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Abstract 24 

Background: Heterochromatin in eukaryotic interphase cells frequently localizes to the nucleolar 25 

periphery (nucleolus-associated domains, NADs) and the nuclear lamina (lamina-associated 26 

domains, LADs). Gene expression in somatic cell NADs is generally low, but NADs have not 27 

been characterized in mammalian stem cells.  28 

Results: Here, we generated the first genome-wide map of NADs in mouse embryonic stem cells 29 

(mESCs) via deep sequencing of chromatin associated with biochemically-purified nucleoli.  30 

As we had observed in mouse embryonic fibroblasts (MEFs), the large Type I subset of NADs 31 

overlaps with constitutive LADs and is enriched for features of constitutive heterochromatin, 32 

including late replication timing and low gene density and expression levels. Conversely, the 33 

Type II NAD subset overlaps with loci that are not lamina-associated, but in mESCs, Type II 34 

NADs are much less abundant than in MEFs. mESC NADs are also much less enriched in 35 

H3K27me3 modified regions than are NADs in MEFs. Additionally, comparision of MEF and 36 

mESC NADs revealed enrichment of developmentally regulated genes in cell type-specific 37 

NADs. Together, these data indicate that NADs are a developmentally dynamic component of 38 

heterochromatin. 39 

Conclusions: These studies implicate association with the nucleolar periphery as a mechanism 40 

for developmentally-regulated gene silencing, and will facilitate future studies of NADs during 41 

mESC differentiation. 42 

  43 

Introduction 44 

Eukaryotic genomes are broadly subdivided into more accessible, transcriptionally active 45 

euchromatin, and less accessible, less active heterochromatin. These functional classifications 46 
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are accompanied by spatial separation: heterochromatin is mainly found at the nuclear periphery 47 

and nucleolar periphery, where they comprise nucleolus-associated domains (NADs) (Németh et 48 

al. 2010; van Koningsbruggen et al. 2010) and lamina-associated domains (LADs) (Pickersgill et 49 

al. 2006; Guelen et al. 2008; Peric-Hupkes et al. 2010), respectively. Studies in multiple 50 

organisms indicate that sequestration of heterochromatin to the nuclear and nucleolar peripheries 51 

contributes to gene silencing (Fedoriw et al. 2012b; Zullo et al. 2012; Jakociunas et al. 2013). 52 

Therefore, there is great interest in discovering the molecular bases for these localizations. 53 

Notably, some trans-acting factors that specifically affect lamina (Zullo et al. 2012; Harr et al. 54 

2015) or nucleolar (Yusufzai et al. 2004; Zhang et al. 2007; Mohammad et al. 2008; Padeken and 55 

Heun 2014; Smith et al. 2014; Matheson and Kaufman 2017; Singh et al. 2018) associations 56 

have been reported, suggesting that distinct mechanisms contribute at the two locations.  57 

Both NADs and LADs are enriched for silent genes and histone modifications 58 

characteristic of constitutive heterochromatin, e.g. H3K9me2 and H3K9me3 (Matheson and 59 

Kaufman 2016; van Steensel and Belmont 2017). LADs have been mapped and studied in 60 

multiple species and cell types (Pickersgill et al. 2006; Guelen et al. 2008; Peric-Hupkes et al. 61 

2010; Kind et al. 2013; Borsos et al. 2019). In contrast, NADs have been characterized in a few 62 

human somatic cell lines (Németh et al. 2010; van Koningsbruggen et al. 2010; Dillinger et al. 63 

2017), in the plant Arabidopsis thaliana (Pontvianne et al. 2016), and recently, in mouse 64 

embryonic fibroblasts (MEFs) (Vertii et al. 2019). Several experiments indicate that LADs can 65 

be redistributed to the nucleolar periphery after passage through mitosis, and vice versa (van 66 

Koningsbruggen et al. 2010; Kind et al. 2013). However, the extent of overlap between LADs 67 

and NADs is unknown in most organisms and cell types.  68 
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Here, we mapped and characterized NADs in mouse embryonic stem cells (mESC), a 69 

tractable system for studying how NADs change during differentiation. As in MEFs (Vertii et al. 70 

2019), we identified a large subset of mESC NADs that overlap with LADs (Type I NADs), and 71 

a smaller subset of NADs that do not overlap LADs (Type II NADs).  However, Type II NADs 72 

are less prevalent in mESCs than in MEFs. mESC NADs are also notably less enriched in 73 

H3K27me3 modifications. Comparisons of MEF and mESC NADs also revealed enrichment of 74 

developmentally regulated genes in cell type-specific NADs. These analyses will facilitate future 75 

studies of genome dynamics during stem cell differentiation.  76 

 77 

Results 78 

Isolation of nucleoli from crosslinked F121-9 mESCs. We isolated nucleoli from formaldehyde-79 

crosslinked hybrid F121-9 mES cells using methods previously shown to yield reproducible data 80 

using MEF cells (Vertii et al. 2019). In those studies, crosslinked and non-crosslinked MEFs 81 

were directly compared, and shown to yield highly overlapping results, with crosslinked samples 82 

detecting a greater proportion of the genome associated with nucleoli (Vertii et al. 2019). This 83 

suggests crosslinking could assist detection of weak or transient nucleolar interactions. 84 

Therefore, we used crosslinking for all nucleoli isolation experiments here (Fig. 1A). The purity 85 

of isolated nucleoli was confirmed using phase-contrast microscopy (Fig. 1B). Immunoblot 86 

analysis of nucleolar fractions showed that they were enriched for nucleolar protein fibrillarin 87 

relative to beta-actin (Fig. 1C). Quantitative PCR analysis revealed 9-18-fold enrichment of 45S 88 

rDNA sequences in purified nucleolar DNA relative to genomic DNA (Fig 1D). These results 89 

indicated the enrichment of nucleoli in our preparations, hence we proceeded with whole-90 

genome sequencing of nucleolar DNA.   91 
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 92 

Bioinformatic analysis of NADs. We performed two biological replicate preparations of 93 

crosslinked F121-9 mESC nucleoli.  In each replicate experiment, we extracted nucleolar-94 

associated DNA from nucleoli, along with genomic DNA from whole cells from the same 95 

population of cells.  We sequenced approximately 50 million reads from each nucleolar and 96 

genomic DNA sample. We note that subsampling analyses of larger MEF datasets previously 97 

showed that the number of peaks detected had reached a plateau at this sequencing depth (Vertii 98 

et al. 2019). Genomic reads were mostly uniformly distributed across the genome, whereas 99 

nucleolar reads contained well-defined peaks and valleys, with peaks overlapping known 100 

heterochromatic regions, such as constitutive LADs (cLADs) (Peric-Hupkes et al. 2010) and late 101 

replicating regions (Hiratani et al. 2010) (Fig 2A, B). cLADs were previously defined as LADs 102 

that are lamina-associated in mESCs, and also in neural precursor cells (NPCs) and astrocytes 103 

differentiated from these mESCs (Peric-Hupkes et al. 2010). Previous studies of NADs have 104 

identified frequent overlap of NADs with LADs (van Koningsbruggen et al. 2010; Németh et al. 105 

2010; Dillinger et al. 2017; Vertii et al. 2019) and with late-replicating regions (Dillinger et al. 106 

2017; Vertii et al. 2019), thus we concluded that the nucleolar reads are enriched with bona fide 107 

nucleolar heterochromatic regions in F121-9 mESCs.  108 

 Calculating the log ratio of nucleolar reads to genomic reads resulted in a raw metric of 109 

nucleolar association across the genome (Nucleolus/gDNA ratio tracks in Fig. 2A, B). As in 110 

MEFs, visual inspection of the nucleolus/genomic ratio in mESC revealed a negative slope 111 

across chromosomes, especially noticeable on large chromosomes (Fig. 2B). Mouse 112 

chromosomes are acrocentric, i.e. the centromere is found at one end of a chromosome, and by 113 

convention these are annotated on the left. Because pericentromeric regions frequently associate 114 
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with nucleolar periphery (Ragoczy et al. 2014), nucleolar associations on centromeric end of 115 

chromosomes are usually more frequent. As we have demonstrated previously using MEFs data, 116 

peak calling based only on nucleolar/genomic ratio would result in identifying peaks mostly at 117 

the centromeric end and missing the smaller peaks at the end of chromosome distal to the 118 

centromere. For this reason, we used our previously described Bioconductor package named 119 

NADfinder (Vertii et al. 2019) to call NAD peaks in F121-9 mESCs. This software uses local 120 

background correction, which was important for detection of validated NAD peaks distal from 121 

centromeres in MEFs (Vertii et al. 2019). NADfinder peak calling was performed using the 122 

default settings with a 50kb window size, a testing threshold of log2(1.5) for background 123 

corrected log2(nucleolar/genomic) ratio to define the null hypothesis, and adjusted p-value < 124 

0.05 (Vertii et al. 2019). Potential peaks were further filtered to be > 50 kb long and to have log2 125 

ratio > 1.7.  126 

 127 

3D immuno-FISH confirmation of NAD peaks in F121-9 mESCs. To validate associations of 128 

NADs with nucleoli by an orthogonal method, we performed 3D immuno-FISH experiments, 129 

scoring association of BAC DNA probes with nucleolar marker protein fibrillarin (Figs. 3-4). We 130 

tested the association of a euchromatic negative control probe, pPK871, which lacks nucleolar 131 

association in MEFs (Vertii et al., 2019) and did not contain a peak in our F121-9 NAD-seq data. 132 

The frequency of nucleolar association for this probe was ~24% (Fig. 4A, B). Three additional 133 

non-NAD BAC probes (pPK825, pPK1000, and pPK1003) displayed similar levels of nucleolar 134 

association (Fig. 4A). The average association frequency for these non-NAD probes in F121-9 135 

cells is 22%, similar to the 20% frequency observed in MEF cells (Vertii et al., 2019). These 136 

observations result from stochastic positioning of loci within the nuclear volume. We note that 137 
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pPK825 was also not associated with nucleoli in MEFs, whereas pPK1000 and pPK1003 had not 138 

been tested in MEFs (Vertii et al. 2019). 139 

 We also analyzed BAC probes pPK914 and pPK915 (Fig. 3A, B), which overlap NAD 140 

peaks in both our F121-9 data and in MEFs (Vertii et al. 2019). In F121-9 cells, we observed that 141 

both of these probes displayed more frequent nucleolar association than did the the set of non-142 

NAD probes (pPK914, p < 0.0001; pPK915, p = 0.0002, Welch’s t-test), indicating that these 143 

regions are NADs in both MEFs and F121-9 mESCs (Fig. 4A, B). Both the pPK914 and pPK915 144 

probes overlap ciLAD regions, which means that these regions were not observed to associate 145 

with lamina in mESCs or MEFs (Peric-Hupkes et al. 2010). However, recent LAD maps of early 146 

mouse embryogenesis (Borsos et al. 2019) show that pPK914 probe is lamina-associated in 2-147 

cell and 8-cell embryos (Fig. 3A). Therefore, this region is nucleolar-associated in both mESCs 148 

and somatic cells, but lamina-associated only during limited periods in very early development. 149 

We also analyzed a region detected as a NAD in mESCs, but not in MEFs (pPK999, Fig. 3C). 150 

FISH analysis showed that this probe indeed displayed increased nucleolar association compared 151 

to non-NAD probes in F121-9 cells (Fig. 4A; p = 0.0220, Welch’s t-test). We note that this probe 152 

is lamina-associated throughout early embryonic stages (zygote, 2-cell, 8-cell embryos and 153 

mESCs), but not in somatic MEF cells (Fig. 3C). Furthermore, pPK999 contains the Egfr gene, 154 

for which transcript levels are higher in MEFs (FPKM value 51.5) (Delbarre et al. 2017) 155 

compared to mESCs (FPKM value 0.2 (Supplemental Table 1)). This is an example of a genomic 156 

locus that is nucleolar-associated and transcriptionally repressed in mESCs, and which is no 157 

longer associated and becomes more active in MEFs. In sum, these FISH data demonstrate that 158 

the identified NADs include bona fide nucleolar heterochromatic regions in F121-9 mESCs, 159 

conserved or regulated during cell differentiation.  160 
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The length of F121-9 NADs ranges up to 8 Mb (Fig. 4C), with median length 1.1 Mb, 161 

which is slightly larger than median length of MEF NADs, 0.7 Mb (Vertii et al. 2019). We noted 162 

that NADs in F121-9 cells covered 31% of the non-repetitive genome, a smaller percentage than 163 

observed in crosslinked MEF NADs (41%) (Vertii et al. 2019). The 31% fraction of the mESC 164 

genome in NADs is also smaller than the fraction of the mouse genome in LADs, either for 165 

embryonic stem cells or somatic cells (~40%) (Peric-Hupkes et al. 2010), or during early mouse 166 

embryogenesis (~40-60%) (Borsos et al. 2019) (see Discussion).  167 

 168 

Two types of NADs in F121-9 mESCs. In our previous analysis of MEF data, we had 169 

defined a “Type I” class of NADs as those overlapping LADs (Vertii et al. 2019). Additionally, a 170 

contrasting “Type II” class of NADs was defined which overlaps “constitutive interLADs” 171 

(ciLADs), the regions defined as those which were not lamina-associated during multiple steps 172 

of cellular differentiation (Peric-Hupkes et al. 2010). In MEFs, Type I NADs are approximately 173 

five-fold more abundant, and tend to replicate late; in contrast, the less abundant Type II NADs 174 

more frequently overlap with early replicating regions (Vertii et al. 2019). In F121-9 mESC 175 

NADs, we also observed abundant Type I NADs that overlap with cLADs (421 Mb of the total 176 

845Mb NAD population; Fig. 5A). However, Type II NADs that overlap with ciLADs comprise 177 

only 77 Mb, much less than the 147 Mb observed in similarly crosslinked MEFs (Fig. 5A; Vertii 178 

et al. 2019). Visual inspection of the distribution of the two classes in a genome browser 179 

illustrated the greater size of the Type I subset compared to Type II regions (Fig. 5B). Despite 180 

the small size of the F121-9 Type II NAD subset, we note that we have validated nucleolar 181 

association of two Type II NAD probes (pPK914, pPK915; Fig. 4A, B). These two probes have 182 

previously been confirmed to lack significant lamina association in MEFs (Vertii et al. 2019). 183 
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Both overlap ciLAD regions (Fig. 3A, B), indicating that they lack lamina association during 184 

multiple steps in the process of differentiation from mES cells to astrocytes (Peric-Hupkes et al. 185 

2010; Meuleman et al. 2013). We conclude that in mES cells, as in MEFs, a large proportion of 186 

NADs overlap LAD regions, but that the amount of ciLAD overlap in mES cells is smaller.  187 

We then analyzed gene density and gene expression characteristics of the different NAD 188 

subsets from F121-9 cells. As we had observed in MEFs (Vertii et al., 2019), gene density of 189 

Type II NADs was greater than that of NADs as a whole, which in turn have higher gene density 190 

compared to Type I NADs (Fig. 5C). Using RNA-seq data we obtained from the same 191 

preparations of F121-9 cells that were used for nucleolar purification, we analyzed genomic 192 

trends in steady-state mRNA levels by plotting the distributions of the FPKM values. As in 193 

MEFs (Vertii et al. 2019), F121-9 NADs displayed lower FPKM values than the genome-wide 194 

average (p < 0.0001). In addition, FPKM values for the Type I NAD subset were significantly 195 

lower than those for NADs as a whole (p < 0.0001) (Fig. 5D). Thus, Type I NADs in both MEFs 196 

and F121-9 cells display low gene expression levels characteristic of heterochromatin. In 197 

contrast, in F121-9 cells Type II NADs displayed mean gene expression levels that are slightly 198 

higher than those observed in the whole genome (p < 0.0003) or even in non-NAD regions (p < 199 

0.0233) (Fig. 5D). Therefore, in both F121-9 cells and MEFs (Vertii et al., 2019), Type II NADs 200 

can become associated with nucleoli without adopting the highly silenced status of Type I 201 

NADs. 202 

However, F121-9 NADs displayed a prominent difference from those in MEFs, regarding 203 

overlap with H3K27me3 peaks. We note that H3K27me3 is functionally important for 204 

heterochromatin localization because Ezh2 inhibitors that block this modification decrease 205 

laminar and nucleolar associations by heterochromatin (Harr et al. 2015; Vertii et al. 2019). In 206 
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MEFs, we observe frequent overlap of H3K27me3 peaks (Delbarre et al. 2017) with both Type I 207 

(117 Mb out of 567 Mb) and Type II NADs (101 Mb out of 147 Mb) (Fig. 5G, H; Vertii et al. 208 

2019). In contrast, in F121-9 cells we observed that overlap of NADs with H3K27me3-enriched 209 

domains (Cruz-Molina et al. 2017) was much smaller than observed in MEFs: only 9 Mb of the 210 

421 Mb of Type I NADs and 22 Mb of 77 Mb of Type II NADs overlap with H3K27me3 211 

domains (Fig. 5E, F). These differences likely reflect the lower abundance of repressive histone 212 

marks in mESCs compared to differentiated cells; this includes H3K27me3, which becomes 213 

more abundant during differentiation ((Martens et al. 2005; Hawkins et al. 2010; Atlasi and 214 

Stunnenberg 2017); see Discussion). Indeed, our analysis of an F121-9 data set (Cruz-Molina et 215 

al. 2017; see Methods) detected 517 Mb of H3K27me3 peak regions in F121 cells, and an almost 216 

two-fold larger amount (990 Mb) was found in MEFs (GSM1621022; Delbarre et al. 2017)). 217 

However, we note that the amount of H3K27me3 peaks in NADs is much more than two-fold 218 

greater in MEFs (417 Mb, Fig. 5G, H) than in F121-9 cells (66 Mb, Fig. 5E,F). Together, these 219 

data suggest that H3K27 methylation is a key aspect of NAD chromatin maturation that has not 220 

yet occurred fully in mES cells (see Discussion). 221 

 222 

Cell type-specific and conserved NADs. We compared F121-9 stem cell NADs with 223 

crosslinked MEF NADs (Vertii et al. 2019), defining overlapped regions on a nucleotide-by-224 

nucleotide basis (e.g. Fig. 6A). Close to 80% (660 Mb) of nucleotides in stem cell NADs overlap 225 

with nucleotides in MEF NADs (Fig. 5A). We designate NADs shared by MEFs and F121-9 226 

stem cells as “conserved NADs”. Analysis of the intersection of conserved NADs with cLAD 227 

and ciLAD regions revealed that more than half of conserved NADs overlap cLADs (370 Mb; 228 

Fig. 5A), which are the most gene-poor subset of LADs and are generally poorly expressed, 229 
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constitutive heterochromatin (Peric-Hupkes et al. 2010; Meuleman et al. 2013; van Steensel and 230 

Belmont 2017). Consistent with these trends, Jaccard similarity coefficient analysis indicated 231 

high correlation of conserved NADs with cLADs and late replicating regions (Marchal et al. 232 

2018) (Fig. 6B). Furthermore, the conserved NADs display the lowest transcript levels in both 233 

cell types (Fig. 6C-F), as expected due to the constitutive heterochromatic features of these 234 

regions.  235 

We next turned our attention to NADs found only in one of the two analyzed cell types.  236 

The Jaccard analysis indicated that these cell type-specific NAD regions (i.e. “MEF-specific 237 

NADs” and “F121-9-specific NADs”) are distinct from the conserved NADs, clustering 238 

separately from conserved NADs, cLAD and late replicating regions (Fig. 6B). We analyzed 239 

steady-state mRNA levels in conserved and cell type-specific NADs by using FPKM values 240 

from F121-9 and MEF (Delbarre et al. 2017) RNA-seq data (Fig. 6C, D). As we expected, MEF 241 

RNA-seq data revealed lower levels of transcripts from genes within MEF-specific NADs than 242 

from F121-9-specific NADs (p-value < 0.0001) (Fig. 6C), indicating that in MEFs, nucleolar 243 

association correlates with transcriptional silencing. In contrast, our RNAseq data from F121-9 244 

cells showed that transcript levels within both the MEF-specific NADs and the F121-9-specific 245 

NADs are statistically indistinguishable (p-value = 0.82) (Fig. 6D). We observed similar trends 246 

in independent sets of MEF and mESC RNA-seq data from the literature (Lowe et al. 2015; 247 

Chronis et al. 2017) (Fig. 6 E, F). These observations were unexpected in that the MEF-specific 248 

NADs are not nucleolar-associated in the F121-9 cells, yet are on average less highly expressed 249 

than non-NAD genes in these cells. These data suggest that in F121-9 stem cells, gene repression 250 

could precede localization to the nucleolar periphery that occurs later during cellular 251 

differentiation (see Discussion).  252 
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 253 

Gene Ontology analysis of conserved and cell-type specific NADs. To further characterize the 254 

conserved NADs, we next analyzed enriched GO-terms within these. The most significantly 255 

enriched Molecular Functions term was “Response to smell detection” (Fig. 7A; Supplemental 256 

Table 3), including olfactory receptor (OR) and vomeronasal receptor genes. These clustered 257 

genes are not expressed in either stem cells or fibroblasts and are frequently within NADs in both 258 

F121-9 stem cells and MEFs (e.g. the OR genes on chr11, Fig. 7B). Among other well-259 

represented gene families in conserved NADs were cytochrome P450 family members: Cyp2a12, 260 

Cyp2b10, Cyp2c50 (“heme-interacting genes” in Fig. 7A), which are responsible for breaking 261 

down toxins, as well as synthesizing steroid hormones, fats and acids, and are most highly 262 

expressed in liver (Hannemann et al. 2007). Neurotransmitter receptors were also enriched for 263 

conserved NADs, for example, genes that encode for glutamate receptors (Gria2, Grid2, etc.), 264 

GABA-A receptors (Gabra5, Gabrb1, etc.) and glycine receptors (Glra1, Glrb, etc.). The 265 

common thread among these gene classes is in that they are developmentally regulated, and most 266 

strongly induced in lineages not represented by embryonic stem cells or fibroblasts.  267 

We next analyzed the F121-9-specific NADs. Among these, chemotactic cytokines were 268 

the GO-derived “Molecular Functions” class with the lowest q-value (Fig. 7C; Supplemental 269 

Table 4). The majority of these chemokines are represented by the CC chemokine ligand family, 270 

a cluster of which is shown in Fig. 7D. This cluster of Ccl2, Ccl12 and Ccl1 genes has 271 

heterochromatic features in the F121-9 cells: late replication timing, no steady-state mRNA 272 

transcripts, presence within both LAD and NAD regions. In contrast, in MEFs this gene cluster is 273 

within neither NAD nor LAD sequences and has euchromatic features, including early 274 
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replication timing and high gene transcript levels. This is an example of a genomic region in 275 

which multiple features are altered, becoming more euchromatic upon differentiation.  276 

We then considered the converse case, the MEF-specific NADs. Among these, the 277 

“Biological Processes” GO classifications included genes responsible for differentiation along 278 

the anterior-posterior axis (Fig. 7E; Supplemental Table 5), an example of which is Pcska6 gene 279 

(Fig. 7F). This genomic region displays euchromatic features (overlapping a ciLAD region, early 280 

replicating timing and high transcript levels: FPKM value 22.2) in mESCs, befitting the need for 281 

anterior-posterior axis establishment factors at this early developmental stage. In MEFs, this 282 

locus displays altered features, becoming nucleolar-associated, and generating reduced transcript 283 

levels (FPKM value 6.6) (Delbarre et al. 2017). In general, both conserved and cell type-specific 284 

NADs generally include genes that display reduced expression levels, suggesting that nucleolar 285 

localization could contribute to (or be a consequence of) the transcriptional silencing of resident 286 

genes. A major question remains as to how functionally distinct classes of NADs (e.g. Type I 287 

and Type II NADs) are targeted to nucleoli, and how this has distinct transcriptional 288 

consequences in each case (e.g. Fig. 5D; see Discussion). 289 

 290 

Discussion 291 

Heterochromatin formation during differentiation. Several types of evidence indicate 292 

that compared to differentiated cells, chromatin in mESCs is less condensed, and the ratio of 293 

euchromatin to heterochromatin is higher (Gaspar-Maia et al. 2011). For example, fluorescence 294 

recovery after photobleaching experiments demonstrated that mESCs display more highly 295 

mobile core and linker histones, as well as Heterochromatin Protein 1 (HP1α) than do 296 

differentiated cells. These features are thought to contribute to the transcriptional hyperactivity in 297 
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pluripotent stem cells (Meshorer et al. 2006; Bhattacharya et al. 2009). For example, many 298 

repetitive elements that are silent in somatic cells are transcribed in mESCs (Efroni et al. 2008). 299 

Microscopy studies showed that electron-dense heterochromatic structures are less condensed 300 

and less frequently localize near nuclear lamina in mESCs compared to heterochromatin in 301 

differentiated cells (Hiratani et al. 2010; Ahmed et al. 2010; Mattout et al. 2015). Particularly 302 

relevant to our studies, more prominent electron-dense perinucleolar heterochromatin-like 303 

structures have been observed in differentiated cells, such as NPCs, compared to mESCs (Savić 304 

et al. 2014). In concert with changes in the appearance and localization of heterochromatin, the 305 

abundance of heterochromatic marks such as H3K27me3, and H3K9me3 increases during 306 

differentiation (Lee et al. 2004; Martens et al. 2005; Meshorer et al. 2006; Wen et al. 2009; 307 

Hawkins et al. 2010). Together, these data are consistent with our observation that NADs in 308 

mESCs comprise a smaller fraction of the genome compared to MEFs (31 vs. 41%). Likewise, 309 

genome coverage by LADs increases during differentiation. For example, a recent study shows 310 

that LADs are first established immediately after fertilization, preceding TAD formation and 311 

instructing A/B compartment establishment (Borsos et al. 2019).  312 

The Type II class of NADs is different in stem cells and fibroblasts. Two functionally 313 

distinct classes of NADs have recently been reported in mouse embryonic fibroblasts (Vertii et 314 

al. 2019). Here, we show that in F121-9 mESCs, Type I NADs that overlap LAD regions are 315 

frequently the same as those found in MEFs (Fig. 5A), and exhibit similar low gene expression 316 

levels as expected for constitutive heterochromatin (Fig. 5D). In contrast, the Type II NADs 317 

defined by their overlap with ciLAD regions is much smaller in F121-9 than in MEF cells (Fig. 318 

5A). We also note that NADs in F121-9 cells display much less overlap with H3K27me3 peaks 319 

than do MEF NADs (Fig. 5E-H). Together, these data suggest that acquisition of H3K27me3, the 320 
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hallmark of facultative heterochromatin (Trojer and Reinberg 2007) by NADs is part of the 321 

process of cellular differentiation. Indeed, we note that GO analysis of MEF Type II NADs 322 

showed enrichment for developmentally regulated GO terms, for example, organ morphogenesis 323 

and sensory organ development (Vertii et al. 2019). Thus, stem cells prevent developmentally 324 

important genes from acquiring characteristics of facultative heterochromatin including nucleolar 325 

association, whereas these genes can become NADs after they are no longer required during 326 

development.  327 

How are NADs targeted to nucleoli? The precise mechanisms for targeting the two 328 

distinct classes of NADs to nucleoli remain unclear. Several studies implicate phase separation in 329 

the formation of heterochromatin domains (Larson et al. 2017; Strom et al. 2017; Shin et al. 330 

2018) and nuclear bodies, such as nucleoli (Brangwynne et al.; Feric et al. 2016; Mitrea et al. 331 

2016). Our recent data suggest that Type II NADs are more sensitive than Type I NADs to 332 

hexanediol treatment (Vertii et al. 2019). Hexanediol perturbs phase separation, likely due to 333 

interfering with weak hydrophobic interactions that are important for liquid-like condensate 334 

formation (Ribbeck and Görlich 2002). Liquid-liquid demixing reactions frequently involve 335 

proteins that have intrinsically disordered regions (IDR) and RNA recognition motifs (Feric et al. 336 

2016), as found for example in nucleolar proteins fibrillarin (Fbl) and nucleophosmin (Npm1).  337 

Notably, depletion of Nlp, the Drosophila homolog of Npm1, led to declustering of centromeres 338 

and decreased association of centromeres with nucleolar periphery (Padeken et al. 2013). 339 

Therefore, it is possible that Type II NADs are specifically targeted to nucleolar periphery 340 

through the interactions between nucleolar proteins with IDRs (e.g. Npm1) with RNA species 341 

that are yet to be identified. Additionally, Polycomb repressive complex 1 (PRC1) protein 342 

chromobox 2 (CBX2) undergoes phase separation and forms liquid-like condensates in mESCs 343 
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(Tatavosian et al. 2019), and Polycomb proteins are part of the MiCee complex that together 344 

with let-7 family miRNAs confers nucleolar association to specific loci (Singh et al. 2018). 345 

Therefore, Polycomb group (PcG) proteins are good candidates for nucleolar targeting of Type II 346 

NADs via phase separation. This may be especially important during differentiation, when PcG 347 

proteins gain special importance (Aloia et al. 2013; Lavarone et al. 2019). However, inhibition of 348 

PRC2 enzymatic activity decreases both nucleolar (Singh et al. 2018; Vertii et al. 2019) and 349 

laminar heterochromatin localizations (Harr et al. 2015), making it unlikely that PRC2 can target 350 

loci to a unique destination. Additionally, nucleolar localization of the Kcnq1 locus can occur in 351 

cells lacking functional Polycomb complexes (Fedoriw et al. 2012a), indicating that multiple 352 

mechanisms likely exist. Other candidate trans-acting factors that could specifically target 353 

genomic regions to the nucleolar periphery are the proteins Ki-67 and the p150 subunit of 354 

Chromosome Assembly Factor-1 (CAF-1) (Smith et al. 2014; Matheson and Kaufman 2017), 355 

and the Kcnq1ot1 (Mohammad et al. 2008) and Firre (Yang et al. 2015) long non-coding RNAs.  356 

Anomalies of MEF-specific NADs in stem cells. One question of interest is whether 357 

nucleolar association leads to, or is a consequence of, transcriptional repression. Notably, 358 

previous studies have shown that tethering of loci to the nucleolar periphery via 5S rDNA 359 

sequences results in transcriptional silencing (Fedoriw et al. 2012b), so at least in that case a 360 

causal relationship has been established. 361 

In MEF cells, genes in the MEF-specific NADs display mean expression levels lower 362 

than genes in the F121-9-specific NADs (p < 0.0001) (Fig. 6C, E). This is the expected situation, 363 

in which genes that had been in NADs earlier in development (e.g. in stem cells) become 364 

derepressed if that localization is lost.  In contrast, in F121-9 cells, genes within MEF-specific 365 

NADs showed similar transcript levels as genes within F121-9-specific NADs (p = 0.82, Fig. 366 
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6D); the same was true in other mES cells analyzed (p = 0.13, Fig. 6F). Why aren’t the MEF-367 

specific NADs more transcriptionally active in stem cells, since they haven’t yet acquired 368 

nucleolar association? This could be due to other repressive mechanisms acting on regions 369 

within MEF-specific NADs, for example, lamina association: 40% of MEFs-specific NADs 370 

overlap with cLADs (Fig. 5A). Alternatively, additional factors contributing to transcriptional 371 

repression may precede (and perhaps contribute to) nucleolar association. Development of 372 

reagents allowing control of perinucleolar associations will be key to exploring the relationship 373 

between nucleolar localization and transcriptional repression.  374 

 375 

Materials and Methods 376 

F121-9 mESC nucleoli isolation. For each preparation, cells were grown in eleven 15-cm plates 377 

and harvested one or two days after seeding them, with total cell numbers of 3-5 x 108 per 378 

preparation. One hour prior to nucleoli isolation, old cell culture medium was replaced with fresh 379 

medium. Plates grown in parallel were used for genomic DNA extraction (DNeasy Blood & 380 

Tissue kit, Qiagen), and RNA extraction (TRIzol, ThermoFisher Scientific and RNeasy mini kit, 381 

Qiagen).  382 

 383 

Crosslinked isolation of nucleoli was done as described previously (Vertii et al. 2019)).  384 

 385 

Cell culture. F121 mouse embryonic stem cell (mESC) line is a female cell line derived from a 386 

cross between male Castaneus and female 129 mice in Jaenisch lab (Rasmussen et al. 1999), and 387 

F121-9 was subcloned in Gribnau lab. F121-9 cells were obtained from Gilbert lab at passage 8. 388 

The cells were grown on gelatin-coated plates and cultured in 2i medium. Accutase (EMD 389 
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Millipore SF006) was used to detach cells from plates and passage into new dishes. Prior to 390 

seeding cells, dishes were coated with 0.1% gelatin (EMD Millipore, SF008) for at least 25 min 391 

at room temperature, after which gelatin was aspirated. Dishes were rinsed with DPBS (Gibco, 392 

14190144), which was aspirated, and cells were seeded in these dishes. 2i medium was obtained 393 

as described previously (Vertii et al. 2019). Cells were passaged at 3 x 104/cm2 density. 2X 394 

HyCryo-STEM cryopreservation medium (GE Healthcare, SR30002.02) was used to freeze cells.  395 

 396 

Quantitative PCR. DNA was extracted from input whole cells and purified nucleoli using 397 

DNeasy Blood & Tissue kit (Qiagen). Quantitative PCR analysis was done as outlined 398 

previously (Vertii et al. 2019).  399 

 400 

Antibodies. The following antibodies were used: fibrillarin (Abcam, ab5821), actin (Sigma-401 

Aldrich, A1978) and nucleophosmin (Abcam, ab10530). Secondary antibody for 402 

immunofluorescence was Alexa 594-conjugated donkey anti-rabbit (ThermoFisher, A-21207) 403 

and Alexa 594-conjugated goat anti-mouse (ThermoFisher, A-11020). For western blots, 404 

horseradish peroxidase (HRP) anti-mouse and anti-rabbit secondary antibodies (Jackson 405 

ImmunoResearch) were used.  406 

 407 

Immunoblotting. Proteins from total cell lysates and purified nucleoli were analyzed as noted 408 

previously (Vertii et al. 2019). 409 

 410 

DNA isolation, deep sequencing, and read preprocessing and mapping. Total genomic and 411 

nucleolar DNA was purified using DNeasy Blood & Tissue kit (Qiagen). Libraries were 412 
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generated using NEBNext Ultra II DNA Library Prep Kit for Illumina (New England Biolabs). 413 

The DNA was fragmented to a size of 350 bp, and these fragments were size selected with 414 

sample purification beads. 150 bp paired-end sequencing was performed using Illumina reagents. 415 

52.1 and 51.5 million reads were obtained for two replicates of genomic samples, and 49.4 and 416 

52.8 million reads were obtained for two replicates of nucleolar samples. >95% of nucleolar 417 

samples, and >96% of genomic samples were mappable. For more information regarding 418 

sequencing, please see the files at data.4dnucleome.org under accession numbers 419 

4DNESXE9K9DB, 4DNESUJZ5FL2. Trimming and alignment of mapped reads to the mouse 420 

genome (mm10) was done as previously described (Vertii et al. 2019).  421 

 422 

RNA isolation, deep sequencing, and read preprocessing and mapping. Total RNA from two 423 

replicates of F121-9 mESC were extracted using TRIzol (ThermoFisher Scientific) and purified 424 

using RNeasy mini kit (Qiagen). Libraries were constructed using NEBNext Ultra II RNA 425 

Library Prep kit for Illumina (New England Biolabs). The mRNA was fragmented, and double-426 

stranded cDNA library synthesized, and completed through size selection and PCR enrichment. 427 

150 bp paired-end sequencing was achieved using Illumina HiSeq 4000 platform. 22.2 and 26.7 428 

million reads were obtained for each of the two replicates of mESC RNA. >92% of replicate 1, 429 

and >86% of replicate 2 were mappable. For more information regarding sequencing, please see 430 

the files at data.4dnucleome.org under accession number 4DNESDHILYLU. The quality of the 431 

sequencing reads was evaluated with fastqc (0.11.5) 432 

(https://www.bioinformatics.babraham.ac.uk/projects/fastqc/)The paired-end reads were aligned 433 

to the mouse genome (ensemble GRCm38) using STAR (version 2.5.3a) with ENCODE 434 

standard options as --outFilterMultimapNmax 20,  --alignSJoverhangMin 8,   --435 
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alignSJDBoverhangMin 1, --outFilterMismatchNmax 999, --alignIntronMin 20, --436 

alignIntronMax 1000000  and  --alignMatesGapMax 1000000. Additional parameter settings are 437 

--outFilterMismatchNoverReadLmax 0.04 and --outSAMattributes NH HI NM MDTo visualize 438 

the mapped reads, bigwig files were generated using bamCoverage function in deepTools2 with 439 

the parameter setting as --normalizeUsingRPKM  440 

 441 

DNA-FISH probes. The bacterial artificial chromosomes (BACs) were obtained from the 442 

BACPAC Resource Center of Children’s Hospital Oakland Research Institute (Oakland, CA). 443 

DNA was isolated using BAC DNA miniprep Kit (Zymo Research). BAC probes were labeled 444 

using BioPrime Labeling Kit (ThermoFisher). Streptavidin, Alexa Fluor 488 conjugate 445 

(ThermoFisher, S-32354) was used to stain biotin-labeled BAC probes. Probes are described in 446 

Supplemental Table 2.  447 

 448 

3-D DNA FISH/ immunocytochemistry and microscopy.3-D DNA FISH/ immunocytochemistry-449 

labeling was performed as described previously (Vertii et al. 2019), except that DNA FISH-450 

labeling was done after immunocytochemistry, and coverslips were not treated with RNA 451 

removal solution. F121-9 mESC were seeded on 0.1% gelatin-coated 22 x 22 mm coverslips 452 

(Corning, 2850-22), with total cell number 150-250 x 103 cells/coverslip, and permeabilized and 453 

fixed the next day. Nucleoli were stained with anti-fibrillarin antibodies, except in the third 454 

biological replicates of the pPK999 and pPK1000 analyses anti-nucleophosmin antibodies were 455 

used instead.  456 

Images were acquired using Zeiss LSM 700 laser scanning confocal microscope and PMT 457 

detector (63x 1.40 Oil DIC M27 Plan-Apochromat objective). DNA-FISH probes were counted 458 
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through z-stacks manually and scored as “associated” if there was no gap between the probe and 459 

the nucleolar marker. Each probe was analyzed in at least three biological replicates, with at least 460 

100 alleles scored in each replicate.  Z stacks are represented as 2D maximum projections using 461 

Fiji software (Schindelin et al. 2012). Statistical analyses were done using GraphPad Prism 462 

software. p-values were calculated using arcsine values of the square roots of nucleolus-463 

associated proportions.  464 

 465 

NAD identification and annotation. We used the same workflow for NAD-seq data analysis as 466 

described previously (Vertii et al. 2019), except that we removed 20 NAD peaks that are less 467 

than 50 kb long (totaling 0.74 MB). Because there are 624 peaks totaling 845 Mb in the F121-9 468 

NAD-seq data, this represents 0.087% of the NAD nucleotides. We used version 1.6.1 of 469 

NADfinder for NAD identification in this manuscript.  470 

Nucleotide-level overlap analyses of F121-9 NADs with cLADs, ciLADs (Peric-Hupkes et al. 471 

2010), MEF NADs (Vertii et al. 2019), and H3K27me3-enriched domains (GSM2416833; 472 

(Cruz-Molina et al. 2017); GSM1621022; (Delbarre et al. 2017)) were performed using 473 

GenomicRanges (Lawrence et al. 2013) as described in detail in Vertii et al., 2019. These 474 

nucleotide-based overlap analyses in some cases generated small overlapped regions, such that 475 

single genes would end up with both Type I and Type II designations, or both MEF-specific and 476 

F121-9-specific designations. Because the biology of NADs is centered on large (~1 MB-sized) 477 

domains, we removed regions <50 kb in length from overlap analyses of Type I and II NADs and 478 

from cell-type-specific NADs to avoid these confounding designations.  GO enrichment analyses 479 

of conserved and cell type-specific NADs derived from the overlap analysis were performed 480 

using ChIPpeakAnno . mESC H3K27me3-enriched domains were identified based on 481 
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H3K27me3 ChIP-seq data (GSM2416833; Cruz-Molina et al. 2017) using RSEG (v0.4.9) with 482 

20 iterations for Baum training . MEF H3K27me3-enriched domains were obtained from 483 

GSM1621022 (Delbarre et al. 2017). FPKM values based on MEF RNA-seq data were obtained 484 

from GSM1621026 (Delbarre et al. 2017) and GSE90894 (Chronis et al. 2017). FPKM values 485 

from mES RNA-seq data were obtained from GSM1418813 (Lowe et al. 2015). Calculations of 486 

the statistical significance of pairwise comparisons were performed using Welch’s t-test in 487 

GraphPad Prism. 488 

 489 

The NADfinder software is available at: 490 

 491 

https://urldefense.proofpoint.com/v2/url?u=https-492 

3A__bioconductor.org_packages_release_bioc_vignettes_NADfinder_inst_doc_NADfinder.html493 

&d=DwIFAw&c=WJBj9sUF1mbpVIAf3biu3CPHX4MeRjY_w4DerPlOmhQ&r=JqQ8_Clm34x494 

p32rT3DzotqsofamUUUyNmo3M4_tlIEI&m=Lq6n57MH0XVDSsayaTs25TVTysYxezReg6cH495 

QXKhVNk&s=BG-jkVe3qQRszk64lZLOGYCGqyYe-h9NoghI0r8I1bM&e=, 496 

 497 

We calculated Jaccard indexes among NADs, cLAD/ciLAD (Peric-Hupkes et al. 2010), and 498 

F121-9 early/late replication timing (GSE95091 (Marchal et al. 2018)). The Jaccard index is the 499 

size of the intersect divided by the size of the union of two sets. The higher the Jaccard index, the 500 

higher the extent of the overlap.  501 

Boxplots and comparisons of gene densities (genes/Mb) and gene expression distributions were 502 

performed using R For statistical comparisons, p-values were calculated using Welch’s t-test. 503 

 504 
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Figure 1. Isolation and characterization of purified nucleoli in mESC. 528 

A. Schematic diagram of nucleoli isolation from crosslinked cells. 529 

B. Phase-contrast microscopy images of F121-9 mESC grown in colonies (left panel), and 530 

nucleoli purified from them (right panel). 20x magnification, scale bar 200 μm. The inset (lower 531 

right) shows a 3x magnified image of the purified nucleoli. 532 

C. Immunoblots of fractions generated during nucleoli isolation from two replicate experiments. 533 

Fractions are labeled as shown in Fig. 1A. Fibrillarin was enriched, and beta-actin depleted, in 534 

nucleolar fractions. 535 

D. RT-qPCR measurement of 45S rDNA enrichment in nucleolar DNA from replicate 536 

experiments 1 and 2. Two different primer sets were used. Data are represented as mean 537 

enrichment relative to genomic DNA, error bars represent standard deviations for triplicate 538 

technical measurements. 539 

 540 

Figure 2. Analysis of F121-9 NAD sequencing data and comparison with heterochromatin. 541 

A. All of chromosome 19 is shown, which contains strongly nucleoli-associated regions. From 542 

the top, tracks shown are: Constitutive interLADs (ciLADs, cyan) and Constitutive LADs 543 

(cLADs, red) (Peric-Hupkes et al. 2010); mESC replication timing (Hiratani et al. 2010, early 544 

replicating regions in cyan and late replicating regions in red); F121-9 cell NAD peaks (“F121-9 545 

NADs”, called using NADfinder software based on two replicate experiments); Nucleolar/gDNA 546 

ratios, shown for both replicate experiments; raw read counts from both replicates for nucleoli-547 

associated (“Nucleolus”, brown) DNA and total genomic DNA (“gDNA”, dark blue).  548 

B. As in panel A, with all of chromosome 9 shown.  549 

 550 
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Figure 3. Genomic locations of BACs used for FISH experiments. 551 

For each panel, BAC locations are outlined by a black box and indicated with a red horizontal 552 

bar above the top track. From the top, tracks include cLADs (red) and ciLADs (cyan) (Peric-553 

Hupkes et al. 2010), followed by mESC replication timing (Hiratani et al. 2010). Next are LADs 554 

from the indicated early embryonic stages (magenta) (Borsos et al. 2019), followed by F121-9 555 

cell NAD peaks (blue) and RNA-seq data from the same preparations of F121-9 cells used to 556 

generate the NAD data. At the bottom are data from MEF cells for comparison: replication 557 

timing (Hiratani et al. 2010), LADs (Peric-Hupkes et al. 2010), NAD peaks from crosslinked 558 

cells (Vertii et al. 2019) and RNA-seq (GSM2453368 (ENCODE Project Consortium 2012)).  559 

A. pPK914. This BAC is within a NAD in both F121-9 and MEF cells, and its overlap with a 560 

ciLAD region (cyan) indicates a lack of lamina association in these cell types. However, it does 561 

become lamina-associated in the 2-cell and 8-cell stages of early embryonic development 562 

(Borsos et al. 2019). This NAD contains ion channel genes (Kcnj6, Kcnj15) and Ets-family 563 

transcription factors (Erg, Ets2). 564 

B. pPK915. This ciLAD-overlapped BAC is a NAD in both F121-9 and MEF cells, encoding 565 

solute carrier membrane transport proteins (Slc22a1, 2, 3) and plasminogen (Plg).  566 

C. pPK999. This BAC overlaps a late-replicating LAD that contains the genes encoding 567 

epidermal growth factor receptor (Egfr), EGFR Long Non-coding Downstream RNA (Eldr), 568 

pleckstrin (Plek), and cannabinoid receptor interacting protein 1 (Cnrip1). This NAD is part of a 569 

LAD throughout early embryonic development, at zygote, 2-cell, 8-cell and mESC stages 570 

(Borsos et al. 2019). Note that in MEF cells this region is not identified as a NAD, is early 571 

replicating, and displays greater expression of Egfr. 572 

 573 
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Figure 4. 3D DNA-FISH experiments validate nucleolar association of NADs in F121-9 574 

mESC. 575 

A. Left: graph of percentage of alleles that are nucleolar-associated (mean ± standard deviation 576 

for n = 3 biological replicates) for the indicated (see Supplmental Table 2) non-NAD BAC 577 

probes (blue bars) and NAD probes (red bars). Right: data from the left graph were grouped into 578 

non-NADs (blue bar) and NADs (red bar). NADs display significantly greater nucleolar 579 

association than non-NADs (p < 0.0001, Welch’s t-test). 580 

B. Maximum projection images from 3D immuno-FISH experiments with nuclear DAPI staining 581 

in blue, anti-fibrillarin antibody staining in red, and DNA probes (pPK871, pPK914 and 582 

pPK915) in green. 63x magnification, scale bar 10 μm. 583 

C. Length distribution of F121-9 NADs, compared to those from crosslinked MEF cells (Vertii et 584 

al. 2019).  585 

 586 

Figure 5. Two types of NADs in F121-9 mESC. 587 

A. Venn diagram illustrating the overlaps among F121-9 NADs, MEF NADs (Vertii et al. 2019), 588 

cLAD, and ciLAD regions (Peric-Hupkes et al. 2010). Numbers show the size of the indicated 589 

regions in Mb.  590 

B. Chromosomal view of F121-9 NADs overlapping cLADs and ciLADs. The entire 591 

chromosome 19 is shown. Euchromatic features (early replication timing, ciLAD) are displayed 592 

in cyan, and heterochromatic features (late replication timing, cLAD) are shown in red. From the 593 

top, displayed tracks are mESC replication timing (Hiratani et al. 2010), cLAD (Peric-Hupkes et 594 

al. 2010), NAD overlap with cLAD (i.e. Type I NADs, magenta), nucleolar/genomic ratio and 595 

NAD peaks (blue), NAD overlap with ciLAD (i.e. Type II NADs, green), ciLAD (Peric-Hupkes 596 
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et al. 2010), H3K27me3 domains, and mESC H3K27me3 ChIP-seq data (Cruz-Molina et al. 597 

2017) used for H3K27me3 domain identification (olive green).  598 

C. Gene densities (genes/Mb) of the indicated regions, ranked left to right. “NAD” indicates all 599 

F121-9 NADs.  600 

D. A box plot of gene expression levels from F121-9 RNA-seq data, expressed as 601 

log10(FPKM+1) for the same indicated genomic regions as in panel C. The top of the red box 602 

indicates the mean value for each population, and the standard deviation is marked by the red 603 

error bar.  604 

E. Venn diagram illustrating the overlaps among F121-9 NADs, cLADs (Peric-Hupkes et al. 605 

2010) and mESC H3K27me3 domains (Cruz-Molina et al. 2017). Numbers indicate the size of 606 

regions in Mb. The overlaps among all three sets (9 Mb) and between the cLAD and H3K27me3 607 

sets (10 Mb) are left off the diagram because of their small sizes. Diagram was generated using 608 

eulerAPE 3.0 . 609 

F. As in panel E, except here the overlap analysis includes ciLADs (Peric-Hupkes et al. 2010) 610 

instead of cLADs.  611 

G. As in panel E, except here Venn diagram illustrates the overlaps among crosslinked MEF 612 

NADs (Vertii et al. 2019), cLADs (Peric-Hupkes et al. 2010) and MEF H3K27me3 domains 613 

(Delbarre et al. 2017).  614 

H. As in panel G, except here the overlap analysis includes ciLADs (Peric-Hupkes et al. 2010) 615 

instead of cLADs.  616 

 617 

 618 

Figure 6. Conserved and cell type-specific NADs. 619 
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A. IGV browser view of entire chromosome 15. Euchromatic features (early replication timing, 620 

ciLAD) are displayed in cyan, and heterochromatic features (late replication timing, cLAD) are 621 

shown in red. From the top, tracks shown are cLAD, ciLAD (Peric-Hupkes et al. 2010), mESC 622 

replication timing (Hiratani et al. 2010), F121-9 nucleolar/genomic ratio and F121-9 NAD peaks 623 

(blue), “F121-9 specific NADs”, i.e. NADs found only in F121-9 cells  (light blue), “conserved 624 

NADs”, or NADs shared between F121-9 and MEFs (magenta), “MEF-specific NADs” (dark 625 

green), MEF NAD peaks and MEF nucleolar/genomic ratio (Vertii et al. 2019) in green, and 626 

MEF replication timing (Hiratani et al. 2010).  627 

B. Jaccard similarity coefficients were grouped based on similarities among the indicated 628 

regions. “F121-9 NAD” indicates all NADs identified in F121-9 cells in this study. “Conserved 629 

NAD” indicates NADs shared between F121-9 and MEF NADs (Vertii et al. 2019), whereas 630 

“F121-9-specific NAD” indicates NADs detected in F121-9, but not MEF cells. Conversely, 631 

“MEF-specific NAD” indicates NADs found in MEFs, but not in F121-9 cells. “Type I NAD” 632 

indicates F121-9 NADs that overlap with cLADs, and “Type II NAD” indicates F121-9 NADs 633 

that overlap with ciLADs (Peric-Hupkes et al. 2010). “cLAD” and “ciLAD” regions are from 634 

Peric-Hupkes et al. 2010, and F121-9 early replication timing and late replication timing regions 635 

are from Marchal et al. 2018. Note that F121-9 NADs, conserved F121-9 NADs, cLADs and 636 

Type I NADs are highly similar. In contrast, Type II NADs are most similar to F121-9-specific 637 

NADs. 638 

C. A box plot of gene expression levels from MEF RNA-seq data (GSM1621026; Delbarre et al. 639 

2017), expressed as log10(FPKM+1) for the indicated subsets of NAD, non-NAD and whole 640 

genome regions. The statistical significance of pairwise comparisons were all  p < 0.0001 641 

(Welch’s t-test).  642 
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D. As in panel C, except our F121-9 RNA-seq data is used for FPKM analysis. The indicated 643 

pairwise comparisons were all statistically significant (p < 0.0001), except for that between 644 

F121-9 and MEF-specific NADs do not achieve statistical significance (p = 0.82).  645 

E. As in panel C, except different MEF RNA-seq data (GSE90894; (Chronis et al. 2017)) was 646 

used for FPKM analysis. The changes between cell type-specific NADs achieve statistical 647 

significance (p<0.0001, Welch’s t-test).  648 

F. As in panel C, except mESC RNA-seq data (GSM1418813; (Lowe et al. 2015)) is used for 649 

FPKM analysis. The changes between F121-9 and MEF-specific NADs do not achieve statistical 650 

significance (p=0.13).  651 

 652 

Fig. 7. GO analysis of conserved and cell type-specific NADs 653 

A. Molecular Functions subset of GO enrichment analysis of conserved NADs, with -log10(q- 654 

values) shown.  655 

B. Genomic region containing NAD peak (red box) conserved in both MEF and F121-9 cells. 656 

This peak contains a cluster of olfactory genes on chromosome 11. ciLAD, mESC and MEF 657 

replication timing tracks are displayed as in Fig. 5B. The other tracks shown from the top are 658 

mESC LADs (Peric-Hupkes et al.2010; red), F121-9 nucleolar/genomic ratio, NADs and RNA-659 

seq data (blue), MEF LADs (Peric-Hupkes et al. 2010), MEF nucleolar/genomic ratio, NADs 660 

(Vertii et al. 2019) (green) and RNA-seq (GSM2453368 (ENCODE Project Consortium 2012)) 661 

(blue).  662 

C. Molecular Functions subset of GO enrichment analysis of F121-9-specific NADs.  663 

D. As in panel B, showing genomic region corresponding to F121-9-specific NAD (red box), 664 

overlapping Ccl family of chemokine ligands.  665 
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E. Biological Functions subset of GO enrichment analysis of MEF-specific NADs.  666 

F. As in panel B, showing genomic region containing MEF-specific NAD (red box), overlapping 667 

the Pcsk6 gene important for differentiation along anterior-posterior axis.  668 

 669 

Supplemental Tables 670 

Supplemental Table 1: Average RNA-seq FPKM values from two biological replicate RNA-seq 671 

samples, made from the same preparations of F121-9 cells used for the nucleolar purifications.  672 

 673 

Supplemental Table 2: mm10 genomic coordinates, laboratory BAC probe names, systematic 674 

BACPAC names, FISH and NADfinder results for DNA-FISH probes.  675 

 676 

Supplemental Table 3: GO-derived Molecular Functions terms of conserved NADs, with q-677 

values (termed “BH adjusted p-value” in the table) below 0.05. 678 

 679 

Supplemental Table 4: GO-derived Molecular Functions terms of F121-9-specific NADs, with q-680 

values below 0.05. 681 

 682 

Supplemental Table 5: GO-derived Biological Processes terms of MEF-specific NADs, with q-683 

values below 0.05. 684 

 685 

Supplemental Table 6: mESC H3K27me3-enriched domains identified based on H3K27me3 686 

ChIP-seq data (GSM2416833; Cruz-Molina et al. 2017) using RSEG software. The first three 687 

columns show for each H3K27me3-enriched domains the chromosome name, start and end 688 
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nucleotides. The 4th column (Average Count) gives the average read count in the domain. The 689 

5th column (Domain Score) is the sum of posterior scores of all bins within this domain; it 690 

measures both the quality and size of the domain.  691 

 692 

 693 
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