d) mvMDE, (e)
mvMSE, and (f) mvMFE computed from 40 different uncorrelated trivariate WGN and 1/ f noise time series with
length 300 sample points.

To assess the ability of the mvMDE methods to characterize short signals in comparison with mvMFE313

and mvMSE, we use trivariate 1/ f noise and WGN with length of 300 sample points. The results314

for the mvMDE, mvMSE, and mvMFE approaches at temporal scales 1 to 20 are depicted in Fig. 2(a)315

to 2(f), respectively. The results show that only mvMDEI is able to distinguish these four different316

kinds of noise signals at scale factor 1. For the higher temporal scale factors, mvMDEI and mvMDE317

distinguish these time series, showing a limitation of mvMDE for the discrimination of white from318

1/ f noise at lower scale factors and also the importance of considering higher temporal scales for the319

mvMDE technique. As can be seen in Fig. 2(a) and 2(d), the mvMDEI and mvMDE methods better320

discriminate different dynamics of the noise signals. However, the mvMSE values are undefined at321

higher scale factors. It is worth mentioning that we compared mvMDE with the original algorithms322

of mvMSE and mvMFE. However, more recent studies on entropy estimation of short physiological323

signals provided methods to deal with this issue [17,42].324

Although the mvMFE- and mvMDEII-based values are defined at all scale factors, they cannot325

distinguish the dynamics of different noise signals. The profiles obtained by mvMDEIII are more326

distinguishable than mvMDEII, as mentioned that mvMDEIII needs a smaller number of sample327

points. Nevertheless, the profiles obtained by mvMDEIII have overlaps at several scale factors. Overall,328

the results show the superiority of mvMDEI and mvMDE over mvMDEII, mvMDEIII, mvMSE, and329

mvMFE for short uncorrelated signals.330

4.1.2. Computational Time331
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Table 3. Computational time of the mvMSE, mvMFE, and mvMDE algorithms with τmax = 10.

Number of channels and samples mvMSE mvMFE mvMDEI mvMDEII mvMDEIII mvMDE
2 channels and 1,000 samples 0.051 s 0.066 s 0.014 s 0.023 s 0.026 s 0.020 s
2 channels and 3,000 samples 0.237 s 0.296 s 0.035 s 0.057 s 0.068 s 0.052 s
2 channels and 10,000 samples 1.821 s 2.016 s 0.111 s 0.190 s 0.223 s 0.181 s
5 channels and 1,000 samples 0.209 s 0.223 s 0.028 s 43.096 s 0.490 s 0.050 s
5 channels and 3,000 samples 1.129 s 1.204 s 0.080 s 82.246 s 1.137 s 0.137 s
5 channels and 10,000 samples 9.432 s 9.801 s 0.260 s 218.553 s 3.343 s 0.491 s
8 channels and 1,000 samples 0.489 s 0.501 s 0.042 s out of memory error 65.560 s 0.086 s
8 channels and 3,000 samples 2.973 s 2.906 s 0.124 s out of memory error 150.122 s 0.243 s
8 channels and 10,000 samples 27.993 s 25.951 s 0.398 s out of memory error 363.752 s 0.824 s

To evaluate the computational time of mvMSE, mvMFE, mvMDEI to III, and mvMDE, we use332

uncorrelated multivariate WGN time series with different lengths, changing from 100 to 10,000 sample333

points, and different number of channels, changing from 2 to 8. The results are depicted in Table III.334

The simulations have been carried out using a PC with Intel (R) Core (TM) i7-7820X CPU, 3.6 GHz335

and 16-GB RAM by MATLAB R2018b. The results show that the computation times for mvMSE and336

mvMFE are close. The slowest algorithm is mvMDEII, while the fastest ones are mvMDEI and mvMDE,337

in that order. For an 8-channel signal with 10,000 samples, using mvMDEII, the array exceeded the338

memory available. Overall, in terms of computation time and memory space, mvMDE outperforms339

the other methods that take into account both the time and spatial domains. We used the mvMSE code340

provoided in [8] and the mvMDE, mvMSE, and mvMFE Matlab codes have not been optimized.341

4.1.3. Correlated white Gaussian and 1/ f noises342

Univariate multiscale entropy approaches only consider every data channel separately and fail to take343

into account the cross-channel information of multivariate time series [8]. Uncorrelated multi-channel344

WGN has less structural complexity and more irregularity compared with multi-channel 1/ f noise. To345

assess the ability of the existing and proposed multivariate entropy methods to reveal the dynamics346

across the channels, we created 40 independent realizations of different combinations of bivariate 1/ f347

noise and WGN time series with length 20,000 (according to [8,17]), making the channels correlated.348

Fig. 3(a) to 3(d) respectively show the results obtained using the mvMDEI, mvMDEII, mvMDEIII, and349

mvMDE to model both the within- and cross-channel properties in multivariate signals.350

mvMDEI cannot discriminate the correlated from uncorrelated WGN or 1/ f noise. This fact is351

revealed in Fig. 3 (a). Therefore, mvMDEI should only be used when the components of a multi-channel352

time series are statistically independent. Multivariate multiscale entropy-based methods at scale factor353

1 show the irregularity of multi-channel signals [8]. The mvMDEII, mvMDEIII, and mvMDE values354

at scale 1 show that the uncorrelated WGN is the most irregular and unpredictable time series in355

agreement with [10], while the most irregular signals using mvMFE and mvMSE are the correlated356

WGN [8,17], in contrast with the fact that correlated multi-channel WGN signals are more predictable357

and regular than uncorrelated WGN ones [10,27]. Although mvMDE was able to distinguish all358

four different kinds of noises at the small scale factors, there are some overlaps between the results359

for the correlated and uncorrelated bivariate WGN time series at the high scale factors showing the360

importance both low and high temporal scale factors in mvMDE.361

The correlated bivariate 1/ f noise is the most complex signal using the mvMDEII, mvMDEIII, and362

mvMDE. The second most complex signal is the uncorrelated bivariate 1/ f noise, as can be seen in Fig.363

3. The decreases of the uncorrelated bivariate WGN profiles using mvMDEII, mvMDEIII, and mvMDE364

are the largest, evidencing the fact that the uncorrelated WGN is the least complex time series. These365

facts are also in agreement with the previous studies [8,14,17]. Therefore, as desired, the mvMDEII,366

mvMDEIII, and mvMDE deal with both the cross- and within-channel correlations.367



Version September 10, 2019 submitted to Journal Not Specified 12 of 20

0 10 20 30 40 50

Scale Factor

0.5

1

1.5

2

2.5

3

M
u

lt
iv

a
ri
a

te
 E

n
tr

o
p

y
 M

e
a

s
u

re

Uncorrelated Bivariate 1/f Noise

Uncorrelated Bivariate WGN

Correlated Bivariate 1/f Noise

Correlated Bivariate WGN

(a) mvMDEI

0 10 20 30 40 50

Scale Factor

0

1

2

3

4

5

6

M
u

lt
iv

a
ri
a

te
 E

n
tr

o
p

y
 M

e
a

s
u

re
(b) mvMDEII
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(c) mvMDEIII
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(d) mvMDE

Figure 3. Mean value and SD of the results obtained by (a) mvMDEI, (b) mvMDEII, (c) mvMDEIII, and (d) mvMDE
computed from 40 different correlated and uncorrelated bivariate WGN and 1/ f noise time series with length
20,000 sample points.

4.1.4. Bivariate AR processes368

The ability of the mvMDE methods to characterize multivariate AR processes is further evaluated369

using combinations of BAR(1), BAR(3), and BAR(5) with Aγ1 =

[
0.05 0.05
0.05 0.05

]
, Aγ2 =

[
0.10 0.10
0.10 0.10

]
,370

and Aγ3 =

[
0.15 0.15
0.15 0.15

]
. The results obtained by the mvMDEI, mvMDEII, mvMDEIII, and mvMDE371

methods are shown in Fig. 4. As expected, when the lag order increases, the complexity of the372

corresponding time series using the mvMDE approaches increases, in agreement with the fact that a373

larger lag order denotes a more complex time series [8]. As the elements of Aγ1 are smaller than those374

of Aγ2 and Aγ3 , the behaviour of the profiles obtained by the mvMDE methods are more similar to the375

results for WGN (see Fig. 1). In fact, the smaller the elements of Aγ, the less complex the BAR, leading376

to lower entropy values at higher scale factors.377

In order to investigate the dependence of the mvMDE methods on the sensitivity to changes in the378

signals, we generated BAR(3) with length of 10000 sample points and sampling frequency of 150 Hz379

that Aγ linearly changes from

[
0.17 0

0 0.17

]
to

[
0.17 0.17
0.17 0.17

]
. In fact, the elements of the diagonal of380

A are constant and those of anti-diagonal linearly increase from 0 to 0.17, leading to more complex381

series. We moved a bivariate window - termed temporal window - with length 2000 samples and382

20% overlap along this BAR(3) signal. The entropy of each bivariate temproal window is caculated.383

The results, depicted in Fig. 5 show that when the time window is occupied at the beginning of384

the BAR(3) (A =

[
0.17 0

0 0.17

]
), the mvMDEI, mvMDEII, mvMDEIII, and mvMDE values at higher385

scale factors are the smallest, showing the least complexity of BAR(3) in lower temporal windows,386

while their corresponding entropy values in the end of BAR(3) process (A =

[
0.17 0.17
0.17 0.17

]
) are the387

largest. It is worth noting that as described before, mvMDEII needs a larger number of sample points388

to appropriately characterize the dynamics of signals. This fact can be observed in Fig. 5, showing389

mvMDEII is the least able to distinguish such changes.390

4.2. Real biomedical datasets391

Discrimination of aged and diseased individuals’ from control or healthy subjects’ time series is392

a long-lasting challenge in the physiological complexity literature [8,10,17]. To this end, we use the393

mvMDE methods, in comparison with mvMFE as an improved version of mvMSE [17], to detect394

different types of dynamical variability of multivariate recordings of three physiological datasets. Of395

note is that we do not use the mvMDEI for biomedical signals, because it does not take into account396

both the spatial and time domains at the same time.397
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Figure 4. Mean and SD values of the results using mvMDEI, mvMDEII, mvMDEIII, and mvMDE computed from
40 different BAR(1), BAR(3), and BAR(5) time series with Aγ1 (first row), Aγ2 (second row), and Aγ3 (third row).
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Figure 6. Mean value and SD of the results using (a) mvMDEIII, (b) mvMDE, and (c) mvMFE for
self-paced vs. metronomically-paced stride interval fluctuations.

Table 4. CV values of the entropy results at scale factor 4 using mvMDEIII, mvMDE, and mvMFE for self-paced
walk (SPW) vs. metronomically-paced walk (MPW).

Stride interval fluctuations mvMFE mvMDEIII mvMDE
Self-paced walk 0.040 0.005 0.002

Metronomically-paced walk 0.116 0.025 0.019

1) Dataset of Stride Interval Fluctuations: For the self-paced versus metronomically-paced stride interval398

fluctuations, the results obtained by the mvMDEIII, mvMDE, and mvMFE, respectively depicted in Fig.399

6(a), (b), and (c), show that the self-paced unconstrained walk’s fluctuations have more complexity400

and greater long-range correlations than the metronomically-paced walk’s series, in agreement with401

those reportred in [2]. We did not use mvMDEII, as the signals do not follow the typical number of402

samples required for mvMDEII. To compare the results, the CV values for both the metronomically-403

and self-paced walk (MPW and SPW) at scale factor 4, as a trade-off between the long and short scales,404

are shown in Table IV. The CV values for the mvMDEIII- and mvMDE-based profiles are smaller than405

those for mvMFE, showing the superiority of the proposed methods over mvMFE in terms of the406

stability of results. The smallest CV values are achieved by the mvMDE.407

2) Dataset of Focal and Non-focal Brain Activity: For the focal and non-focal EEG recordings, the results408

obtained by mvMDEII, mvMDEIII, mvMDE, and mvMFE, respectively depicted in Fig. 7(a), (b), (c),409

and (d), show that the focal time series are less complex than the non-focal ones, in agreement with410

previous studies [40][43]. The CV values for the focal- and non-focal-based results at scale 6 are shown411

in Table V. All the mvMDE-based CV values are smaller than those using mvMFE, showing more412

stability of the results obtained by the proposed methods. Moreover, the CV values for mvMDE are413

smaller than those for mvMDEIII, and the latter ones are smaller than those for mvMDEII, suggesting414

that the mvMDE leads to more stable profiles.415

3) Surface MEG Recordings in Alzheimer’s Disease: To assess the ability of mvMDE, in comparison with416

mvMFE, we applied the methods to the 148-channel MEG signals to discriminate AD patients from417
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Figure 7. Mean value and SD of the results using (a) mvMDEII, (b) mvMDEIII, (c) mvMDE, and (d)
mvMFE for focal vs. non-focal time series.
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Table 5. CV values of the entropy results at scale factor 6 using mvMDEII, mvMDEIII, mvMDE, mvMSE,
and mvMFE for focal vs. non-focal EEG recordings.

Signals mvMSE mvMFE mvMDEII mvMDEIII mvMDE
focal EEGs 0.019 0.019 0.006 0.003 0.002

Non-focal EEGs 0.021 0.015 0.008 0.003 0.002
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Figure 8. Mean value and SD of the results obtained by mvMDE computed from 36 AD patients versus
26 elderly controls for all the 148 channels. Red and blue respectively indicate AD patients and controls.
The scales with p-values smaller than 0.001 are shown with *.

controls. Because mvMFE needs to store a huge number of elements for a signal with a large number418

of channels, mvMFE was not able to simultaneously analyse all 148 time series. However, the results419

using mvMDE are depicted in Fig. 8. It represents an advantage of mvMDE over mvMFE for signals420

with a large number of channels. To compare the mvMFE and mvMDE, we applied the methods to421

five main scalp regions, namely, anterior (17 channels), right (34 channels) and left lateral (34 channels),422

central (29 channels), and posterior (34 channels) areas, leading to the smaller number of channels to423

noticeably decrease the number of elements stored by the use of the mvMFE algorithm.424

The average and SD of mvMDE and mvMFE values for five regions are respectively shown in Fig.425

9(a) and 9(b). As can be seen in Fig. 8 and Fig. 9, the average mvMDE and mvMFE values for AD426

patients are smaller than those for controls at lower scale factors (short-time scale factors), while at427

higher scales, the AD subjects’ recordings have larger entropy values (long-time scale factors) for both428

the mvMFE and mvMDE, in agreement with [21,44,45]. Because the larger the number of channels, the429

smaller the mvMSE and similarly mvMFE values [21], the entropy values for anterior region are larger430

than those for the other four regions. It is worth noting that we only use mvMDE, as the signals do not431

follow the typical number of samples required for mvMDEII and mvMDEIII.432

The Mann-Whitney U-test was used to assess the differences between the mvMDE and mvMFE433

profiles at each temporal scale for AD patients versus controls, because the mvMDE and mvMFE434

values at each scale factor did not follow a normal distribution. The temporal scales with p-values435

smaller than 0.001 are shown with * in Fig. 8 and Fig. 9. The p-values show that the mvMDE, compared436

with the mvMFE, significantly discriminated the controls from subjects with AD at a larger number of437

scale factors. Moreover, the smallest p-value was achieved by the mvMDE, evidencing the superiority438

of mvMDE over mvMFE.439

The Hedges’ g effect size [46] was also used to quantify the differences between the entropy values440

for the AD patients’ vs. healthy controls’ MEGs for the five main brain regions [47]. The Hedges’ g test441

shows the difference between the means of two groups, divided by the weighted average of standard442
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Figure 9. Mean value and SD of the results obtained by (a) mvMDE and (b) mvMFE computed from 36
AD patients versus 26 elderly age-matched controls over five scalp regions. Red and blue indicate AD
patients and controls, respectively. The scale factors with p-values smaller than 0.001 are shown with *.
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Table 6. Differences between results for AD patients’ vs. healthy controls’ MEGs obtained by mvMFE and mvMDE
for five main brain regions based on the Hedges’ g effect size.

Region - method Scale 1 Scale 2 Scale 3 Scale 4 Scale 5 Scale 6 Scale 7 Scale 8 Scale 9 Scale 10
Anterior - mvMFE 0.36 0.73 0.57 0.04 0.33 0.53 0.63 0.70 0.72 0.73
Central - mvMFE 0.68 0.67 0.49 0.10 0.23 0.48 0.65 0.76 0.79 0.83

Left lateral - mvMFE 0.53 0.64 0.34 0.18 0.60 0.83 0.92 0.98 0.97 0.98
Posterior - mvMFE 0.46 0.72 0.58 0.16 0.30 0.57 0.73 0.78 0.82 0.85

Right lateral - mvMFE 0.30 0.50 0.22 0.18 0.53 0.71 0.84 0.92 0.97 0.95
Anterior - mvMDE 0.18 0.37 0.36 0.03 0.49 0.80 0.95 1.02 1.06 1.04
Central - mvMDE 0.29 0.45 0.29 0.48 0.78 0.88 0.97 1.01 1.03 1.04

Left lateral - mvMDE 0.37 0.40 0.24 0.24 0.77 1.07 1.17 1.20 1.19 1.19
Posterior - mvMDE 0.05 0.19 0.18 0.24 0.67 0.90 1.015 1.05 1.06 1.06

Right lateral - mvMDE 0.15 0.19 0.00 0.51 0.90 1.05 1.14 1.18 1.20 1.16

deviations for these two groups. The differences, illustrated in Table 6, show that the highest effect size443

is obtained by mvMDE, showing the advantage of this method over mvMFE.444

On the whole, the profiles for the real datasets evidence the advantage of mvMDEII, mvMDEIII, and445

mvMDE over mvMFE to discriminate different types of dynamics of multi-channel signals as well446

as the superiority of mvMDE over mvMFE in terms of ability to discriminate various dynamics of447

time series, computational time, and memory cost. As mentioned before, mvMPE does not consider448

the spatial domain. We have also refined the mvMPE [19] on the basis of mvMDEII, mvMDEIII, and449

mvMDE. These approaches have the following advantages over the first version of mvMPE [19]: 1)450

they take into account both the spatial and time domains; 2) their results were more stable than the451

mvMPE-based ones; and 3) better distinguished different dynamics of multivariate signals. However,452

since the mvMDE methods are considerably faster, result in more stable profiles, and lead to larger453

differences between physiological conditions of recordings, for simplicity, we did not report the454

mvMPE-based results.455

In this article, we proposed four implementations of the mvDE methods combined with the most456

commonly used coarse-graining process [3,8,17]. The key contribution of this study was introducing457

the mvDE methods. The alternative coarse-graining processes based on multivariate empirical mode458

decomposition [2,28,48–50], and FIR filters [28,51], though out of the scope of this paper, can be459

employed instead of the classical implementation of coarse-graining process used herein.460

Our future study will aim at proposing the refined composite mvMDE (RCmvMDE) approaches461

according to [17]. Moreover, we will explore the mvMDE and RCmvMDE on other physiological462

and non-physiological time series. The similarity of two multi-channel signals based on mvMDE and463

cross-entropy [11] can also be developed as future work. An important step in making mvMDE a464

useful and stable metric is the mapping of the data to discrete set of integers via the normal cumulative465

distribution. Other mapping functions are available in [30]. The mvMDE method and its univariate466

form can also be generalized based on Renyi entropy [52].467

5. Conclusions468

To quantify the complexity of multivariate time series, we built four diverse alternative469

implementations of mvMDE as further developments of our recently introduced MDE [27]. These470

insights help towards a comprehensive understanding of four strategies to extend a univariate-based471

entropy method to its multivariate versions and therefore, provide invaluable information for future472

studies on multivariate time series. Although mvMDE was the best algorithm in terms of ability to473

discriminate dynamics of multivariate signals, computational time, and memory cost, the simpler474

alternatives (mvDEI to mvDEIII) may still be useful in some settings.475

We assessed their performance on the correlated and uncorrelated multivariate noise signals, the476

bivariate AR time series, and three physiological datasets. The results showed the similar behavior477

of mvMSE-, mvMFE-, and mvMDE-based profiles. However, mvMDE had the following advantages478

over the existing methods: 1) it was faster than the existing methods; 2) mvMDE, in comparison479

with mvMSE and mvMFE, resulted in more stable profiles; 3) mvMDE better discriminated different480
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kinds of biomedical signals; 4) for short multivariate time series (300 sample points), mvMDE did not481

result in undefined values; and 5) mvMDE, compared with mvMSE and mvMFE, needed to store a482

considerably smaller number of elements.483

Overall, we expect the mvMDE approach to play a key role in the assessment of complexity in484

multivariate time series.485
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