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Calmness of partially perturbed linear systems
with an application to the central path�

M.J. Cánovasy J. A. J. Hallz M.A. Lópezx J. Parray

Abstract

In this paper we develop point-based formulas for the calmness
modulus of the feasible set mapping in the context of linear inequal-
ity systems with a �xed abstract constraint and (partially) perturbed
linear constraints. The case of totally perturbed linear systems was
previously analyzed in [9, Section 5]. We point out that the presence
of such an abstract constraint yields the current paper to appeal to a
notable di¤erent methodology with respect to previous works on the
calmness modulus in linear programming. The interest of this model
comes from the fact that partially perturbed systems naturally appear
in many applications. As an illustration, the paper includes an exam-
ple related to the classical central path construction. In this example
we consider a certain feasible set mapping whose calmness modulus
provides a measure of the convergence of the central path. Finally, we
underline the fact that the expression for the calmness modulus ob-
tained in this paper is (conceptually) implementable as far as it only
involves the nominal data.
Key words. Calmness, local error bounds, linear programming, fea-
sible set mapping, interior point methods.
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1 Introduction

In this paper we consider a parametrized linear inequality system written in
the form �

x 2 C; a0tx � bt; t 2 I
	
; (1)

where x 2 Rn is the vector of decision variables; ; 6= C � Rn is a closed
convex set , I is a nonempty �nite set and

(a; b) := (at; bt)t2I 2 (R
n � R)I

is the parameter to be perturbed around a nominal value
�
a; b
�
:=
�
at; bt

�
t2I :

The case of ordinary linear systems, when C = Rn; is included in the current
setting (���is understood as the nonstrict inclusion). We also assume that
at 6= 0n for all t 2 I: Along the paper, vectors in Rn are considered as
column vectors and the prime represents the transpose (so, a0tx is the usual
scalar product of at and x).

In this context, we consider the feasible set mapping, F : (Rn � R)I �
Rn; given by

F (a; b) :=
�
x 2 C j a0tx � bt; t 2 I

	
; (2)

for all (a; b) 2 (Rn � R)I : Observe that C remains �xed in our analysis, i.e.
it is not subject to perturbations; recall that �x 2 C�is called an abstract
constraint.

It is well-known that any closed convex set may be written as the solution
set of a linear semi-in�nite inequality system (see [15] for a comprehensive
study of such systems), so F can be seen as the feasible set mapping as-
sociated with a partially perturbed linear system. Formally, we can write
(alternatively to (2))

F (a; b) :=
�
x 2 Rn j c0sx � ds; s 2 U ; a0tx � bt; t 2 I

	
;

for some (possibly in�nite) index set U , disjoint with I; which is used for
describing our abstract constraint as an �unperturbed�system of linear in-
equalities.

The main goal of this work is to compute the calmness modulus of F at
the nominal element

��
a; b
�
; x
�
2 gphF (the graph of F ; i.e.,x 2 F

�
a; b
�
):

As an immediate antecedent, the reader is addressed to [9, Section 5] where a
formula for the calmness modulus of the F in the setting of totally perturbed
linear systems (with U = ;) is provided. To this respect, the current work
generalizes to systems (1) the results of [9, Section 5].
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At this moment, we underline the fact that the inclusion of such an
abstract constraint in the current paper entails notable di¤erences with re-
spect to the referred previous works; in fact, the technical tools from convex
analysis (speci�cally, from subdi¤erential calculus) used here and, more gen-
erally, the methodology followed in this paper are completely di¤erent from
previous works, where more direct algebraic arguments of �nite Euclidean
spaces are applied.

Roughly speaking, the calmness modulus of F at (
�
a; b
�
; x) provides

the ratio of local enlargement of the feasible sets (around the nominal
x 2 F

�
a; b
�
) with respect to perturbations of the data, and the calm-

ness property prevents abrupt local enlargements (with a nonlinear rate)
with respect to the parameter perturbations. See Subsection 2.2 for the
formal de�nitions. The calmness property plays a key role in many issues
of mathematical programming like optimality conditions, error bounds or
stability of solutions, among others; the reader is addressed to the mono-
graphs [11, 24, 33, 38] for a comprehensive study of this and other variational
properties. In the last decades there has been a growing interest in criteria
for calmness and related concepts, as local error bounds (see, for instance,
[4, 12, 18, 19, 22, 25, 27, 31]), or Ho¤man constants (see, e.g., [26, 28, 29]).
See [20, 21], in the context of single-valued maps, for the study of this prop-
erty in connection with necessary optimality conditions.

As an illustration, in Section 4, we study a certain feasible set mapping
appearing in connection with the well-known central path construction; see,
e.g., the classical works of [30] and [32], and references therein (see also
[6, Chapter 9] for some details and additional references). Speci�cally, we
consider a linear programming problem in standard form, (P ) ; and for each
� > 0 the associated logarithmic barrier problem, (P�) ;

(P ) min c0x
s.t. Ax = b;

x � 0n;

(P�) min c0x� �
Pn
i=1 log xi

s.t. Ax = b;
x > 0n;

(3)

where x 2 Rn, c 2 Rn, 0n is the null vector in Rn, A is a m� n real matrix
and b 2 Rm: Under the assumptions introduced in Section 4, (P�) has a
unique optimal solution, x (�) ; and it can be characterized as a part of the
solution of the non-linear system which arises from the Karush-Kuhn-Tucker
(KKT, for short) optimality conditions. If we denote by (x (�) ; y (�) ; z (�))
the complete solution of this KKT system (including dual variables; see Sec-
tion 4 for details), the path f(x (�) ; y (�) ; z (�)) ; � > 0g is usually referred
to as the central path associated with LP problem (P ) ; see the complete
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description in [32, Section 2]: The example of Section 4 provides explicit
expressions for constants � � 0 satisfying

d ((x (�) ; y (�) ; z (�)) ;�)) � �� for � > 0 su¢ ciently small, (4)

where d ((x (�) ; y (�) ; z (�)) ;�)) is the distance from (x (�) ; y (�) ; z (�)) to
the subset � � Rn� (Rm � Rn) of all pairs of primal-dual optimal solutions
of (P ). At this moment, we advance that these constants � are given in
terms of the calmness modulus of a certain feasible set mapping which is
de�ned in (25) and of the existing limit point�

x0; y0; z0
�
:= lim

�!0
(x (�) ; y (�) ; z (�)) ;

see [3] and [10] for the analysis of this limit point (indeed, for di¤erent
choices of penalty and barrier functions apart from the logarithmic barrier
considered in (3)).

Let us comment here that the formula for � only depends on c; A,
b, and on

�
x0; y0; z0

�
; and so, it is conceptually implementable since it

involves only �xed elements: See Section 5 (of conclusions) for details about
the relationship between (4) and classical results as [17, Theorem 2.1 and
Corollary 2.2] on the rate of convergence of x (�) and z (�) to x0 and z0 in
terms of their derivatives.

Now we describe the outline of the paper. Section 2 provides the nota-
tion and preliminary results. Section 3 contains the main results (and the
most technical di¢ culties) in this paper; they are focussed on the calmness
modulus of the feasible mapping F ; introduced in (2), at the nominal el-
ement

��
a; b
�
; x
�
2 gphF . This section is divided into three subsections.

Subsection 3.1 is concerned with the calmness modulus of the mapping de-
noted by Fa; corresponding to the case where perturbations fall exclusively
on the right-hand side terms bt, t 2 I; while the left-hand side members of
the constraints remain �xed at a (this motivates the notation Fa): Subsec-
tion 3.2 deals with the case when C is a polyhedral set, expressed explicitly
by means of linear inequalities. Subsection 3.3 is addressed to calculate the
calmness modulus of F for two-sided perturbed inequality systems. Section
4 applies the results derived in the previous section for obtaining an explicit
expression for constant � in (4). We �nish the paper with a brief section of
conclusions.
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2 Notation and preliminaries

This section gathers some necessary notation and results used in the paper.
For the sake of clarity, the section is divided into two subsections containing,
respectively, some basic tools of convex analysis in Rn and some preliminaries
about calmness and local error bounds. Throughout the paper, the space of
variables, Rn; is equipped with an arbitrary norm, k�k ; whose corresponding
dual norm is given by kuk� = maxkxk�1 ju0xj and d� refers to the distance
associated with the dual norm k�k� :

2.1 Basic tools of convex analysis

Given X � Rn; we denote by convX; coneX and X� the convex hull, the
conical convex hull and the (negative) dual cone of X, respectively. Remem-
ber that

X� = fz 2 Rn j x0z � 0 for all x 2 Xg:

It is assumed that coneX always contains the zero-vector, in particular
cone(;) = f0ng.

If Y is another set in Rn we de�ne

X + Y := fx+ y j x 2 X; y 2 Y g;

with the conventions
X + ; = ;+ Y = ;:

If � � R, we also de�ne

�X := f�x j � 2 �, x 2 Xg;

and �; = ;X = ;:
Along this paper we also use the usual normal cone of X at x :

NX(x) :=

�
fz 2 Rn j (y � x)0z � 0 for all y 2 Xg = (X � x)�; if x 2 X;
;; otherwise.

In the topological side, intX; riX, clX and bdX stand, respectively,
for the interior, the relative interior, the closure and the boundary of X:
Obviously, if x 2 intX; then NX(x) = f0ng:

If X is convex, Farkas lemma provides the following relationship:

NX(x)
� = (X � x)� � = clR+(X � x);
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which is nothing else but the tangent cone to X at x, denoted by TX(x);
i.e.

NX(x)
� = TX(x):

The following lemma establishes an elementary property which is used
later in the paper.

Lemma 1 Assume that X is a convex set in Rn and x 2 X: If d 6= 0n and
�d > 0 are such that x+ �d 2 X whenever 0 < � < �d; then

NX (x+ �d) = NX (x) \ fdg?; for all 0 < � < �d:

Proof. Let us see the inclusion ���. Fix any 0 < � < �d and take u 2
NX (x+ �d) ; let us show �rst that u 2 fdg?: On the one hand, if we take
any �1 > 0 such that � < �1 < �d; since x+ �1d 2 X; we have

u0 ((x+ �1d)� (x+ �d))) = (�1 � �)u0d � 0;

which entails u0d � 0: On the other hand,

u0 (x� (x+ �d)) = ��u0d � 0;

so, u0d = 0:
Now, one easily see that u 2 NX (x) : Indeed, for any x 2 X; we have

u0 (x� x) = u0 (x� (x+ �d)) � 0:

Now let us establish the inclusion ���. Again, take any 0 < � < �d:We have
that,

NX (x) \ fdg? = fu 2 Rn j u0(x� x) � 0 for all x 2 X; u0d = 0g
= fu 2 Rn j u0(x� (x+ �d)) � 0 for all x 2 X; u0d = 0g
� NX(x+ �d):

We say that a function f : Rn �! R [ f+1g is proper if its (e¤ective)
domain, dom f := fx 2 Rn j f(x) < +1g, is nonempty. We say that f is
convex (lower semicontinuous or lsc, for short, respectively) if its epigraph,
epi f := f(x; �) 2 Rn+1 j f(x) � �g; is convex (closed, respectively).

The Fenchel subdi¤erential of f at a point x 2 dom f is the closed convex
set

@f(x) := fz 2 Rn j f(y) � f(x) + z0(y � x) for all y 2 Rng:
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If x =2 dom f , then we set @f(x) = ;.
Given two proper convex functions f; g : Rn �! R [ f+1g, the classical

Rockafellar quali�cation condition

ri(dom f) \ ri(dom g) 6= ; (5)

ensures that (see [37, Theorem 23.8]):

@(f + g)(x) = @f(x) + @g(x): (6)

The support and the indicator functions of X � Rn are, respectively,
de�ned as

�X(y) := supfx0y j x 2 Xg; for y 2 Rn;

assuming �; � �1; and

IX(x) :=

�
0; if x 2 X;
+1; if x 2 Rn nX:

The function �X is convex (sublinear, indeed) and lsc, whereas IX is convex
and lsc if and only if X is a closed convex set.

Given a proper convex function f : Rn �! R [ f+1g, if f is continuous
at x 2 dom f; the directional derivative function f 0(x; �) is continuous and

f 0(x; d) = �@f(x)(d) = maxfu0d j u 2 @f(x)g; for d 2 Rn: (7)

It is well-known that if X � Rn is a convex set and x 2 X; then

@IX(x) = NX(x): (8)

If X is a polyhedral set, with explicit representation

X = fx 2 Rn j c0sx � ds; s 2 Sg;

where S is a non-empty �nite set, for x 2 X one has

NX(x) = cone fcs j s 2 S (x)g ; (9)

where
S (x) := fs 2 S j c0sx� ds = 0g:
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2.2 Calmness and local error bounds

Recall that a mapping M : Y � X between metric spaces (with both
distances denoted by d) is said to be calm at (y; x) 2 gphM if there exist a
constant � � 0 and neighborhoods W of x and V of y such that

d (x;M (y)) � �d (y; y) (10)

whenever x 2 M (y) \ W and y 2 V; where, as usual, the point-to-set
distance d (x;
) is de�ned as inf fd (x; z) : z 2 
g, and d (x; ;) := +1.

The calmness property is known to be equivalent to the metric subreg-
ularity of the inverse multifunction M�1 : X � Y; given by M�1 (x) :=
fy 2 Y j x 2M (y)g ; the metric subregularity ofM�1 at (x; y) 2 gphM�1

is stated in terms of the existence of a (possibly smaller) neighborhood W
of x; as well as a constant � � 0; such that

d (x;M (y)) � �d
�
y;M�1 (x)

�
; for all x 2W: (11)

An important aspect of this concept leans on the fact that the distance in
the right-hand side of (11) is typically easier to compute or estimate than
the distance in the left-hand side.

The in�mum of all possible constants � in (10) (over all possible com-
binations of �; W; and V ) is known to be equal (see, e.g., [11, Section 3H])
to the in�mum of constants � in (11) and is called the calmness modulus
of M at (y; x) ; denoted as clmM (y; x) ; and de�ned as +1 if M is not
calm at (y; x) : When dealing with the feasible set mapping (2), the calm-
ness modulus may be seen as an enlargement rate of the feasible set around
the nominal point.

Recall that an extended real-valued function f : Rn ! R [ f+1g is said
to admit a local error bound at x 2 Rn if

d (x; [f � 0]) � � [f (x)]+ (12)

for a certain � � 0 and for all x in a certain neighborhood W of x; where
[f � 0] stands for fx 2 Rn : f (x) � 0g and [�]+ represents the positive part
of � 2 R: The following result can be traced out from [4, Proposition 2.1
and Theorem 5.1] and [27, Theorem 1].

Theorem 1 Let f : Rn ! R [ f+1g be a lower semicontinuous proper
convex function and x 2 Rn a point such that f(x) = 0. The following
conditions are equivalent:

(i) f admits a local error bound at x;
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(ii) lim inf
x!x; f(x)>0

d� (0n; @f (x)) > 0:

Moreover, under these conditions, the in�mum of those � � 0 satisfying
(12) (for some related neighborhood W ) is equal to�

lim inf
x!x; f(x)>0

d� (0n; @f (x))

��1
:

3 Calmness for inequality systems with abstract
constraints

The present section is devoted to compute the calmness modulus of the fea-
sible set mapping F in (2), where the parameter space (Rn � R)I is endowed
with the supremum norm

k(a; b)k1 := max
t2I





�atbt
�



 ;

with the norm in Rn+1 being de�ned as



�uv
�



 := max fkuk� ; jvjg for u 2 Rn; v 2 R: (13)

Many results in the literature apply to the calmness of F when con�ned to
the case C = Rn (equivalently, U = ;); which is the case of [9] .

3.1 The case of RHS perturbations

For the sake of clarity, we start by considering the case of right-hand side
(RHS, in brief) perturbations. Formally, we consider Fa : RI � Rn the
feasible set mapping de�ned by

Fa (b) := F (a; b) for all b 2 RI ;

where a 2 (Rn)I remains �xed and b 2 RI is the parameter to be perturbed.
In the case when C = Rn it is well-known that Fa is always calm at

any point of its (polyhedral) graph as a consequence of a classical result
by Robinson [36]. Observe that this is not the case for the more general
abstract/set constrained setting of systems (1) with C being a closed convex
set, not polyhedral. Just consider, for instance, the example when C is the
closed unit ball in R2 and a = (1; 0)0, Fa (b) := fx 2 C; x1 � bg: If we
consider the nominal elements b = �1; x = (�1; 0)0 ; one easily sees that
Fa (b) is not calm at (b; x):
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Moreover, in the particular case in which C = Rn; the calmness of Fa at
(b; x) 2 gphFa can be easily translated into the local error bound property
of the max-function de�ned by x 7! maxt2I

�
a0tx� bt

�
+
.

Coming back to the general case when C is a closed convex set, associated
with

�
b; x
�
2 gphFa we consider the proper convex lsc function sb : Rn !

R [ f+1g given by

sb (x) := maxt2I

�
a0tx� bt

�
+ IC(x): (14)

Obviously �
sb � 0

�
= Fa

�
b
�
= F

�
a; b
�
:

Observe that the speci�cation of (11) de�ning the metric subregularity of
F�1a at

�
x; b
�
turns out to be equivalent to

d
�
x;
�
sb � 0

��
� �

�
sb (x)

�
+

(15)

for a certain � � 0 and for all x in a certain neighborhood W of x: Note
that (15), which holds trivially if x =2 C; is nothing else but the existence of
a local error bound for sb at x; see (12).

Remark 1 If x 2 Fa
�
b
�
satis�es sb (x) < 0; then clmFa(b; x) = 0; because

the continuity of the max-function appearing in (14) ensures the existence
of a neighborhood W of x such that

sb(x) < 0, for all x 2W \ C:

So (15) trivially holds for all � > 0 and all x 2 W; either x 2 W \ C or
x 2W�C (where both sides of (15) are +1):

So, from now on we deal with the non-trivial case sb (x) = 0: Therefore,
we may apply Theorem 1 to conclude the following result which constitutes
the starting point in our analysis:

Proposition 1 For x 2 Fa
�
b
�
, with sb (x) = 0, we have

clmFa
�
b; x
�
=

�
lim inf

x!x; sb(x)>0
d�
�
0; @sb (x)

���1
:

The rest of this section is devoted to translate the previous proposition
into a point-based formula for the calmness modulus of Fa, as an extension
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of [9, Theorem 4] to the case when C 6= Rn: To start with, one easily checks
the following equality

lim inf
x!x; sb(x)>0

d�
�
0n; @sb (x)

�
= d�

 
0n; Lim sup

x!x; sb(x)>0
@sb (x)

!
:

In this way, this subsection mainly consists of providing a a point-based
formula for the outer limit of subdi¤erentials Lim supx!x; sb(x)>0 @sb (x) ;
where this limit of sets is understood in the Painlevé-Kuratowski sense. The
reader is addressed to [8, Theorem 3.1] for the particular case when C = Rn:

If we denote
mb(x) := maxt2I

�
a0tx� bt

�
;

then clearly dommb = R
n and since riC 6= ;; we can apply (5), (6), and (8),

together with the well-known Valadier formula, to get

@sb (x) = ; if x =2 C;

and

@sb (x) = @mb(x) + @IC(x)

= conv
�
at j t 2 Ib (x)

	
+NC(x); for all x 2 C;

where
Ib (x) :=

�
t 2 I j a0tx� bt = mb (x)

	
;

which is trivially nonempty. Moreover, (7) yields

s0
b
(x; d) = m0

b
(x; d) + ITC(x)(d), for all d 2 R

n, (16)

and from (16) one immediately concludes

D(x) :=
n
d 2 Rn j 0 < s0

b
(x; d) < +1

o
= fd 2 TC(x) j m0

b
(x; d) > 0g:

Now we associate with each d 2 D(x) the sets

I(x; d) := ft 2 Ib (x) j a
0
td = m

0
b
(x; d)g and NC(x) \ fdg?:

Obviously I(x; d) is non-empty, while NC(x) \ fdg? may collapse to the
origin. It is also immediate, from (16) and the de�nition of I(x; d) that, for
all d 2 D(x); the hyperplane

Hx;d := fz 2 Rn j d0z = m0
b
(x; d)g;
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supports @sb (x) and

Hx;d \ @sb (x) = conv fat; t 2 I(x; d)g+
�
NC(x) \ fdg?

�
: (17)

From now on in this section, our results are established under the addi-
tional assumption that C is locally polyhedral, i.e.

R+(C � x) is closed for all x 2 C:

So, in this case any 0n 6= d 2 TC (x) is a feasible direction of C at x since
TC (x) = clR+(C � x):

Lemma 3.2 in [2] proves that if C is locally polyhedral, then R+(C�x) is
polyhedral at every x 2 C; and so, NC (x) is also polyhedral at every x 2 C:

Lemma 2 Consider x 2 Fa
�
b
�
with sb (x) = 0; and assume that C is locally

polyhedral. For any d 2 D (x) there exists �d > 0 such that

x+ �d 2 C; mb (x+ �d) = �m
0
b
(x; d) and Ib(x+ �d) = I(x; d);

whenever 0 < � < �d:

Proof. Take e�d > 0 such that
x+ �d 2 C and Ib(x+ �d) � Ib(x); whenever 0 < � < e�d (18)

(remember that D (x) � TC (x) ; while the inclusion Ib(x+ �d) � Ib(x) for
su¢ ciently small � comes from the continuity of mb at x):

Now, let us show the existence of 0 < �d � e�d such that
mb (x+ �d) = �m

0
b
(x; d) ; whenever 0 < � < �d: (19)

Taking 0 < �d � e�d such that
�d max

t2InIb(x)
fkatk� kdkg � inf

t2InIb(x)
fbt � a0txg);

then, one can easily check that

max
t2InIb(x)

f(a0tx� bt) + �a0tdg � 0; for any 0 < � < �d:

Observing that sb (x) = mb (x) = 0; we get for 0 < � < �d;

mb (x+ �d) = max
t2I

f(a0tx� bt) + �a0tdg

= max
t2Ib(x)

f(a0tx� bt) + �a0tdg = �m0
b
(x; d) :
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Finally, let us prove

Ib(x+ �d) = I(x; d); for 0 < � < �d:

Take any 0 < � < �d: If t0 2 Ib(x+ �d); then from (18) and (19) we have

a0t0d =
1

�
(a0t0(x+ �d)� bt0) =

1

�
mb (x+ �d) = m

0
b
(x; d) ;

which yields t0 2 I(x; d): Reciprocally, if t0 2 I(x; d); then

a0t0(x+ �d)� bt0 = �m
0
b
(x; d) = mb (x+ �d) :

Theorem 2 Let x 2 Fa
�
b
�
with sb (x) = 0; and assume that C is locally

polyhedral. For any d 2 D (x) ; there exists �d > 0 such that

@sb (x+ �d) = conv fat; t 2 I(x; d)g+
�
NC(x) \ fdg?

�
; for all 0 < � < �d:

Proof. Fix any d 2 D (x) and take �d > 0 verifying the statement of the
previous lemma; then, for any 0 < � < �d we have

x+ �d 2 C; Ib(x+ �d) = I(x; d); and NC (x+ �d) = NC(x) \ fdg?;

where the last equality comes from Lemma 1. Then, for 0 < � < �d we have

@sb (x+ �d) = conv
�
at; t 2 Ib(x+ �d)

	
+NC (x+ �d)

= conv fat; t 2 I(x; d)g+
�
NC(x) \ fdg?

�
:

The following lemma is a direct consequence of [2, Lemma 3.1].

Lemma 3 Assume that C is locally polyhedral and let fxrg � C converging
to x with xr 6= x for all r: Then, there exists r0 2 N and a sequence of
scalars f�rgr�r0 �]1;+1[ such that such that x + �r (xr � x) 2 C; for all
r � r0:

Theorem 3 Consider x 2 Fa
�
b
�
with sb (x) = 0; and assume that C is

locally polyhedral. We have

Lim sup
x!x; sb(x)>0

@sb (x) =
[

d2D(x)

n
conv fat; t 2 I(x; d)g+

�
NC(x) \ fdg?

�o
=

[
d2D(x)

Lim sup
�#0

@sb (x+ �d) :

13



Proof. The second equality comes straightforwardly from the previous the-
orem. Moreover, it is immediate that[

d2D(x)
Lim sup
�#0

@sb (x+ �d) � Lim sup
x!x; sb(x)>0

@sb (x) :

Just observe that for any d 2 D (x) Lemma 2 ensures the existence of �d > 0
such that

sb (x+ �d) = mb (x+ �d) = �m
0
b
(x; d) > 0; for 0 < � < �d:

So, it remains to prove the inclusion

Lim sup
x!x; sb(x)>0

@sb (x) �
[

d2D(x)

n
conv fat; t 2 I(x; d)g+

�
NC(x) \ fdg?

�o
:

Let
u 2 Lim sup

x!x; sb(x)>0
@sb (x) ;

and write u = limr ur; with

ur 2 @sb (x
r) = convfat; t 2 Ib (x

r)g+NC (xr) ; for all r;

for some sequence fxrg converging to x such that sb (xr) > 0 for all r: In
particular, @sb (x

r) 6= ; for all r entails fxrg � C: Moreover, sb (x
r) > 0

implies xr 6= x for all r:
The �niteness of I allows us to assume (by taking a subsequence if

needed) that fIb (xr)g is constant, say Ib (xr) = D for all r: In particular,
D � Ib (x) :

Moreover, the previous lemma ensures the existence of �r 2]1;+1[ such
that x + �r (xr � x) 2 C for r large enough (say for all r; without loss of
generality). In this way, from Lemma 1 we conclude

NC (x
r) = NC (x) \ fxr � xg?; for all r:

Since NC (x) is polyhedral and NC (x) \ fxr � xg? is a face of NC (x) ;
there is a �nite amount of possibilities. Consequently, we may assume that
NC (x) \ fxr � xg? = NC (x) \ fxr0 � xg? for some �xed r0 2 N.

Then, de�ne

d0 :=
xr0 � x
sb (x

r0)
:

14



Let us see that d0 2 D (x) : Clearly, d0 2 TC (x) and

m0
b(x; d

0) = max
t2Ib(x)

a0t(x
r0 � x)

sb (x
r0)

= max
t2Ib(x)

a0tx
r0 � bt

sb (x
r0)

= max
t2D

a0tx
r0 � bt

sb (x
r0)

= 1:

In fact,
a0tx

r0 � bt
sb (x

r0)
< 1 if t 2 Ib (x)rD;

and
a0tx

r0 � bt
sb (x

r0)
= 1 if t 2 D:

So, d0 2 D (x) and I(x; d0) = D:
In summary

ur 2 convfat; t 2 Ib (x
r)g+NC (xr)

= convfat; t 2 Dg+
�
NC (x) \ fxr0 � xg?

�
= convfat; t 2 Dg+

�
NC (x) \ fd0g?

�
;

with d0 2 D (x) ; which entails

u 2 convfat; t 2 Dg+
�
NC (x) \ fd0g?

�
:

Corollary 1 Consider x 2 Fa
�
b
�
with sb (x) = 0; and assume that C is

locally polyhedral. We have

clmFa(b; x) =
�
min
d2D(x)

d�
�
0n; conv fat; t 2 I(x; d)g+

�
NC(x) \ fdg?

����1
:

Remark 2 (i) Observe that when C is locally polyhedral, Fa is calm at all
(b; x) 2 gphFa: In fact, from (17) we know that 0n =2 conv fat; t 2 I(x; d)g+�
NC(x) \ fdg?

�
: Moreover, the �locally polyhedral�assumption entails the

�niteness of possibilities when we are taking the minimum in the previous
corollary. Finally, as commented above, clmFa(b; x) = 0 when sb (x) < 0:

15



(ii) The second equality in the previous theorem brings to mind the
notion of directional limiting subdi¤erential. In fact, for each direction d 2
Rn; the set Lim sup

�#0
@sb (x+ �d) is clearly included in the analytic limiting

subdi¤erential of sb in the direction of d; denoted by @dsb (x) ; see [5, p. 5] for
the de�nition in Rn and [14] for a previous reference in Banach spaces (the
reader is also addressed to [13] for related topics as the directional metric
regularity and subregularity). In fact, one could possibly employ this notion
to avoid the �locally polyhedral�assumption. Speci�cally, the role played by[
d2D(x)

@dsb (x) when C is an arbitrary closed convex set could constitute a

matter of further research. In any case, the polyhedrality assumption is not
restrictive for our purposes of applying the calmness results to the analysis
of the convergence of the central path, and it has some advantages from the
practical point of view (due to the �niteness of possibilities in the previous
minimum, as commented above).

3.2 The polyhedral case

If C is a polyhedral set, expressed explicitly by means of the linear inequal-
ities

C =
�
x 2 Rn j c0sx � ds; s 2 U

	
; (20)

with U being a �nite non-empty index set, disjoint of I; and
�
cs; ds

�
s2U �xed

(i.e., inequalities indexed by elements of U are not subject to perturbations),
with cs 6= 0n for all s 2 U; we have

Fa (b) :=
�
x 2 Rn j c0sx � ds; s 2 U ; a0tx � bt; t 2 I

	
: (21)

In this particular case for any x 2 C we have (recall (9)):

NC(x) = cone fcs; s 2 U(x)g ;

where
U (x) :=

�
s 2 U : c0sx� ds = 0

	
:

The following theorem constitutes a speci�cation of Theorem 3 to our cur-
rent polyhedral setting. Observe that this new expression for the outer limit
of subdi¤erentials has the virtue of being conceptually implementable as far
as it only involves the nominal elements and a �nite family of pairs of subsets
of indices which is de�ned as follows:
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Associated with x 2 Fa
�
b
�
; let us de�ne the family I (x) formed by all

pairs of subsets of indices of the form (I1; U1) with I1 � Ib (x) ; U1 � U(x);
and such that the following system has a solution in d:8>>>>><>>>>>:

m0
b
(x; d) > 0;

a0td = m
0
b
(x; d); t 2 I1;

a0td < m
0
b
(x; d); t 2 Ib (x) n I1;

c0sd = 0; s 2 U1;
c0sd < 0; s 2 U(x) n U1:

(22)

Theorem 4 Consider x 2 Fa
�
b
�
with sb (x) = 0; and assume that C is the

polyhedral set (20). Then,

Lim sup
x!x; sb(x)>0

@sb (x) =
[

(I1;U1)2I(x)
(conv fat; t 2 I1g+ cone fcs; s 2 U1g) :

Consequently

clmFa(b; x) =
�

min
(I1;U1)2I(x)

d� (0n; conv fat; t 2 I1g+ cone fcs; s 2 U1g)
��1

:

Proof. The inclusion ���comes from applying Theorem 3, just by observing
that if d 2 D (x) ; then m0

b
(x; d) > 0; and d 2 TC (x) ; which implies c0sd � 0

for all s 2 U(x). Moreover, I1 := I(x; d) � Ib (x) together with

U1 := fs 2 U(x) j c0sd = 0g;

veri�es that (I1; U1) 2 I (x) : Finally, observe that

NC(x) \ fdg? = cone fcs; s 2 U1g :

For the reciprocal inclusion, consider any (I1; U1) 2 I (x) and take d 2
Rn as a solution of system (22). Then, d 2 D (x) ; I(x; d) = I1 and again
cone fcs; s 2 U1g = NC(x) \ fdg?:

Remark 3 In the previous theorem we could con�ne ourselves to those
(I1; U1) 2 I (x) which are maximal with respect to the coordinatewise in-
clusion order.

The following examples illustrate the di¤erence between the contexts of
total and partial perturbations of the RHS.
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Example 1 Let us consider the system, in R2 endowed with the Euclidean
norm, given by �

x1 � b; t = 1 2 I
�x1 � x2 � 0; s = 2 2 U

�
;

For b = 0 and x = (0; 0)0 ; we have I (x) = f(f1g ; ;) ; (f1g ; f2g)g and

clmFa(b; x) =
�
d�
�
02; conv

�
(1; 0)0

	
+ cone

�
(�1;�1)0

	���1
=
p
2:

Observe that in the framework of perturbations of the whole RHS, i.e., the
case I = f1; 2g; U = ;; and b = (0; 0)0 ; the corresponding calmness modulus,
according to [9, Theorem 4], is equal to

�
d�
�
02; conv

�
(1; 0)0 ; (�1;�1)0

	���1
=
p
5:

Example 2 Let us consider the system, in R2 endowed with the Euclidean
norm, given by 8<:

�x1 � x2 � b; t = 1 2 I
x1 � 0; s = 2 2 U
x2 � 0; s = 3 2 U

9=; ;
For b = 0 and x = (0; 0)0 ; we have

I (x) = f(f1g ; ;) ; (f1g ; f2g) ; (f1g ; f3g)g and clmFa(b; x) = 1;

whereas in the framework of perturbations of the whole RHS, again accord-
ing to [9, Theorem 4], the calmness modulus equals

p
5:

3.3 Perturbations of all coe¢ cients

The development of this subsection is very similar to that of [9, Section 5].
To start with, for any x 2 Rn, recall that d

�
b;F�1a (x)

�
=
�
sb (x)

�
+
; while,

following the argument of [7, Lem. 10], one has

d
��
a; b
�
;F�1 (x)

�
=





� x�1
�



�1

�

�
sb (x)

�
+
:

For completeness purposes, let us recall that the previous expression comes
from applying the well-known Ascoli formula for the distance from

�at
bt

�
to

the half-space
n
w 2 Rn+1 j

�
x
�1
�0
w � 0

o
: Moreover, with our current choice

of norms (13), 



� x�1
�





�
= kxk+ 1;
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and, so,
d
��
a; b
�
;F�1 (x)

�
= (kxk+ 1) d

�
b;F�1a (x)

�
:

Then, in a completely analogous way to [9, Theorem 5] (see also [9, Remark
10]), one can prove the �rst equality of the following result, whereas the
second equality is a straightforward consequence of Theorem 3.

Theorem 5 Assume that C is locally polyhedral. For x 2 F
�
a; b
�
we have

clmF(
�
a; b
�
; x) = (kxk+ 1) clmFa(b; x)

=
kxk+ 1

mind2D(x) d� (0n; conv fat; t 2 I(x; d)g+ (NC(x) \ fdg?))
:

4 On the convergence behavior of the central path

We consider the family of nonlinear problems f(P�)g�>0 de�ned in (3). A
standard reformulation of the KKT conditions (see, e.g., [32]) applied to
(P�) gives rise to the following non-linear system in the variable (x; y; z) 2
Rn � Rm � Rn

c�A0y � z = 0n;
Ax = b;
xizi = �; i = 1; :::; n;
x; z � 0n:

(23)

Observe that any solution (x; y; z) of (23) satis�es x; z > 0n; since xizi =
� > 0 for all i:

On the other hand, the well-known KKT conditions for the original LP
problem (3) read as;

c�A0y � z = 0n;
Ax = b;
xizi = 0; i = 1; :::; n
x; z � 0n:

(24)

From now on, let � � Rn �Rm �Rn denote the set of all solutions of (24).
It is well-known that

� = S (P )� S (D) ;
where S (D) denotes the optimal set of (D) ; the dual problem of (P ).

We work under the following assumptions (which are equivalent to the
ful�lment of Assumption 2.1(a, b, and c) in [32]):

� The set of optimal solutions of (P ), which we denote by S (P ) ; is
non-empty and bounded.
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� The Slater constraint quali�cation (SCQ) holds at (P ); i.e., there exists
a Slater point bx > 0n (i.e. all coordinates positive) satisfying Abx = b
and the rank of A is m (� n):

The following proposition can be traced out from Propositions 2.1, 2.2
and 2.3 in [32].

Proposition 2 Under the current assumptions, we have:
(i) For each � > 0; problem (P�) has a unique optimal solution, say x (�);

moreover, there exists (y (�) ; z (�)) 2 Rm�Rn such that (x (�) ; y (�) ; z (�))
is the unique solution of the KKT system (23).

(ii) Keeping the previous notation, we have that

lim
�!0

(x (�) ; y (�) ; z (�)) =
�
x0; y0; z0

�
2 �;

where x0 is an optimal solution of (P ) and
�
y0; z0

�
is an optimal solution

of its dual, i.e. x0 2 S(P ) and
�
y0; z0

�
2 S(D):

In this framework, a typical computation yields

c0x (�)� b0y (�) = x (�)0 z (�) = n�;

and this quantity is the so-called duality gap at (x (�) ; y (�) ; z (�)) :
For each � > 0; (x (�) ; y (�) ; z (�)) is usually obtained by applying the

classical Newton method to the KKT system mentioned above: This is the
so-called primal-dual path following method, which is widely considered to
be a notably e¢ cient interior point method. Recall that the interest in in-
terior point methods comes from the work of Karmarkar [23], where the
�rst interior point algorithm with polynomial time complexity was intro-
duced. One can �nd in the literature particular implementations of this
generic scheme, such as the pioneering works [35] and [32]. See also [1] for
a di¤erent implementation, coming from a speci�c reduced KKT system.
The reader is addressed to [16] and [34] for comprehensive surveys on the
�eld of interior point methods. Borrowing the notation of Monteiro and
Adler [32], standard convergence results for interior point methods are fo-
cused on the behavior of kf(x; z)��ek2, where f (x; y) 2 Rn has components
xizi; i = 1; :::; n; given that x and z yield the duality gap n� = x0z. Being
a scalar measure associated with two vectors, driving the duality gap to
zero is not su¢ cient to ensure convergence: some componentwise measure
of proximity to the central path must also be reduced su¢ ciently in each
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iteration. For Monteiro and Adler [32], this is characterized by the condition
that kf(x; z)� �ek2 � ��, for some constant � 2

�
0; 12
�
.

Here, we introduce a certain feasible set mapping which will allow us to
analyze the speed of convergence of (x (�) ; y (�) ; z (�)) to � via the analysis
of the calmness modulus of this mapping. Let

�
x0; y0; z0

�
2 � be as in the

previous proposition, consider

I0 :=
�
i = 1; :::; n j x0i = 0

	
and de�ne the multifunction F0 : Rn � Rn � Rm � Rn given by

F0 (u) :=

8>><>>:(x; y; z) 2 Rn � Rm � Rn
��������
c�A0y � z = 0n;
Ax = b; x � 0n; z � 0n;
xi � ui; i 2 I0
zj � uj ; j 2 f1; :::; ng nI0

9>>=>>; ; (25)
which is nothing else but a feasible set mapping associated with a linear
system of inequalities and equations parametrized with respect to the right-
hand side of a speci�c block of inequality constraints. In this setting, we are
considering the space of parameters, Rn; endowed with the supremum norm,
k�k1 ; and the space of variables, Rn �Rm �Rn; with any norm satisfying

k(x; y; z)k � maxfkxk1 ; kzk1g: (26)

For instance, any p-norm satis�es this property.
The following theorem provides a certain measure of the convergence of

the central path with respect to parameter �: Considering
�
x0; y0; z0

�
as in

Proposition 2, de�ne

�0 := minfx0i + z0i ; i = 1; :::; ng and �0 := maxfx0i + z0i ; i = 1; :::; ng: (27)

These scalars �0 and �0 are inspired by the concept of condition number of
a problem, which follows from [39, De�nition 16].

Remark 4 It is well-known in the context of LP problems, that under the
current assumptions (; 6= S (P ) bounded and SCQ); that

�
x0; y0; z0

�
is non-

degenerate;
i:e:; 0 < x0i + z

0
i ; for all i = 1; :::; n;

which obviously entails
0 < �0(� �0):
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Theorem 6 Assume that ; 6= S (P ) is bounded and the SCQ holds. Con-
sider the central path of (P ) ; f(x (�) ; y (�) ; z (�)) ;� > 0g; and its limits
point

�
x0; y0; z0

�
. Then:

(i) We have that, with the notation (27),

clmF0
�
0n;
�
x0; y0; z0

��
� �0
�0
> 0: (28)

(ii) For any
� > ��10 clmF0

�
0n;
�
x0; y0; z0

��
there exists " > 0 such that

d ((x (�) ; y (�) ; z (�)) ;�) � ��; whenever 0 < � < ":

Proof. (i) Let us see that for any �; �; and 
 such that 0 < � < �0; � > �0;
and


 > clmF0
�
0n;
�
x0; y0; z0

��
;

one has

 � �

�
;

which allows us to conclude that our desired inequality (28) holds.
Take �; �; and 
 as above and consider any sequence of positive scalars

f�rgr converging to 0 and de�ne the following sequences of parameters:

ur := �r
� e 2 R

n; r 2 N;

where e := (1; 1; :::; 1)
0
2 Rn: Associated with f�rgr ; let us consider the cor-

responding sequence of elements in the central path f(x (�r) ; y (�r) ; z (�r))g ;
which converges to

�
x0; y0; z0

�
by assumption. So, for each r; we have

xi (�r) zi (�r) = �r; i = 1; :::; n:

Note that, by assumption,�
z0i = x

0
i + z

0
i � �0(> �); for i 2 I0;

x0i = x
0
i + z

0
i � �0(> �); for f1; :::; ngnI0:

Them, for r large enough, say r � r0;(
�r
� � xi (�r) =

�r
zi(�r)

� �r
� ; for all i 2 I

0;
�r
� � zi (�r) =

�r
xi(�r)

� �r
� ; for all i 2 f1; :::; ngnI

0:
(29)
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Consequently,

(x (�r) ; y (�r) ; z (�r)) 2 F0 (ur) ; for r � r0:

Then, the choice of 
 (> clmF0
�
0n;
�
x0; y0; z0

��
) guarantees the existence

of r1 � r0 such that

d
�
(x (�r) ; y (�r) ; z (�r)) ;F0 (0n)

�
� 
d (ur; 0n) = 


�r
�
; for all r � r1:

(30)
On the other hand,

F0 (0n) �
�
(x; y; z) j xi = 0; i 2 I0; zi = 0; i 2 f1; :::; ngnI0

	
and, then,

d
�
(x (�r) ; y (�r) ; z (�r)) ;F0 (0n)

�
� �r
�
; r � r0; (31)

where we have taken (26) into account and applied the lower bounds for
xi (�r) ; i 2 I0; and zi (�r) ; i 2 f1; :::; ngnI0 given in (29). Finally, from (30)
and (31) we conclude

�r
�
� 
�r

�
; for all r � r1;

which yields 
 � �
� ; as required.

(ii) Let �1 > ��10 clmF0
�
0n;
�
x0; y0; z0

��
and consider

0 < �1 := �
�1
1 clmF0

�
0n;
�
x0; y0; z0

��
< �0

Consider any �2 satisfying �1 < �2 < �0: Following a similar argument to
that in (29) there exists "1 > 0 such that, for any 0 < � < "1;�

xi (�) � �
�2
; i 2 I0;

zi (�) � �
�2
; i 2 f1; :::; ngnI0;

and, so,

(x (�) ; y (�) ; z (�)) 2 F0
�
�

�2
e

�
; whenever 0 < � < "1:

On the other hand, since �2
�1
> 1 and clmF0

�
0n;
�
x0; y0; z0

��
> 0 (as stated

in (i)) ; then �2
�1
clmF0

�
0n;
�
x0; y0; z0

��
is a particular calmness constant for

23



F0 at
�
0n;
�
x0; y0; z0

��
; which guarantees the existence of 0 < " < "1 such

that

d
�
(x (�) ; y (�) ; z (�)) ;F0 (0n)

�
� �2

�1
clmF0

�
0n;
�
x0; y0; z0

��
d

�
�

�2
e; 0n

�
= �1�; whenever 0 < � < ":

Finally, the desired inequality comes from the easily checkable fact that
F0 (0n) � �:

5 Conclusions

The main part of the present paper, and where the main technical di¢ -
culties appear, is devoted to the derivation of a formula for the calmness
modulus of the feasible set mapping, F ; associated with a linear inequality
systems including an abstract constraint (see (2)); in other words, F is the
feasible set mapping associated with a partially perturbed system (where
some constraints remain unchanged). It is clear from the de�nitions that
this calmness modulus is always smaller than or equal to the modulus as-
sociated with perturbations of all constraints. In this sense, the expression
given in Theorem 4 constitutes a re�nement of previous results which can
be traced from [9, Sections 4 and 5]. Moreover, we point out the fact that
the arguments behind this re�nement are notably di¤erent from the ones of
[9].

The expression of clmF(
�
a; b
�
; x) given in Theorem 4 (where the abstract

constraint set, C; is polyhedral) is point-based in the sense that it only
depends on the nominal data. In view of Theorem 4, we are providing a
conceptually implementable procedure for computing this calmness modulus
since it involves the computation of the distance from the origin to a �nite
number of polyhedra only depending on the nominal data.

As commented above, Section 4 develops an illustration related to the
classical central path construction. The main result in this direction is
Theorem 6, which provides an expression for the linear rate of convergence
of the central path in terms of the calmness modulus of the feasible set
mapping F0 de�ned in (25) and the scalar �0 de�ned in (27). This theorem
establishes the existence of " > 0 such that

d ((x (�) ; y (�) ; z (�)) ;�) � ��;

whenever 0 < � < "; and � > ��10 clmF0
�
0n;
�
x0; y0; z0

��
:
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For comparative purposes, we comment that the classical results of [17,
Theorem 2.1 and Corollary ] establish the existence of " > 0 such that

x (�)� x0

 � �� and 

z (�)� z0

 � ��; (32)

whenever 0 < � < " and � > maxfkx0 (0)k ; kz0 (0)kg; where x0 (0) and z0 (0)
are the derivatives of x (�) and z (�) at 0+:

References

[1] G. AL-JEIROUDI, J. GONDZIO, J. HALL, Preconditioning inde�nite
systems in interior point methods for large scale linear optimization,
Optimization Methods and Software, 23 (3) (2008), pp. 345-363.

[2] E. ANDERSON, M.A. GOBERNA, M.A. LÓPEZ, Locally polyhedral
linear inequalities systems, Linear Algebra Appl. 270 (1998), pp. 231-
253.

[3] A. AUSLENDER, R. COMINETTI, M. HADDOU, Asymptotic Analy-
sis for Penalty and Barrier Methods in Convex and Linear Program-
ming, Math. Oper. Res., 22(1) (1997), pp. 43�62

[4] D. AZÉ, J.-N. CORVELLEC, Characterizations of error bounds for
lower semicontinuous functions on metric spaces, ESAIM Control Op-
tim. Calc. Var. 10 (2004), pp. 409-425.

[5] M. BENKO, H. GFRERER, J. OUTRATA, Calculus for directional
limiting normal cones and subdi¤erentials, arXiv:1712.04704v1, 2017.

[6] D. BERTSIMAS, J.N. TSITSIKLIS, Introduction to Linear Optimiza-
tion, Athena Scienti�c, Dynamic Ideas, Belmont, Massachusetts,

[7] M.J. CÁNOVAS, M.A. LÓPEZ, J. PARRA, F.J. TOLEDO: Distance to
ill-posedness and the consistency value of linear semi-in�nite inequality
systems. Math. Programming Ser. A, 103 (2005), 95�126.

[8] M. J. CÁNOVAS, R. HENRION, M. A. LÓPEZ, J. PARRA, Outer
limit of subdi¤erentials and calmness moduli in linear and nonlinear
programming ; J. Optim. Theory Appl. 169 (2016), pp. 925-952.

[9] M. J. CÁNOVAS, M. A. LÓPEZ, J. PARRA, F. J. TOLEDO, Calmness
of the feasible set mapping for linear inequality systems; Set-Valued Var.
Anal. 22 (2014), pp. 375�389.

25



[10] R. COMMINETTI, J. SAN MARTÍN, Asymptotic analysis of the ex-
ponential penalty trajectory in linear programming, Math. Program.,
1994, Volume 67, Number 1-3, Page 169

[11] A. L. DONTCHEV, R. T. ROCKAFELLAR, Implicit Functions and
Solution Mappings: A View from Variational Analysis, Springer, New
York, 2009.

[12] H. GFRERER, First order and second order characterizations of metric
subregularity and calmness of constraint set mappings. SIAM J. Optim.
21 (2011), pp. 1439-1474.

[13] H. GFRERER, On directional metric regularity, subregularity and op-
timality conditions for nonsmooth mathematical programs, Set-Valued
Var. Anal., 21 (2013), pp. 151�176.

[14] I. GINCHEV, B. S. MORDUKHOVICH, On directionally dependent
subdi¤erentials, C.R. Bulg. Acad. Sci., 64 (2011), pp. 497�508.

[15] M. A. GOBERNA, M. A. LÓPEZ, Linear Semi-In�nite Optimization,
John Wiley & Sons, Chichester (UK), 1998.

[16] GONDZIO, J., Interior point methods 25 years later, Eur. J. Oper. Res.
218 (2012), pp. 587-601.

[17] O. GULER, Limiting behavior of weighted central paths in linear pro-
gramming, Math. Program. 65 (1994) 347-363.

[18] R. HENRION, A. JOURANI, J. OUTRATA, On the calmness of a class
of multifunctions, SIAM J. Optim., 13 (2002), pp. 603-618.

[19] R. HENRION, J. OUTRATA, Calmness of constraint systems with ap-
plications, Math. Program. 104B (2005), pp. 437-464.

[20] A.D. IOFFE, Necessary and su¢ cient conditions for a local minimum,
Part I:A reduction theorem and �rst order conditions, SIAM J. Control
Optim. 17 (1979), pp. 245�250.

[21] A.D. IOFFE,Metric regularity and subdi¤erential calculus, Uspehi Mat.
Nauk 55(3), 103�162 (2000) (in Russian), English translation: Russian
Math. Surveys 55(3) (2000), pp. 501�558.

[22] A. JOURANI, Ho¤man�s error bound, local controllability, and sensi-
tivity analysis, SIAM J. Control Optim. 38 (2000), pp. 947�970.

26



[23] N. KARMARKAR, A new polynomial-time algorithm for linear pro-
gramming, Combinatorica, 4(4) (1984), pp. 373-395

[24] D. KLATTE, B. KUMMER, Nonsmooth Equations in Optimization:
Regularity, Calculus, Methods and Applications, Nonconvex Optim.
Appl. 60, Kluwer Academic, Dordrecht, The Netherlands, 2002.

[25] D. KLATTE, B. KUMMER, Optimization methods and stability of in-
clusions in Banach spaces, Math. Program. B 117 (2009), pp. 305-330

[26] D, KLATTE, G. THIERE, Error Bounds for Solutions of Linear Equa-
tions and Inequalities, Mathematical Methods of Operations Research,
41 (1995), pp. 191-214 .

[27] A. KRUGER, H. VAN NGAI, M. THÉRA, Stability of error bounds
for convex constraint systems in Banach spaces, SIAM J. Optim. 20
(2010), pp. 3280-3296 .

[28] W. LI, The sharp Lipschitz constants for feasible and optimal solutions
of a perturbed linear program, Linear Algebra Appl. 187 (1993), pp.
15�40

[29] W. LI, Sharp Lipschitz constants for basic optimal solutions and ba-
sic feasible solutions of linear programs. SIAM J. Control Optim. 32
(1994),pp. 140�153.

[30] N. MEGIDDO, Pathways to the Optimal Set in Linear Programming,
in Progress in Mathematical Programming, N. Megiddo (ed.), Springer-
Verlag, New York, pp. 131-158, 1989.

[31] K. W. MENG, X. Q. YANG, Equivalent conditions for local error
bounds. Set-Valued Var. Anal. 20 (2012), pp. 617�636.

[32] R.D.C. MONTEIRO, I. ADLER, Interior path following primal-dual
algorithms. Part I: Linear programming, Math. Program., 44, pp. 27-
41, 1989.

[33] B. S. MORDUKHOVICH, Variational Analysis and Generalized Dif-
ferentiation, I: Basic Theory, Springer, Berlin, 2006.

[34] POTRA, F.A., WRIGHT, S. J., Interior point-methods, J. Comput.
Appl. Math., 124 (2000), 281-302.

[35] J. RENEGAR, A polynomial time algorithm based on Newton�s method
for linear programming, Math. Program., 40, pp. 59-93, 1988.

27



[36] S. M. ROBINSON, Some continuity properties of polyhedral multifunc-
tions. Mathematical programming at Oberwolfach (Proc. Conf., Math.
Forschungsinstitut, Oberwolfach, 1979). Math. Programming Stud. No.
14 (1981), pp. 206�214.

[37] R. T. ROCKAFELLAR, Convex Analysis, Princeton University Press,
Princeton, N.J., 1970.

[38] R. T. ROCKAFELLAR, R. J-B. WETS,Variational Analysis, Springer,
Berlin, 1998.

[39] T. TERLAKY, An easy way to teach interior-point methods, Eur. J.
Oper. Res., 139 (2001), pp. 1-19.

28


