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SUMMARY

Triple-negative breast cancers (TNBCs) display great
diversity in cisplatin sensitivity that cannot be ex-
plained solely by cancer-associated DNA repair de-
fects. Differential activation of the DNA damage
response (DDR) to cisplatin has been proposed to
underlie the observed differential sensitivity, but it
has not been investigated systematically. Systems-
level analysis—using quantitative time-resolved
signaling data and phenotypic responses, in combi-
nation with mathematical modeling—identifies that
the activation status of cell-cycle checkpoints deter-
mines cisplatin sensitivity in TNBC cell lines. Specif-
ically, inactivation of the cell-cycle checkpoint regu-
lator MK2 or G3BP2 sensitizes cisplatin-resistant
TNBC cell lines to cisplatin. Dynamic signaling data
of five cell cycle-related signals predicts cisplatin
sensitivity of TNBC cell lines. We provide a time-
resolved map of cisplatin-induced signaling that un-
covers determinants of chemo-sensitivity, under-
scores the impact of cell-cycle checkpoints on
cisplatin sensitivity, and offers starting points to opti-
mize treatment efficacy.

INTRODUCTION

In standard care, breast cancers are subtyped based on the

expression of the estrogen and progesterone receptors (ER

and PR, respectively) and human epidermal growth factor recep-

tor-2 (HER2). These receptors are oncogenic drivers and rele-

vant drug targets. Breast cancers lacking expression of ER,

PR, and HER2 are called triple-negative breast cancers (TNBCs);

they do not benefit from anti-hormonal or anti-HER2 treatments,

and they account for �15%–20% of invasive breast cancers

(Foulkes et al., 2010). Although patients with TNBC can initially

respond to chemotherapy, they have worse overall prognosis

compared with other breast cancer subtypes. Unfortunately,

TNBCs lack clear targetable driver oncogenes, constituting an

unmet need to improve the therapeutic options for these

patients.

Apart from chemotherapy, no treatments are proven to be

effective for this patient group. Among genotoxic chemothera-

peutic agents, platinum-based chemotherapeutics, such as

cisplatin, are potential treatment options for TNBC patients and

predominantly showed favorable responses in TNBCswith under-

lyingBRCA1/2mutations (Byrski et al., 2010; Cardoso et al., 2017;

Rouzier et al., 2005; Silver et al., 2010). When tested in vitro using

panels of TNBC models, platinum-containing agents appeared

effective, although the observed sensitivity varied significantly

(Lehmann et al., 2011). TNBC is a heterogeneous breast cancer

subtype, so identifyingmolecular features of TNBC that are critical

for cisplatin sensitivity will likely be necessary for these drugs to be

used effectively. At the molecular level, cisplatin introduces both

intra- and inter-strand DNA crosslinks (ICLs), which stall replica-

tion forks and are therefore especially toxic in proliferating cells

(Siddik, 2002). ICL-induced stalled replication forks activate the

DNA damage response (DDR) and initiate DNA repair through

multiple DNA repair pathways, including homologous recombina-

tion (HR), nucleotide excision repair (NER), and Fanconi anemia

(FA) (Kim and D’Andrea, 2012; Shuck et al., 2008). The ability of

cells to repair DNA crosslinks is considered a critical determinant

for the cytotoxic effect of cisplatin treatment (Bhattacharyya et al.,

2000; Kim and D’Andrea, 2012). Consequently, mutations and/or

reduced expression of HR and FA genes are robustly linked to

sensitivity of platinum-based chemotherapeutics (Taniguchi

et al., 2003). Nevertheless, cisplatin sensitivity is not always asso-

ciatedwith defective HR, NER, or FA. An important challenge is to

unravel which other factors determine the efficacy of cisplatin

treatment and to investigate whether such factors could be

used as targets to potentiate chemo-sensitivity of TNBC cells.

The complexity of the DDRmakes it challenging to predict how

cancers will respond to DNA-damaging chemotherapy. For

instance, it is becoming clear that the DDR does not function as

an isolated linear signaling pathway but rather is a large signaling

network that interconnects canonical DDR pathways with addi-

tional pro-growth and pro-death signaling pathways (Ciccia and

Elledge, 2010; Costelloe et al., 2006; Jackson and Bartek,

2009). In addition, signaling through the DDR occurs non-linearly

because of extensive crosstalk and feedback control, including
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adaptation and rewiring following stimulation (Lee et al., 2012).

Differential activation and wiring of the DDR in response to

cisplatin has beenproposed to underlie the differences in cisplatin

sensitivity (Brozovic et al., 2009; Wang et al., 2012). Therefore, it

has proven difficult to predict chemo-sensitivity based on the

presence or activity of DDR components, which are typically

measured at a single static moment after cisplatin treatment.

Detailed understanding of how signaling dynamics fluctuate

over time and how molecular signals are integrated may be

necessary to better understand chemo-sensitivity in TNBCs.

To meet this challenge, we performed a systems-level analysis

in cisplatin-sensitive and cisplatin-resistant TNBC cell lines. We

collected quantitative time-resolved signaling data on the activa-

tion status of several key signaling proteins, together with pheno-

typicdata reportingapoptoticandcell-cycle regulatory responses.

These data were integrated using statistical modeling, revealing

that cisplatin-induced changes in cell-cycle signaling molecules

determine cisplatin-induced initiation of cell death and that these

profiles could be useful in predicting cisplatin responses.

RESULTS

Large Variation in Cisplatin Sensitivity in Human TNBC
Cell Lines
We assembled a panel of well-described human TNBC cell lines

and measured cellular viability after 72 h of continuous cisplatin

treatment. To control for potential confounding effects of differ-

ences in growth rates, we calculated growth rate inhibition met-

rics (GR values) (Hafner et al., 2016). Large variations in sensi-

tivity were observed among the nine cell lines, with GR50s

ranging from 2.2 mM in HCC1937 to 61 mM in MDA-MB-231 (Fig-

ure 1A). The increased cisplatin sensitivity of two TNBC cell lines,

SUM149PT and HCC1937, could be rationalized based on

defective HR because of BRCA1 mutations. For other cell lines,

even within the same molecular TNBC subtype, differences in

cisplatin sensitivity could not be explained by underlying

BRCA1/2 mutations.

To better comprehend the complexity of the cellular response

to cisplatin, we aimed to identify factors other than DNA repair-

related elements, which determine cisplatin sensitivity. We

therefore measured multiple DDR-related signaling nodes in hu-

man TNBC cell line models with different levels of sensitivity to

cisplatin but similar DNA repair status.

We selected two cisplatin-sensitive TNBC cell lines (HCC38

and BT549) and two cisplatin-resistant TNBC cell lines (MDA-

MB-231 andMDA-MB-157) of the sameClaudin-low breast can-

cer subtype. To test whether the differential cisplatin sensitivity

was caused by defective HR, NER, or FA pathways, we analyzed

RAD51 foci formation after irradiation as a measure of HR profi-

ciency (Figure 1B), assessed FANCD2 ubiquitination after mito-

mycin C (MMC) treatment as measure of FA proficiency (Fig-

ure 1C), and screened for mutations in NER and mismatch
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Figure 1. Heterogeneous Responses to Cisplatin in TNBC Cell Lines

(A) Indicated TNBC cell lines were treated with cisplatin for 72 h. Methyl thiazol tetrazolium (MTT) conversion was measured, and growth rate-adjusted drug

responses (GR metrics) were plotted. Error bars indicate SEM of at least three independent experiments with three technical replicates each. MDA-MB-231 and

MDA-MB-157 are called MB-231 and MB-157, respectively.

(B) Indicated TNBC cell lines were irradiated (10 Gy) or left untreated and analyzed for RAD51 foci 3 h later. Scale bar represents 10 mM.

(C) Indicated TNBC cell lines were treated with mitomycin C (MMC, 50 ng/mL) for 24 h. FANCD2 ubiquitination was assessed by western blotting.

(D) Characteristics of all 9 tested TNBC cell lines are listed. GR50 values for cisplatin were calculated from averages of three independent experiments. TP53,

BRCA1, and BRCA2 mutation status was obtained from the Cosmic database.

See also Figure S1.
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repair (MMR) genes. In all four selected cell lines, RAD51 foci

were clearly induced after irradiation, confirming HR proficiency

(Figures 1B and 1D). In addition, all four cell lines showed mono-

ubiquitinated FANCD2 upon MMC treatment (Figure 1C), illus-

trating FA pathway functionality (Figures 1C and 1D). We did

not find pathogenic mutations in NER or MMR pathway compo-

nents or genomic scars associated with MMR deficiency (Fig-

ure S1), which are described as contributing to repair of

cisplatin-induced DNA lesions. Thus, the selected Claudin-low

TNBC cell lines show differences in cisplatin sensitivity that do

not appear to be caused by deficiencies in DNA repair.

Creation of a Signal-Response Dataset for Cisplatin
Sensitivity
To identify which DDR-related signals determine cisplatin sensi-

tivity, we aimed to determine the relationship between changes

in DDR-related signaling proteins and cellular responses to

cisplatin. We measured the levels or activation states of 22

signaling proteins that comprise the DDR, cell-cycle machinery,

and/or apoptotic cell death pathways and six phenotypic re-

sponses (Figure 2A). Each signal was quantified at 11 time points

following exposure to 2 or 20 mM cisplatin, resulting in 44 mea-

surements of each signal protein (green) with corresponding

loading controls (red) (Figure 2B, upper panel). Fold changes

(FLDs) across all cell lines and cisplatin concentrations were

quantified (Figures 2B, bottom panel, and 2C). To identify the po-

tential relationship between signaling dynamics and differential

sensitivity to cisplatin, we concomitantly measured phenotypes

related to cisplatin treatment, including induction ofDNAdamage,

changes in cell-cycle progression, and cell death (Figure 2D).

These responses were quantified at 12 time points between

0 and 120 h after cisplatin exposure using flow cytometry (Figures

2D and 2E). All signaling and phenotypic responsemeasurements

were performed in biological and experimental duplicates in

HCC38, BT549, MDA-MB-157, and MDA-MB-231 cells, yielding

a dataset of 3,872 molecular signals measurements and 1,044

cellular response measurements (Figures 2C and 2E; Table S1).

The addition of cisplatin caused clear dose-dependent in-

creases in the percentage of sub-G1 cells and in the magnitude

ofmanymolecular signals (Figures 2C and 2E). For example, after

exposure to 20 mM cisplatin, phosphorylation of H2AX rose to a

maximum fold increase of 55, while with 2 mM cisplatin, this level

increased 22-fold. Baseline protein levels or activation states of

most individual signals were poorly correlated with sub-G1 levels

after 120 h of cisplatin treatment (Figure S2), indicating that sensi-

tivity to cisplatin is poorly predicted by overall DDR activity states

before drug exposure. In addition, the activation patterns of the

molecular signals did not show clear dose-dependent changes.

The activation patterns of signals differed strongly between cell

lines, without clear distinctions between cisplatin-sensitive and

cisplatin-resistant cell lines. Thus, clear dose-dependent changes

could be observed in themagnitude ofmost signals, but the dura-

tion and pattern of activation differed strongly between cell lines.

Statistical Modeling Using Partial Least-Squares
Regression (PLSR)
Tomore rigorously analyze the DDR signaling data after cisplatin

treatment, we used PLSR (Geladi and Kowalski, 1986). PLSR

functions by identifying a reduced set of metavariables (or prin-

cipal components [PCs]) that maximize co-variation between

molecular signaling input variables and cellular response output

responses (Figure S3; Janes and Yaffe, 2006). The first PC cap-

tures the greatest amount of information within the data. Addi-

tional PCs are identified iteratively to maximally capture residual

variance until additional PCs cease to capture meaningful data

(relative to the technical error of measurements). This approach

can be used to simplify complex data and to uncover hidden as-

sociations between signals and phenotypic outcomes that may

be missed visually.

Prior quantitative analysis of signaling has revealed that many

networks respond to changes in levels of protein activation,

rather than to absolute activation levels (Gaudet et al., 2005;

Janes et al., 2008). These dynamic features can be obscured

by large differences between cell lines in the overall magnitude

of signal activation. To highlight signaling dynamics in our

models, we derived six metavariables-metrics from our time-

staggered signaling dataset. These signaling dynamic metrics

were (1) FLD, (2) slope between adjacent time points (SLP), (3)

maximum slope (SMX), (4) dynamic range (DYN), (5) total activity

(area under the curve, AUC), and (6) average level of activity

(AVE). In addition, time-dependent measurements were divided

into three time frames—early, ranging from 0 to 2 h; middle,

spanning 2 to 12 h; and late, ranging from 12 to 24 h—to capture

specific time regimes in which fluctuation in signal dynamics

best correlated with cellular response. In total, 132 metrics

were composed, based on 22 molecular signals and 6 metavari-

ables. Using this approach, signaling dynamics were included in

the input variables (signals), while output variables (responses)

were encoded using uncoupled time points. Each response var-

iable was represented by the average value calculated for each

time frame.

We initially explored these data by building amodel composed

of the data from all four cell lines. The resulting model reduced

the dataset into four PCs (Figure S3B). Altogether, these four

PCs explained 60% of the overall variance (R2), and predicted

29% of the variation, using a cross-validation scheme (Q2) (Fig-

ure S3B). These low model-fitness parameters reflected that the

underlying data were not well captured in a single model. Based

on this observation, we speculated that the signaling proteins

were used in a fundamentally different manner in cisplatin-sensi-

tive and cisplatin-resistant cell lines. Thus, we next separated the

data to build two separatemodels: one for cisplatin-sensitive cell

lines and one for cisplatin-resistant cell lines. Our partial least-

squares (PLS) model of cisplatin-sensitive cell lines HCC38

and BT549 captured 81.6% of the co-variance between signals

and responses with the first two PCs (Figure S3C). Likewise,

81.4% of the co-variance in the data of the cisplatin-resistant

cell lines MDA-MB-231 and MDA-MB-157 was explained by

the first two PCs of the cisplatin-resistant model (Figure S3D).

In both cases, we observed significant improvements in model

prediction accuracy, with Q2 parameters increasing to more

than 80% for both models. In both cisplatin-sensitive and

cisplatin-resistance models, PC1 largely captured the variation

associated with the different time regimens (Figure 3A), whereas

PC2 captured cell line-specific variance (Figure 3A). To deter-

mine whether the improvements in model fitness in the
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cisplatin-sensitive and cisplatin-resistance models reflect simi-

larities in the biological responses within these cells, we created

models from all random pairs of cell lines. These other models

produced substantially reduced fitting parameters, with R2 and

Q2 values of �30% and 10%, respectively (Figure S3E), sug-

gesting that model-fitness improvements emerged because of

similar biological responses within cisplatin-sensitive and

cisplatin-resistant cells.

To examine the quality of our models, we used jack knife-

based cross-validation to compare each measured cellular

response in isolationwith the responses predicted by ourmodels

(Gong, 1986). Both models were particularly accurate in predict-

ing the sub-G1 apoptotic response, cell-cycle state, and extent

of gH2AX phosphorylation following cisplatin treatment. The cor-

relations between measured responses and those predicted by

our model were above 0.97 (Figures 3B, S3F, and S3G). Thus,

the combination of signaling metrics and responses was

adequate to build two well-fit models that could predict cellular

responses, including at sub-G1 levels, in response to cisplatin.

Because model fitness required sensitive and resistant cells to

be modeled separately, the underlying differences between

cisplatin-sensitive and cisplatin-resistant cells were not likely

to be different levels of activation within similarly functioning net-

works but instead were likely to be caused by signaling through

fundamentally different networks.

PLS Model Identifies Determinants of Cisplatin
Sensitivity
To better understand how specific signal transduction proteins

influence the responses to cisplatin, we projected the loading

vectors for each model feature into the PC vector space (Janes

and Yaffe, 2006). Vector loadings report the contribution of each

signal to the variation captured by a specific PC. This information

can be used to highlight critical features that differentiate be-

tween cisplatin responses in sensitive and resistant cells. In

both models, we observed a strong anti-correlation between

sub-G1 and G1, which was captured by PC1 in both instances

(Figure 3C). Thus, signals that contribute strongly to PC1 are

likely to be important for cisplatin sensitivity in these cells. The

vector loading plot revealed many signals and signaling features

that are strongly co-variant with sub-G1 cells, suggesting that

multiple signaling features, rather than a single signal, are critical

for predicting cisplatin sensitivity in TNBC cells.

Because both models could accurately predict cell death, we

next wished to determine whether specific signal proteins

contributed to this differential accumulation of sub-G1 in

response to cisplatin in our models. Our strategy was to identify

the signals that were the most differentially weighted in sensitive

versus resistant cells, because these signals might underlie the

difference in cisplatin sensitivity in TNBC cell lines. A particularly

interesting example was MK2, an inflammation-related and cell-

cycle checkpoint kinase, whose role in the DDR remains unclear.

In the model of cisplatin-sensitive cells, pMK2 showed positive

co-variance with subsequent emergence of sub-G1 cells, sug-

gesting that this protein contributes to cisplatin-induced cell

death (Figure 3D). In contrast, in the cisplatin-resistant model,

dynamic MK2-related metrics were negatively correlated with

sub-G1, suggesting that activation of MK2 promotes cell death

in sensitive cells but paradoxically inhibits cell death in resistant

cells.

To test these model-generated predictions, cisplatin-sensitive

(BT549) and cisplatin-insensitive (MDA-MB-231) cell lines were

transduced with short hairpin RNAs (shRNAs) targeting MK2

(Figure S4A). Consistent with our model-based predictions,

knockdown of MK2 reduced cisplatin sensitivity in cisplatin-sen-

sitive BT549 cells (Figure 3E, left panel). The cisplatin-resistant

cell line MDA-MB-231 showed contrasting results. Consistent

with the model’s paradoxical prediction that MK2 activation pre-

vents cell death in cisplatin-resistant cell lines, knockdown of

MK2 resulted in enhanced cisplatin sensitivity in MDA-MB-231

cells (Figure 3E, right panel).

Among the signals that showed the largest differences in PC1

scores between the sensitive and the resistant PLS models,

many were linked to cell-cycle regulation (Figures 3D and

S4B). Whereas other signal classifications showed a similar dis-

tribution of PC1 scores in the sensitive and the resistant models,

PC1 scores of cell cycle-related signals showed a differential

distribution (Figures 3D and S4C). These data underscore that

cisplatin sensitivity is linked to the ability of cancer cells to acti-

vate cell-cycle checkpoint signaling, which is in linewith a role for

cell-cycle checkpoints in preventing transmission of DNA lesions

to daughter cells to protect genome integrity.

Cisplatin-Induced Changes in Cell-Cycle Progression
and Cell Death in TNBC Cell Lines
To test whether altered cell-cycle checkpoint activation could

differentiate between the selected cisplatin-sensitive and the

selected cisplatin-resistant TNBC cell lines, we monitored cell-

cycle dynamics at several time points after treatment with

cisplatin (Figure 4A). Both insensitive cell lines showed transient

S/G2 cell-cycle arrest, after which proliferation was resumed

(Figures 4A and 4B). In contrast, cisplatin-sensitive cell lines

(B) Protein abundance and activation levels were analyzed bywestern blotting using two-color infrared detection (top). Signal intensity was quantified, normalized

to actin, and plotted as FLD compared with the lowest measurement across all cell lines and treatments. The signaling time course plot is presented from the

western blot shown on top. Mean values ± SD of two experiments are shown.

(C) The complete signaling dataset for four TNBC cell lines following 2 or 20 mM cisplatin treatment. Each box represents an 11-point time course of biological

duplicate experiments. Grayscale reflects signal strength. Background color indicates signaling profile: sustained increase in green, late increase in red, transient

increase in yellow, and sustained decrease in blue, as explained in the STAR Methods section. Numbers below each plot report the maximum FLD on the y axis.

(D) Measurements of response data. DNA content, percentages of mitotic cells, and level of DNA damage were measured by flow cytometry. Left panel: example

fluorescence-activated cell sorting (FACS) plot showing cell-cycle profiles based on DNA content. Percentage of cells in G1, S, and G2 phases and cell death

measured by sub-G1 were quantified. Middle panel: percentage of mitotic cells as measured by phospho-histone H3 positivity. Right panel: level of DNA damage

in G1 cells was quantified as phospho-H2AX mean fluorescence intensity in 2n cells.

(E) The complete response dataset colored as in (C).

See also Figure S2 and Table S1.
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ceased cell-cycle progression at theG2 stage and remainedwith

4n DNA for the remainder of the experiment (Figures 4A and 4B).

Similar results were obtained when synchronized cell cultures

were treated with cisplatin (Figures S5A and S5B).

When TNBC cell lines were treated with high-dose cisplatin

(20 mM), both sensitive and resistant cell lines entered prolonged

cell-cycle arrest (Figures 4A and 4B). In line with their high sensi-

tivity to cisplatin, BT549 and HCC38 displayed clear induction of

apoptosis, as judged by the proportion of cells with sub-G1 DNA

content, in contrast to MDA-MB-231 and MDA-MB-157 cells

(Figure 4C). Thus, in line with our modeling data, cisplatin-sensi-

tive and cisplatin-resistant TNBC cell lines show different cell-

cycle distributions in response to cisplatin.

To explore whether the cell-cycle arrest kinetics were related

to dynamics of DNA damage resolution, TNBC cell lines were

transduced with GFP-tagged MDC1, which binds gH2AX and

therefore serves as a marker for DNA breaks (Stucki et al.,

2005). Live cell imaging revealed that cisplatin-resistant cell lines

accumulated DNA damage in response to cisplatin treatment, as

evidenced by GFP-MDC1 foci, but only entered mitosis when

DNA damage foci were resolved (Figures 4D and 4E). In contrast,

cisplatin-sensitive cell lines often enteredmitosis in the presence

of GFP-MDC1 foci. This was particularly pronounced in HCC38

cells, which entered mitosis with very high levels of DNA damage

that remained visible even after cells exited mitosis (Figure 4D

and 4E). These findings suggest that cisplatin-sensitive TNBC
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Figure 3. PLSR Correctly Predicts Sub-G1 from Molecular Signals Activated by Cisplatin

(A) PLSR analysis of covariation between molecular signals and cellular responses. Score plots represent the signaling response of each TNBC cell line at a

specified time, as indicated by the colors and symbols in the legend. Scores are plotted for the sensitive and resistant PLS models.

(B) Correlation between measured sub-G1 (flow cytometry, y axis) and model-predicted sub-G1 (x axis).

(C) PLS loadings plotted for signals and responses and colored by signaling class.

(D) PC1 loading scores of the dynamic signaling metrics (FLD, fold change; DYN, dynamic range; SMX, maximum slope; SLP, slope) are plotted. Loading scores

of the four dynamicmetrics of pMK2 and their average are shown in the upper panel. Loading scores of the dynamic metrics of all cell cycle-related signals (PLK1,

Aurora-A, CyclinB1, CDC25C, and CDC25A) and their averages are shown in the bottom panel.

(E) Cisplatin sensitivity of BT549 and MDA-MB-231 cell lines, transduced with indicated shRNAs measured by MTT conversion. Inset bar graphs depict MTT

conversion upon treatment with 7.5 or 15 mM cisplatin of BT549 and MDA-MB-231, respectively.

Error bars indicate SEM of three independent experiments. The p values were calculated using two-tailed Student’s t test. ****p < 0.0001. See also Figures S3

and S4.
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Figure 4. Cisplatin-Induced Changes in Cell-Cycle Progression and Cell Death in TNBC Cell Lines

(A–C) Quantitative cell-cycle analysis. Cells were treated with 2 or 20 mM cisplatin, and cell-cycle profiles were analyzed at indicated time points. (A) Repre-

sentative cell-cycle profiles of MDA-MB-157 (red) and BT549 (blue) cells after treatment with 2 or 20 mM cisplatin. (B) Quantification of G1 cells from two in-

dependent experiments. Error bars indicate SEM. (C) Quantification of sub-G1-cells from two independent experiments. Error bars indicate SEM.

(D and E) TNBC cell lines stably expressing GFP-MDC1 were treated with cisplatin (2 mM) for 24 h before time-lapse imaging, and cell fate was assessed. (D)

Representative cells are shown, with time point M�1 showing the last frame before mitosis, M1 indicating the onset of mitosis, M2 denoting mitotic exit, andM+1

presenting the first time frame after cytokinesis. Scale bar represents 17 mM. (E) Quantification of MDC1 foci before mitosis (open circles) and after mitosis (filled

circles). At least 10 cells have been analyzed per condition. Error bars indicate SEM.

(F) Gene Ontology (GO) pathway analysis of differentially expressed genes (DEGs). MDA-MB-231, MDA-MB-157, HCC38, and BT549 cells were left untreated or

were treated with 2 mM cisplatin for 72 h. For each cell line, DEGs were classified based on GO enrichment analysis. GO terms that appeared in both cisplatin-

sensitive and cisplatin-insensitive cell lines are indicated. Upregulated GO terms are yellow, and downregulatedGO terms are blue. Color intensity is based on the

p value.

(G) Overlap between DEGs of cisplatin-sensitive and cisplatin-resistant TNBC cell lines. Genes with a FLDR 1.75 in sensitive cell lines, as well as in resistant cell

lines, are red.

See also Figure S5 and Table S2.
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cells are unable to properly repair DNA breaks before mitotic en-

try, possibly caused by slippage through prolonged DNA dam-

age-induced G2/M cell-cycle arrest.

Our prior data suggested that differences in DDR and cell-cy-

cle checkpoint signaling may account for the observed differ-

ences in cisplatin sensitivity. We next explored cisplatin-induced

gene expression changes to reiterate this notion and potentially

highlight signals that may contribute to the observed differences

in drug sensitivity. To investigate this, we analyzed changes in

gene expression 72 h after low-dose cisplatin (2 mM) in both sen-

sitive and resistant TNBC cell lines (Figure S5C). Gene Ontology

(GO) pathway analysis of differentially expressed genes (DEGs)

revealed a strong enrichment for genes involved in cell-cycle

regulation, DNA repair, mRNA processing, and apoptosis (Fig-

ure 4F), although the DEGs showed limited overlap between

cell lines (Figure 4G; Table S2). In line with our cell-cycle progres-

sion data, gene expression analysis showed decreased expres-

sion of G2/M cell-cycle pathway components and lowered levels

of DNA repair genes in cisplatin-resistant cell lines after 72 h of

treatment. In contrast, cisplatin-sensitive cell lines consistently

showed upregulated expression of G2/M cell-cycle pathways

(Figure 4F). These data suggest that cell-cycle progression or

the ability to install damage-induced cell-cycle checkpoint arrest

determines the cellular response to cisplatin. However, the

limited numbers of DEGs and the lack of significant overlap of

altered genes between cell lines suggested that cisplatin sensi-

tivity is not predominantly transcriptionally controlled but rather

is driven by post-translational modifications.

G3BP2 Depletion Promotes Cell-Cycle Arrest in
Cisplatin-Resistant Cell Lines
Among the genes that revealed contrasting regulation between

cisplatin-sensitive versus cisplatin-resistant TNBC cell lines,

three genes were identified, G3BP2, HMMR, and NEK2, that

were previously remotely linked to DNA damage but were not

associated to cisplatin response (Figure 4G; Fletcher et al.,

2004; Isabelle et al., 2012; Sohr and Engeland, 2008). We

measured their levels after cisplatin treatment in our selected

TNBC cell lines (Figure S6A) and added these data to our previ-

ously collected dataset. PLSRmodeling using this expanded da-

taset resulted in improved predictive models, with Q2 parame-

ters of 91% and 92% for the sensitive and resistant models,

respectively (Figure S6B).

To identify the minimal subset of signaling features that are

required to accurately predict cisplatin sensitivity, we iteratively

removed signals, beginning with those contributing the least to

model fitness (lowest variable importance in projection [VIP]

score) (Gaudet et al., 2005). For PLS models of either sensitive

or resistant cells, we found that the full predictive capacity of

ourmodels required only the 4 or 6most informativemetrics (Fig-

ures 5A and S6C). In parallel, we performed this analysis in the

inverse order, iteratively removing signals starting with the high-

est VIP score. These models were also resilient to this type of

perturbation, because the full predictive capacity of the model

was unchanged even when the top 60 most informative metrics

were eliminated (Figure 5B). Thus, accurate predictions could be

generated using models that contained either the most or the

least informative signals, albeit with a substantially larger number

of signals required when the least informative signals are used.

Altogether, these data highlight that predictive information is

not rare in signaling data but rather is redundantly encoded

throughout the signaling network.

The metrics with the highest predictive accuracy differed be-

tween the sensitive and the resistant models. Signaling metrics

of G3BP2 were critical for model predictive accuracy in the sen-

sitivemodel, while thesewere absent within the top VIP scores of

the resistant model (Figure 5A). In addition, the dynamic metrics

of G3BP2 had the opposite PC1 score in sensitive versus resis-

tant models (Figure 5C). These data indicate that G3BP2 pro-

motes cell death in sensitive cells but paradoxically inhibits cell

death in resistant cells. To test this prediction, cisplatin-sensitive

(BT549) and cisplatin-insensitive (MDA-MB-231) cell lines were

transduced with shRNAs targeting G3BP2 (Figure S6D). Consis-

tent with our modeling-based predictions in cisplatin-insensitive

TNBC cells, depletion of G3BP2 sensitized MDA-MB-231 cells

to cisplatin (Figure 5D). However, knockdown of G3BP2 did

not significantly alter cisplatin sensitivity in BT549 cells

(Figure 5D).

To examine whether G3BP2 knockdown changed the

behavior of MDA-MB-231 to resemble other aspects of the

behavior observed for cisplatin-sensitive cell lines, we analyzed

cell-cycle distribution after cisplatin treatment. To this end,

MDA-MB-231 cells were transduced with doxycycline-inducible

shRNAs targeting G3BP2. Although control cell lines were only

transiently arrested in G2, G3BP2-depleted cells maintained

G2 arrest (Figures 5E and 5F). In line with this observation,

G3BP2 knockdown cells accumulated more cisplatin-induced

DNA damage when compared with control cells (Figure 5G).

Although MDA-MB-231 cells are described as displaying

mesenchymal features (Lombaerts et al., 2006), their

morphology changed upon G3BP2 knockdown into a mobile

phenotype with extensive protrusions (Figure S6E). To test

whether knockdown of G3BP2 had influence on the epithelial-

mesenchymal transition (EMT) in MDA-MB-231 cells, we

analyzed the abundance of different EMT-related factors.

Although control MDA-MB-231 cells showed expression of the

mesenchymal markers Fibronectin and ZEB1, knockdown of

G3BP2 resulted in a decrease in their expression (Figure S6F).

Conversely, the expression of the epithelial marker E-cadherin

increased after knockdown of G3BP2 (Figure S6F).

PLS Models Trained on Cisplatin-Sensitive and
Cisplatin-Resistant Cells Accurately Predict Cisplatin
Sensitivity in a Panel of TNBC Cells
To validate whether cisplatin-induced signaling dynamics of

pMK2, RPA, and G3BP2 can predict cisplatin sensitivity beyond

the model training set of four TNBC cell lines, we measured the

abundance of these three signals, together with the levels of

BCL-xL and pKAP1—the two highest scoring signals in our orig-

inal models—following cisplatin treatment in three untested

TNBC cell lines (MDA-MB-468, HCC1806, and HCC1143).

Although these cell lines were all relatively sensitive to cisplatin,

they displayed a significant range in GR50 (MDA-MB-468,

0.7 mM; HCC1806, 3.8 mM; and HCC1143, 14.7 mM) (Figure 6A).

Based on our PLS modeling, we anticipated that signaling met-

rics collected for these five signals alone would be sufficient to
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predict cisplatin sensitivity. To test this notion, we generated a

new PLS model with data from the original dataset (i.e., four

TNBC cell lines treated with 20 mM) in combination with data

from the additional three cell lines. The score plot for this com-

bined dataset showed that PC1 separated all cell lines based

on their cisplatin sensitivity, including the three additional cell

lines (Figure 6B). The least-sensitive cell line of the validation

panel, HCC1143, was located between the resistant and the

sensitive cell lines of the original model, while the projection of

HCC1806 and MDA-MB-468 was similar to that in the

cisplatin-sensitive cell lines (Figure 6B). We used this minimal

model to predict the sub-G1 percentage for the validation panel

in response to cisplatin. Sub-G1was accurately predicted for the

newly included cell lines (R2 = 0.849) (Figure 6C). Thus, using only

the five most important signals for distinguishing cisplatin-sensi-

tive from cisplatin-insensitive cell lines, PLS modeling success-

fully captured levels of cisplatin sensitivity. Altogether, our data

highlight a small compendium of signals—including RPA,

pMK2, and G3BP2—that are used differently in the context of

cisplatin-sensitive and cisplatin-resistant TNBC cells to promote

the observed differences in drug sensitivity.

DISCUSSION

In this study, we describe a systematic time-resolved approach

to identify molecular signals that can distinguish cisplatin-sensi-

tive from cisplatin-resistant TNBC cell lines. We found that cell-

cycle checkpoint factors appeared to determine cisplatin sensi-

tivity in TNBC cell line models that do not harbor obvious DNA

repair defects. These findings are in line with earlier observations

that expression levels of theWEE1 and CHK1 kinases are related

to cisplatin sensitivity (Pouliot et al., 2012) and that targeting of

cell-cycle checkpoints, including ATR, CHK1, and WEE1, can

be used to sensitize cancer cells to cisplatin (Gadhikar et al.,

2013; Hirai et al., 2009; Perez et al., 2006; Reaper et al., 2011;

Sangster-Guity et al., 2011).

At the cellular level, we observed that both sensitive and resis-

tant cell lines engage cisplatin-induced S/G2 cell-cycle arrest.

However, whereas resistant cell lines recommence cell-cycle

progression, cisplatin-sensitive models did not. Our data indi-

cate that cisplatin-induced changes in signaling, rather than

static states of signaling molecules before treatment, are impor-

tant in determining cell fate.

Our finding that differences in treatment-induced signaling dy-

namics determine phenotypic outcomes is in apparent contrast

to the finding that kinase-effector signaling is stable across

models from the same lineage (Miller-Jensen et al., 2007). This

discrepancy could be caused by the different origins of the cell

line models. TNBCs are highly genomically instable (Curtis

et al., 2012), and individual TNBCs may have evolved contrarily

in their ability to deal with DNA lesions, possibly influenced by

the various baseline levels of endogenous DNA lesions. In addi-

tion, previous quantitative modeling studies of the DNA damage

signaling in single models demonstrated context dependence,

especially involving mitogen-activated protein kinase (MAPK)

signaling (Lee et al., 2012; Tentner et al., 2012). The stability of

signal processing across models may be different for inflamma-

tory stress versus genotoxic agents (Miller-Jensen et al., 2007).

Changes in G3BP2 expression after cisplatin treatment were

identified as one of the signals that correlated strongly with cell

death following cisplatin exposure. Previously, G3BP2 was

described as playing a role in stress granule formation (Gupta

et al., 2017) and was found to be involved in Twist-induced

EMT (Wei et al., 2015). In line with these reports, G3BP2 deple-

tion in the cisplatin-resistant cell line MDA-MB-231 reduced

mesenchymal cell morphology, resulted in prolonged cisplatin-

induced G2 cell-cycle arrest, and led to increased sensitivity to

cisplatin (Wei et al., 2015). These results underscore a role for

mesenchymal transition in reduced chemo-sensitivity. Our data

suggest that such a mesenchymal transition is versatile and

that targeting G3BP2 in mesenchymal-like cisplatin-resistant

TNBC cells may increase chemo-sensitivity.

In the context of defective p53, cancer cells were previously

shown to increasingly depend on p38MAPK/MK2 for proper

cell-cycle checkpoint control and survival after DNA damage

(Manke et al., 2005). Specifically, inactivation of MK2 was re-

ported to abrogate cell-cycle checkpoint responses and to

sensitize tumor cells to cisplatin in vitro and in vivo (Dreaden

et al., 2018; Morandell et al., 2013; Reinhardt et al., 2010). Other

studies demonstrated MK2 to be involved in DNA damage-

induced replication fork stalling (Köpper et al., 2013). In the latter

case, MK2 knockdown rescued gemcitabine-induced replica-

tion stalling and increased cell survival. Our data also show

opposite roles for MK2 in dictating cell survival after DNA dam-

age. Knockdown of MK2 resulted in increased cisplatin sensi-

tivity in the cisplatin-resistant cell line MDA-MB-231 but reduced

cisplatin-sensitive of BT549 cells. The impact ofMK2modulation

on cisplatin sensitivity was surprising, because we observed

only limited changes in pMK2 levels upon cisplatin treatment.

These data underscore the utility of our modeling approach in

identifying key regulators of signaling outcome and suggest a

context-dependent requirement for MK2 in checkpoint re-

sponses. Although modulation of MK2 activity resulted in the

predicted opposite effects on cisplatin sensitivity, the effect

sizes were relatively modest. This may again reflect the redun-

dant wiring of DNA damage-induced cell-cycle checkpoints, as

well as pro-apoptotic signaling, in which the effects of MK2 inac-

tivation are partially buffered by parallel signaling axes. Further

(D) MDA-MB-231 and BT549 cells were transduced with indicated shRNAs and MTT conversion after cisplatin treatment was measured. Inset bar graphs depict

MTT conversion upon treatment with 7.5 mM cisplatin. sh#1 and sh#2 refer to shG3BP2#1 and shG3BP2#2, respectively. Error bars indicate SEM of three in-

dependent experiments. The p values were calculated using two-tailed Student’s t test. ***p < 0.001.

(E and F) MDA-MB-231 cells with doxycycline-inducible shRNAs targeting luciferase or G3BP2 were treated with 2 mM cisplatin. At indicated time points, cell-

cycle profiles were determined by flow cytometry (E). Means and SDs of percentages of G2 cells from three independent experiments are plotted (F).

(G) gH2AX levels after 2 mMcisplatin treatment for 72 h.MDA-MB-231 cells expressing inducible shRNAs against luciferase or G3BP2were fixed and stained with

anti-gH2AX antibody and propidium iodide. gH2AX levels and DNA content were determined by flow cytometry of two independent experiments.

See also Figure S6.
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research is warranted to uncover which tumors may benefit from

combined treatment with platinum-containing chemotherapeu-

tics and MK2 inhibitors.

In finding predictive biomarkers for chemo-response, the

status of a signaling molecule is typically assessed in treat-

ment-naive tumors. We measured signaling flux at various

time points in response to cisplatin treatment and found

signaling dynamics to be of key importance in predicting

cellular response to cisplatin. These results underscore that

steady-state levels of signaling molecules in untreated tumor

cells or clinical tumor material may have low predictive value,

and in an ideal scenario, samples before and shortly after start

of treatment should be analyzed. Moreover, the notion that

predictive information is redundantly encoded in our models

implies that a limited set of signaling features may be suffi-

cient to probe signaling dynamics in response to cisplatin

treatment.
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Doxycycline Sigma Aldrich Cat. D9891
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Halt Protease Inhibitor Cocktail Thermo Fisher Sci. Cat. 78425
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RNAeasy Kit QIAGEN Cat. 74104
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Bradford Protein assay Thermo Fisher Sci. Cat. 23200

Deposited Data

Raw mRNA expression data This paper GEO: GSE103115

Growth rate inhibition (GR) metrics of breast cancer cell
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(Hafner et al., 2016) LINCS dataset #20268

Experimental Models: Cell Lines

MDA-MB-231 ATCC Cat# CRL-12532, RRID:CVCL_0062
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FlowJo software (version 10) FlowJo https://www.flowjo.com/
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Healthcare
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LEAD CONTACT AND MATERIALS AVAILABILITY

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Marcel

A.T.M. van Vugt (m.vugt@umcg.nl). Plasmids generated in this study will be provided upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Human TNBC cell lines MDA-MB-468, MDA-MB-157, MDA-MB-231, CAL120 and Hs578T, and HEK293T human embryonic kidney

cells were cultured in Dulbecco’s Modified Eagle’s Medium (DMEM). Hs578T were further supplemented with 10 mg/ml insulin.

HCC38, BT549, HCC70, HCC1806 and HCC1937 were grown in RPMI 1640 media. SUM-149PT cells were grown in Ham’s F12 me-

dia supplemented with 5 mg/ml insulin and 1 mg/ml hydrocortisone. All culture media were supplemented with 10% fetal calf serum

(FCS), 100 units/ml penicillin, and 100 mg/ml streptomycin. The cell lines were cultured at 37�C in a humidified incubator supplied with

5% CO2. When indicated, cells were treated with cisplatin (Accord). If indicated, cells were treated with 1 mg/ml doxycycline.

METHOD DETAILS

Viral Infection
To obtain stable MDC-GFP-expressing HCC38, BT549, MDA-MB-231 and MDA-MB-157 cell lines, cells were infected with pLenti

CMV/TOGFP-MDC1 (779-2), which was a gift from Eric Campeau (Addgene plasmid # 26285). GFP-positive cells were subsequently

sorted into polyclonal cell lines using a Moflo cell sorter.

shRNAs against MK2 and G3BP2 or a scrambled sequence (SCR) were cloned into pLKO.1 vectors using the Age1 and

EcoR1 restriction sites. The hairpin targeting sequences that were used are: MK2#1 50-CCAGCACTCGATTGTTGTAAA-30, MK2#2

50-AGAAAGAGAAGCATCCGAAAT-30, G3BP2#1 50-GACTCTGACAACCGTAGAATA-30, G3BP2#2 50-GTGATGATCGCAGGGA

TATTA-30, SCR 50-CAACAAGATGAAGAGCACCAA-30 and luciferase (‘shLUC’), 50-AAGAGCTGTTTCTGAGGAGCC-30) (Heijink

et al., 2019). Lentiviral particles were produced as described previously (Heijink et al., 2015). In brief, HEK293T packaging cells

were transfected with 4 mg plasmid DNA in combination with the packaging plasmids VSV-G and DYPR. Virus-containing superna-

tant was harvested at 48 and 72 hours after transfection and filtered through a 0.45 mm syringe filter, and used to infect target cells in

three consecutive 12 hour periods.

MTT Assays
Cells were seeded in 96-well plates at 3,000 to 4,000 cells per well and treated with indicated concentrations of cisplatin. After 72

hours of treatment, methyl thiazol tetrazolium (MTT) was added to a final concentration of 0.5 mg/ml and cells were incubated for

four additional hours. Cells were then dissolved in DMSO and the produced formazan wasmeasured at 520 nmwith a Bio-Rad iMark

spectrometer. Growth rate inhibition (GR) metrics were calculated using a custom MATLAB script (Data S1), based on a previously

described R script (Hafner et al., 2016). Average growth rates for each cell line were calculated based on LINCS dataset #20268 (Haf-

ner et al., 2016).

Immunofluorescence Microscopy
Cells were left untreated or were irradiated with 10Gy using a Cesium137 source (CIS international/IBL 637 irradiator, dose rate:

0.01083 Gy/s). Three hours later, cells were fixed in 2% paraformaldehyde with 0.1% Triton X-100 in PBS for 30 minutes at room

temperature. Cells were permeabilized in 0.5% Triton X-100 in PBS for 10 minutes. To block nonspecific binding, cells were incu-

bated with PBS containing 0.05% Tween-20 and 4% BSA (Fraction V) (PBS-Tween-BSA) for 1 hour. Cells were incubated overnight

at 4�C with mouse anti-RAD51 (GeneTex, GTX70230, 1:400) in PBS-Tween-BSA. Cells were extensively washed and incubated for

45 minutes with Alexa488-conjugated secondary antibodies. Images were acquired on a Leica DM-6000RXA fluorescence micro-

scope, equipped with Leica Application Suite software.

Low-Throughput Western Blotting
Knockdown efficiencies and the ubiquitination of FANCD2were analyzed by western blotting. Cells were lysed inMammalian Protein

Extraction Reagent (MPER, Thermo Scientific), supplemented with protease and phosphatase inhibitor mixtures (Thermo Scientific).
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Forty micrograms of protein extract was used for separation by SDS/PAGE. Separated proteins were transferred to Polyvinylidene

fluoride (PVDF) membranes and blocked in 5% (wt/vol) BSA in Tris-buffered saline (TBS), with 0.05% Tween20. Immunodetection

was done with antibodies directed against FANCD2 (sc-20022, Santa Cruz), G3BP2 (A302-040A, Bethyl), phospho-MK2 (#3041,

Cell Signaling), E-cadherin (#3195, Cell Signaling), ZEB1 (sc-10572, Santa Cruz), Fibronectin (610077, BD Biosciences) and b-actin

(0869100, MP Biomedicals). Appropriate horseradish peroxidase (HRP)-conjugated secondary antibodies (DAKO) were used for

enhanced chemiluminescence (Lumi-Light, Roche Diagnostics) on a Bio-Rad bioluminescence device, equipped with Quantity

One/ChemiDoc XRS software (Bio-Rad). Knockdown efficiency was quantified using Adobe Photoshop. To this end, Biorad SCN

files were exported into TIF files after which gray scale values were inverted. Mean intensity of a fixed-size rectangular marquee sur-

rounding bands was assessed. Mean intensity was corrected for mean local background, and related to action intensity which was

measured similarly. For G3BP2, shRNAs were designed to target all transcript variants. We assessed the bands at the indicated size,

which represent the long isoform of G3BP2, encoded bymRNA variants 1 and 2, which only differ in their 50 UTR. TheG3BP2 antibody

that we used (Bethyl-A302-040A) was raised against a 51 amino acid peptide of the long isoform, and detects a bandwith a predicted

molecular weight of �54 kDa of the long G3BP2 isoform.

RNA Expression Analysis by Microarray Analysis
Total RNAwas extracted fromMDA-MB-231, MDA-MB-157, HCC38 and BT549 cells after treatment with 2 mMcisplatin for 0, 24 and

72 hours using the RNAeasy Kit (QIAGEN). The Illumina whole-genome expression array HumanHT-12 v4.0 (Illumina) was used and

processed at the UMCGMedical Genetics department on a fee-for-service basis. Microarray data were obtained from two indepen-

dent biological replicates per time point. Data were normalized using percentile shift normalization using GeneSpring GX software

(Agilent Technologies). The cut-off for differential gene expression (DEG) was greater than 1.75-fold change and a p value less

than 0.05. Expression data can be found in the GEO repository under the accession number GSE103115.

Live Cell Microscopy
GFP-MDC1-expressing TNBC cells were seeded in 8-chambered cover glass plates (Lab-Tek-II, Nunc). 16 hours after plating, cells

were treated with 2 mM cisplatin for 24 hours. After media replacement, GFP and DIC images were obtained every 5 minutes over a

period of 16 hours on a DeltaVision Elitemicroscope, equippedwith a CoolSNAPHQ2 camera and a 20x immersion objective (U-APO

340, numerical aperture: 1.35) as described previously (Heijink et al., 2015). In the Z-plane, 6 images were acquired at 0.5-micron

interval. Image analysis was done using SoftWorX software (Applied Precision/GE Healthcare). The number of MDC1-foci before,

during and just after mitosis was scored.

Flow Cytometric Analysis
Cells were plated 24 hours prior to treatment with 2 or 20 mM cisplatin. Following treatment, cells were washed in PBS, trypsinized,

and fixed in ice-cold 70% ethanol. Cells were stained with anti-phospho-Ser139-histone-H2A.X (#9718, Cell Signaling) or anti-phos-

pho-histone-H3 (#9706, Cell Signaling) and subsequently stained with Alexa488-conjugated secondary antibodies, in combination

with propidium iodide/RNase treatment. Samples were measured on a FACSCalibur (Becton Dickinson) and data were analyzed us-

ing the FlowJo software. The level of cell death was measured as fractionated DNA (sub-G1).

Cells were synchronized at the G1/S transition using a 24-hour incubation with 2.5 mM thymidine. After extensive washing, cells

were released and harvested at indicated time points and subsequently fixed in ice-cold 70% ethanol.

High-Throughput Western Blotting
Cells were washed twice in PBS and lysed directly on the plate in Mammalian Protein Extraction Reagent (MPER, Thermo Scientific),

supplemented with protease inhibitor and phosphatases inhibitor mixture (Thermo Scientific). Cell lysates were normalized for pro-

tein content using the BCA protein assay (Pierce). Lysates were run on 48-well 8% pre-cast poly-acrylamide gels (E-PAGE, Invitro-

gen) and transferred using the iBlot gel transfer device onto nitrocellulose membranes (Invitrogen). Blots were blocked in Odyssey

Blocking Buffer (LiCOR Biosciences), incubated overnight with primary antibody at 4 degrees, stained with secondary antibodies

conjugated to an infrared dye for 1 hour at RT, and visualized using an Odyssey scanner (LiCOR Biosciences).

Most antibodies used in this study were purchased fromCell Signaling, including those targeting gH2AX (#9718), CDC25C (#4688),

p-CHK1-Ser345 (#2348), p-CHK2-Thr68 (#2197), p-MK2-Thr334 (#3041), p-ATR-Ser428 (#2853), p-AKT-Ser473 (#3787), p-ERK-

Thr202/Tyr204 (#4376), p-P38-Thr180/Tyr182 (#4511), p-JNK-Thr183/Tyr185 (#9251), p-NFkB p65-Ser536 (#3033), RIPK1

(#3493), Aurora A (#3092), Bcl-xL (#2762) and MCL1 (#4572). Antibodies against CyclinB1 (sc-752), FANCD2 (sc-20022) and

CDC25A (sc-7389) were purchased from Santa Cruz, antibodies against p-CDK1-Y15 (ab133463) and RPA32 (ab2175) from Abcam,

antibodies against p-KAP1-ser824 (A300-767A) and G3BP2 (A302-040A) from Bethyl, antibodies against NEK2 (610593) from BD

Bioscience, antibodies against HMMR (TA307117) from Origene, antibodies against b-actin (0869100) fromMPBiomedicals and an-

tibodies against PLK1 (06-813) were from Millipore.

For computational modeling, raw signals for each protein were quantified and background was subtracted using Li-COR Odyssey

software. For each gel, loading differences were corrected through normalization to b-actin signals. For gel-to-gel normalization,

samples were normalized using a reference sample, which was loaded on each gel. The reference sample for all signals was derived

from MCF-7 cells, lysed at 3 hours after irradiation (10Gy). For time-course plots, signal averages were calculated from biological
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duplicate experiments. The data were then plotted as a fold change to the lowest value that was measured of that particular signal

across all cell lines and treatments. Signaling plots for each individual metric were shaded in gray scale, with darkness reflecting

signal strength (Figures 2C, 2E and S6A). The background of each individual box is colored according to signaling profile: ‘sustained

increase’ in green, ‘late increase’ in red, ‘transient increase’ in yellow and ‘sustained decrease’ in blue. A signaling profile was as-

signed if the maximum signal of a time-course plot reachedR 33% of the maximum signal measured across all cell lines and treat-

ments. Plots are colored as ‘sustained increase’ or ‘sustained decrease’ when signal strength increased or decreases for at least six

subsequent time points, respectively. In case the fold changewas higher than two-fold increasewithin the last three time points, plots

are colored as ‘late increase’. Plots are colored as ‘transient increase’ when the difference between theminimumandmaximum value

was R 2-fold and the maximum value is neighbored by ascending or descending values respectively.

Computational Data-Driven Modeling
Data-driven modeling and the application of partial-least-squares to biological data have been described in detail previously (Janes

and Yaffe, 2006). In PLS modeling, the goal is to use X (signals) to predict Y (responses) and to describe their covariance. The data

were divided into two matrices: E (a matrix containing the X variables) and F (a matrix containing the Y variables). In our study, the

dimensions of E are 176 3 25 signals (2 treatments x 4 cell lines x biological duplicate measurements x 11 time points) and the di-

mensions of F are 1763 6 (six cellular responses). Signal dynamics can be lost in PLS modeling due to uncoupling of temporal data.

Therefore, we quantified several aspects of each signaling trajectory of which the approach was similar to that used previously by

Janes et al. (2008). In the current study, all data were mean centered and unit variance scaled to non-dimensionalize the different

measurements. PLSR analyses were performed using the program SIMCA-P (Umetrics), using the combined dataset as provided

in Table S1. The PLS model was constructed using the following iterative formulas:

E1 = X� t1p
T
1;E2 =E1 � t2P

T
2; t2 =E1w1;Ei =Ei�1 � tip

T
i ; ti =Ei�1wi

F1 = Y� b1t1q
T
1;F2 =F1 � b2t2q

T
2 ;Fi = Fi�1 � bitiq

T
i

E represents the residual of the principal component, with score vector t, weight vector w, loading vector p, and T represents trans-

pose. F represents the residuals of the dependent principal component, with score vector t, loading vector q, and b represents the

inner relation between the independent and dependent principal components. Model predictions were made via cross-validation by

leaving out a random sample of 1/6th of the observations and predicting that 1/6th from the remaining 5/6th of the data. The process

was reiterated until each of the data were omitted and predicted. Model fitness was calculated using R2 and Q2, which were calcu-

lated as described previously (Gaudet et al., 2005). VIP scores were calculated as previously described (Janes et al., 2008). Meta-

variables that captured signal dynamics were calculated as 1) average, 2) area-under-the curve, 3) slope (between first time point

and last time point of time frame), 4) maximum slope (highest slope observed in time frame), 5) fold change (maximum value divided

by minimum value in time frame) and 6) dynamical range (maximum value minus lowest value in time frame). For Figure 6, the original

training model was extended with signaling and response data of MDA-MB-468, HCC1806 and HCC1143 cells. Signaling data were

included for five signals (pMK2, RPA, G3BP2, pKAP1 and BCL-xL), which were measured at 11 time points in response to treatment

with 20 mMcisplatin (5 signals x 3 cell linemodels x 2 biological replicatemeasurements x 11 time points x1 treatment = 330 additional

signal dimensions of ‘E’). In total, 4 responses (sub-G1, G1, S, G2/M) were measured (1 treatment x 3 cell lines x biological duplicate

measurements x 11 time points x 4 responses = 264 additional phenotype dimensions of ‘F’).

QUANTIFICATION AND STATISTICAL ANALYSIS

Information about statistical details can be found in the figure legends. Differences with p value < 0.05 were considered significant,

with * representing p < 0.05, ** representing p < 0.01, *** representing p < 0.001 and **** representing p < 0.0001. Throughout the

manuscript, graphs represent means, with error bars representing standard error of the means (SEM) or standard deviation (SD)

as indicated. P values were calculated using two-tailed Student’s t test. For RNA expression analysis, the cut-off for differential

gene expression (DEG) was a fold change greater than 1.75-fold, and a p value less than 0.05 as assessed using GeneSpring GX

software.

DATA AND CODE AVAILABILITY

ThemRNAexpression data generated during this study are available at theGEO repository under the accession number GSE103115.

e5 Cell Reports 28, 2345–2357.e1–e5, August 27, 2019


	Modeling of Cisplatin-Induced Signaling Dynamics in Triple-Negative Breast Cancer Cells Reveals Mediators of Sensitivity
	Let us know how access to this document benefits you.
	Repository Citation

	Modeling of Cisplatin-Induced Signaling Dynamics in Triple-Negative Breast Cancer Cells Reveals Mediators of Sensitivity
	Introduction
	Results
	Large Variation in Cisplatin Sensitivity in Human TNBC Cell Lines
	Creation of a Signal-Response Dataset for Cisplatin Sensitivity
	Statistical Modeling Using Partial Least-Squares Regression (PLSR)
	PLS Model Identifies Determinants of Cisplatin Sensitivity
	Cisplatin-Induced Changes in Cell-Cycle Progression and Cell Death in TNBC Cell Lines
	G3BP2 Depletion Promotes Cell-Cycle Arrest in Cisplatin-Resistant Cell Lines
	PLS Models Trained on Cisplatin-Sensitive and Cisplatin-Resistant Cells Accurately Predict Cisplatin Sensitivity in a Panel ...

	Discussion
	Supplemental Information
	Acknowledgments
	Author Contributions
	Declaration of Interests
	References
	STAR★Methods
	Key Resources Table
	Lead Contact and Materials Availability
	Experimental Model and Subject Details
	Method Details
	Viral Infection
	MTT Assays
	Immunofluorescence Microscopy
	Low-Throughput Western Blotting
	RNA Expression Analysis by Microarray Analysis
	Live Cell Microscopy
	Flow Cytometric Analysis
	High-Throughput Western Blotting
	Computational Data-Driven Modeling

	Quantification and Statistical Analysis
	Data and Code Availability



