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INTRODUCTION

The von-Hippel Lindau (VHL) disease is a hereditary genetic disorder that predisposes to the onset
of several highly vascularized benign and malignant tumors, developing with elevate frequency in
the central nervous system and kidneys. The most-aggressive VHL tumor is ccRCC, the clear-cell
renal cell carcinoma, affecting the kidney. VHL disease etiology can be attributed to the inheritance
of a VHL loss-of-function allele, typically a deletion (Gnarra et al., 1994; Herman et al., 1994);
this facilitates the somatic inactivation of the other allele (through amorphic mutations or gene
silencing through promoter methylation), leading to the onset of the tumorous phenotype (Latif
et al., 1993). This reveals the haploinsufficient behavior of the VHL gene.

The high vascularization of VHL tumors can be explained considering that human VHL protein
is the substrate-binding subunit of an E3 ubiquitin ligase (Lonergan et al., 1998; Iwai et al.,
1999; Kamura et al., 1999) involved in the poly-ubiquitination of HIF-1α transcription factor.
This post-translational modification leads HIF-1α to proteosomal degradation (Maxwell et al.,
1999). Loss of VHL function causes the stabilization of HIF-1α, triggering cellular response and
adaptation to hypoxic conditions (expression of genes involved in glycolysis, angiogenesis and
erythropoiesis) (Bader and Hsu, 2012). While this represents the canonical function of VHL,
other HIF-1α-independent function of VHL have been identified, thanks to the contribution of
model organisms (Hsu, 2012). Indeed, VHL gene function is conserved and also Drosophila has
a VHL homolog, the dVHL gene (Adryan et al., 2000; Aso et al., 2000). dVHL is involved in
the development of Drosophila vascular system (Adryan et al., 2000; Hsouna et al., 2010) and
in morphogenesis of follicular epithelium of the egg chamber (Duchi et al., 2010). Interestingly,
some VHL functions are mediated by Awd, an endocytic mediator whose human orthologs
are NME1/2 metastasis suppressors (Rosengard et al., 1989). Awd is broadly required during
Drosophila development since it is involved in epithelial morphogenesis (Nallamothu et al., 2008;
Woolworth et al., 2009; Ignesti et al., 2014) and required for maintaining genomic stability (Romani
et al., 2017).Moreover, Awd is also present into the extracellular fluids ofDrosophila larvae (Romani
et al., 2016, 2018).

In Drosophila, two pairs of monolayered epithelial Malpighian tubules, each composed of
100-150 cells, absolve to osmoregulation and excretion functions (Denholm and Skaer, 2009).
Transcriptomic analysis of Malpighian tubules revealed that among genes that are here enriched
there are homologs of human genes implicated into renal pathologies (Wang et al., 2004).
This justifies the use of Drosophila Malpighian tubules as model system to gain insights into
pathophysiology of human kidneys (Dow and Romero, 2010; Miller et al., 2013).
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The dVHL1.1 allele is a loss of function mutation of the dVHL
locus (Duchi et al., 2010; Hsouna et al., 2010). dVHL1.1/+ flies
mimic the genetic condition of VHL patients. We carried out
a genome-wide gene expression profiling of whole Malpighian
tubules dissected from Drosophila females both heterozygous for
the dVHL1.1 mutation and with two wild type copies of the dVHL
gene. The comparison of differentially expressed genes in the
two genetic backgrounds potentially allows to identify genes that
are sensible to dVHL functional copy number. Quality control
assessments of the data were performed and results obtained
from the differential expression analysis were confirmed by qRT-
PCR. With this approach we aimed to provide a well-controlled
dataset for a better understanding of the VHL disease. Indeed,
even if further molecular and functional characterization are
needed, human homologs of the differentially expressed genes, if
existing, could have a role in the somatic inactivation of the wild
type copy of VHL and/or into the very first phase of cancer onset.

MATERIALS AND METHODS

Drosophila Stocks and Genotypes
Drosophila flies were raised at 25◦C on a standard
cornmeal/yeast/agar culture medium. We used y1,w67c23

flies as wild type stock. The dVHL1.1 null mutation has been
previously characterized (Duchi et al., 2010; Hsouna et al., 2010).

Malpighian Tubules RNA Extraction
FiftyDrosophila females of the appropriate genotype (dVHL1.1/+
or wild type flies) were transferred every day into vials with
fresh yeasted food for 5 days. Malpighian tubules were then
dissected and 400 µl of TRIzol were added. Homogenization
was performed keeping samples on ice. 10 µg of linear
polyacrylamide were added before centrifuging at 16,000 g
(10min). 80µl of chloroform were added to supernatant. Sample
was vortexed for 60 s and then centrifuged at 16,000 g (15min).
The upper phase was transferred to a new RNase-free tube. 0.8
volumes of isopropanol were added. RNA was then precipitated
for 1 h at −20 µC and pelleted by centrifugation at 16,000 g
(30min). Pellet was then washed with 500 µl of 70% ethanol and
centrifuged at 16,000g (5min). Ethanol was then removed and
pellet re-suspended in 15 µl of DEPC water. RNA concentration
and purity was assessed through NanoDrop spectrophotometer.

cDNA Generation, Amplification, and
Labeling
Four biological replicates were performed. Five Hundred nana
gram of RNA were amplified using the SMARTerTM PCR cDNA
synthesis kit (Clontech) following manufacture’s instruction.
Amplified cDNA was then labeled by using the Klenow labeling
of double stranded DNA protocol. The number of cycles required
to obtain products in exponential phase was determined by
performing a PCR using the Advantage R© II PCR kit (Clontech)
and following manufacture’s protocol (5′ PCR Primer II used:
5′-AAGCAGTGGTATCAACGCAGAGT-3′). DNA was purified
using QIAquick PCR purification columns. Nine nano gram of
cDNA were labeled through incorporation of dCTP conjugated
with Cy3 or Cy5 dyes using the BioPrime DNA Labeling System

and following manufacture’s protocol. Cy3 and Cy5 labeled
sample and control pairs were combined in 1.5ml tubes. The
volume was reduced to 25–30 µl in a SpeedVac concentrator
before proceeding with Sephadex G50 purification (two per
sample), assembled following manufacture’s instruction. Sample
volumes was reduced to 2–5 µl using a SpeedVac. Finally, 2 µl
of 10 mg/ml sonicated salmon sperm DNA were added with 140
µl of hybridization buffer. Samples were then boiled at 100◦C
(2min), centrifuged at 16,000 × g (1min) and then hybridized
on slides.

FL003 Array Hybridization
The FlyChip in-house printed FL003 gene expression arrays on
FMB PowerMatrix slides using the Genetix Qarray2 (producing
82 arrays per run), consisting of 14,444 transcript-specific 70-
mer oligonucleotides were used (GEO accession GPL14121).
Four biological replicates were performed including 2 dye swaps.
Blocking of slides was performed (as per FMB protocol) by
incubating slides for 30min in 0.1% BSA, 0.2% SDS, 2x SSC
(300mM NaCl, 30mM Na citrate, pH 7), followed by three
washes in clean water. One hundred and thirty five microliters
of samples were hybridized for 16 h at 51◦C with agitation using
the GeneTac Hybridisation station. Slides were then washed with
pre-warmed (55◦C) wash solution 1 (0.2 × SSC; 0.2% SDS) for
20min with gentle agitation, followed by 3 washes for 1min in
warm solution 2 (0.2 × SSC), avoiding light exposure, rinsed
with MilliQ water at room temperature and finally dried in a
centrifuge at 96× g (5 min).

Data Acquisition and Processing
Slides were scanned using an Axon GenePix 4000B scanner at
optimal PMT gain. Manual spot-finding was operated through
Dapple (Buhler et al., 2000). Raw data was imported into
limma (Bioconductor R package, R version 3.1.0) and Variance
stabilizing normalization (vsn) was applied (Huber et al., 2002).
Significance analysis was performed using the empirical Bayes
method within limma. Due to the low number of significant
genes (n = 8 at fdr <= 0.05) thresholds were relaxed to include
genes with average M value <-0.5 or >0.5 (M-value is the log2
of the ratio of sample vs. control intensities), and p-value <0.1
(187 genes).

Quantitative RT-PCR Analysis
Three biological replicates of Malpighian tubules dissected
from 30 females were analyzed. Malpighian tubule total RNA
was extracted in TRI Reagent (Sigma-Aldrich) and treated
with TURBO DNase (Ambion). RNA was reverse transcribed
using the high-capacity RNA-to-cDNA kit (Applied Biosystems)
according to the manufacture’s protocol. Quantitative real-time
PCRs were performed in fast 48-well reaction plates (Applied
Biosystems) and analyzed by StepOnePlus real-time PCR system
(Applied Biosystems) according to the manufacturer’s procedure.
For each sample, at least two technical replicates were performed.
Primers were designed using Primer 3 software (Untergasser
et al., 2012). Parameters for primer design were a length of
18-27 bases, a melting temperature between 57.0-63.0◦C, and
a GC content from 20-80%. dGrip75 and CG31955 primers
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were designed in different exons. Expression of target genes was
normalized to the widely used reference gene Rp49. The qRT-
PCR primers used are listed inTable S1. For each gene of interest,
fold changes in expression levels were evaluated by using the
11Ct method. The mean fold change and SD were calculated.
p-value was calculated using a one-tail t-test analysis on three
biological replicates. Dissociation curve analysis was performed
to confirm the presence of a single specific product.

DIFFERENTIALLY EXPRESSED GENES IN
dVHL1.1/+ MALPIGHIAN TUBULES

By using the statistical parameters reported in the material and
methods section we recovered 331 hit genes whose expression
significantly differ between dVHL1.1/+ and wild type tubules
(Figure 1A). One hundred and eighteen are upregulated (red
dots) while 321 are downregulated (blue dots). The majority of

FIGURE 1 | MA-plots of differentially expressed genes in dVHL1.1/+ Malpighian tubules. (A) Upregulated genes (average M > 0.5, p < 0.1) are shown in red while

downregulated genes (average M<-0.5, p < 0.1) are shown in blue. (B) Genes for which the alteration in gene expression (M > 0.5 or M<-0.5) was recovered in 3 out

of 4 slides are shown in green. (C) Genes that satisfy both the cut-off conditions in (A,B) are shown with red triangle.

FIGURE 2 | Validation and classification of differentially expressed genes in dVHL1.1/+ Malpighian tubules. (A) Fold change in transcription levels of dGrip75 and

CG31955 genes in the microarray analysis. (B) qRT-PCR analysis of dGrip75 and CG31955 transcript levels in individuals of the reported genotypes. 3 biological

replicates of tubules from 5-days old dVHL1.1/+ and wild type females were analyzed. Graphs represent mean ± SD; p = 0.0152 (dGrip75) and p = 0.0153

(CG31955).
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genes are not significantly differentially expressed (black dots), as
expected. By looking at M values of genes in each of the 4 slides
we also highlighted those of them for which single absolute M
values are higher than 0.5 in at least 3 slides (Figure 1B). This
should outline genes for which the alteration in gene expression is
reliable (based on alteration reproducibility). Finally, we merged
the data in Figures 1A,B and found 187 genes for which the
absolute value of average M is higher than 0.5, p-value is lower
than 0.1 and in at least 3 out of 4 slides the single absolute
M-values are higher than 0.5 (Figure 1C).

As an initial step to analyze the differentially expressed
genes we performed quantitative real time PCR (qRT-PCR)
experiments and we analyzed the transcript levels of two genes
that we are interested on studying, dGrip75 and CG31955; rp49
was used as internal reference gene (Figure 2B). The qRT-PCR
experiments confirmed that, in dVHL1.1/+ Malpighian tubules,
both genes are downregulated, as expected by microarray results
(Figure 2A). dGrip75 encodes a γ-tubulin which takes part in the
assembly of the γ-tubulin ring complex (γTuRC), located at the
centrosomes, at the base of a microtubule. γTuRC has a ring-
shaped structure that serves as a template for a microtubule and
allows the controlled polymerization of tubulin dimers (Oegema
et al., 1999; Moritz et al., 2000). This protein attracted our
attention since we have already demonstrated that dVHL is
essential in follicle cells via stabilizing microtubules (Duchi et al.,
2010). CG31955 encodes a protein with unknown molecular
function. An interesting microarray study of Andrew (Chung
et al., 2011) showed that CG31955 is downregulated in trachealess
(trh) mutant embryos. Trh is the master regulator of trachea
development, theDrosophila branched and tubular system which
is responsible for transport of oxygen and other gases. Earlier
analysis on dVHL highlighted its requirement in this tubular
organ: heterozygous and homozygous dVHL1.1 embryos display
altered tracheal system (Hsouna et al., 2010).

We screened our candidate list with FlyMine (Lyne et al.,
2007) tool for gene ontology (GO) enrichment in biological
processes (p < 0.1, Bonferroni test) and we found enrichment in
regulation of phosphoprotein phosphatase activity [GO:0043666,
p-value=0.05] and regulation of protein serine/threonine
phosphatase activity [GO:0080163, p= 0.07].

Transcriptome alterations in human morphologically normal
cells heterozygous for a VHL mutation (derived from VHL

patients) have also been analyzed (Peri et al., 2016). A comparison
between Drosophila and human datasets could recover strong
hits, whose molecular dissection may be performed using
Drosophila as a model system.

The limiting-most aspect of this study is intrinsic to omics
approaches: functional analyses of candidates are needed to
genetically dissect gene functions and pathways, confirming their
role into the VHL pathogenesis.
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