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Abstract. Nested dichotomies (NDs) are used as a method of trans-
forming a multiclass classification problem into a series of binary prob-
lems. A tree structure is induced that recursively splits the set of classes
into subsets, and a binary classification model learns to discriminate be-
tween the two subsets of classes at each node. In this paper, we demon-
strate that these NDs typically exhibit poor probability calibration, even
when the base binary models are well calibrated. We also show that this
problem is exacerbated when the binary models are poorly calibrated.
We discuss the effectiveness of different calibration strategies and show
that accuracy and log-loss can be significantly improved by calibrating
both the internal base models and the full ND structure, especially when
the number of classes is high.

1 Introduction

As the amount of data collected online continues to grow, modern datasets
utilised in machine learning are increasing in size. Not only do these datasets
exhibit a large number of examples and features, but many also have a very high
number of classes. It is not uncommon in some application areas to see datasets
containing tens of thousands or even millions of classes [2/10].

An attractive option to handle datasets with such large label spaces is to
induce a binary tree structure over the label space. At each split node k, the
set of classes present, C, is split into two disjoint subsets Cr; and Cgo. Then, a
binary classification model is trained to distinguish between these two subsets
of classes. Many algorithms have been proposed that fit this general description,
for example [BI58I9]. Often, a greedy inference approach is taken in these tree
structures, i.e., test examples only take a single path from the root node to leaf
nodes. This has the inherent drawback that a single mistake along the path to
a leaf node results in an incorrect prediction [51T]

In this paper, we consider methods with probabilistic classifiers at the in-
ternal nodes, called nested dichotomies (NDs) in the literature [15]. Utilising
probabilistic binary classifiers to make routing decisions for test examples has
several advantages over simply taking a hard 0/1 classification. For example,
multiclass class probability estimates can be computed in a natural way by tak-
ing the product of binary probability estimates on the path from the root to the
leaf node [I4]. However, although hard classification decisions are avoided, small
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errors in the binary probability estimates can accumulate over this product, re-
sulting in inaccurate predictions. Datasets with more classes result in deeper
trees, exacerbating this issue.

In this paper, we investigate approaches to reduce the impact of the ac-
cumulation of errors by utilising probability calibration techniques. Probability
calibration is the task of transforming the probabilities output by a model to
reflect their true empirical distribution; for the group of test examples that are
predicted to belong to some class with probability 0.8, we expect about 80% of
them to actually belong to that class if our model is well calibrated. Our main
hypothesis is that the overall predictive performance of NDs can be improved by
calibrating the individual binary models at internal nodes (which we refer to as
internal calibration). However, we also observe that significant performance gains
can be achieved by calibrating the predictions made from the entire ND (referred
to as external calibration), even if the internal models are well calibrated.

This paper is structured as follows. First, we briefly review NDs and prob-
ability calibration. We then discuss internal and external calibration, providing
theoretical motivation and showing experimental results for each method. Fi-
nally, we conclude and discuss future research directions.

2 Nested Dichotomies

NDs are used as a binary decomposition method for multiclass problems [15]. In
this paper, we only consider the case where a single ND structure is built, al-
though generally superior performance can be achieved by training an ensemble
of NDs with different structures. Ensembles of NDs have been shown to out-
perform binary decomposition methods like one-vs-all [33], one-vs-one [16] and
error-correcting output codes [12], on some classification problems [I5].

The structure of an ND can have a large impact on the predictive perfor-
mance, training time and prediction time. To this end, several methods have
been proposed for deciding the structure of NDs [I3I22I23l26/35]. In this paper,
we focus on a simple method that randomly splits the class set into two at each
internal node.

As previously stated, a useful feature of NDs is the ability to produce mul-
ticlass probability estimates p; for a test instance (x;,y;) from the product of
binary estimates on the path P, to the leaf node corresponding to class c:

i = p(yi = clx:)
= H (]I(C S Cm)p(c € Ck1|xi,yi € Ck) + H(C € Ckz)p(c S Ck2|xi,yi S Ck))
kEP.

where I(+) is the indicator function, Cy, is the set of classes present at node k and
Ck1,Cro C Cy are the sets of classes present at the left and right child of node
k, respectively. If desired, one can still perform greedy inference by taking the
most promising branch at each split point, but this is not guaranteed to find the
best solution [5]. Having binary class probability estimates facilitates efficient
tree search techniques [IT|20127] for better inference, as well as top-k prediction.



On Calibration of Nested Dichotomies 3
3 Probability Calibration

Probability calibration is the task of transforming the outputs of a classifier to
accurate probabilities. It is useful in a range of settings, such as cost-sensitive
classification and scenarios where the outputs of a model are used as inputs for
another. It is also important in real world decision making systems to know when
a prediction from a model is likely to be incorrect.

Some models, like logistic regression, tend to be well calibrated out-of-the-
box, while other models like naive Bayes and boosted decision trees usually
exhibit poor calibration, despite high classification accuracy [30]. Some other
models such as support vector machines cannot output probabilities at all, but
calibration can be applied to produce a probability estimate. Calibration is typ-
ically applied as a post-processing step—a calibration model is trained to trans-
form the output score from a model into a well calibrated probability.

3.1 Calibration Methods

The most commonly used calibration methods in practice are Platt scaling
(PS) [B2] and isotonic regression (IR) [36]. Both of these methods are only di-
rectly applicable to binary problems, but standard multiclass transformation
techniques can be used to apply them to multiclass problems [37].

Platt Scaling is a technique that fits a sigmoid curve

1
o(a) = T amrs

from the output of a binary classifier z; to the true labels. The parameters o and
B are fitted using logistic regression. PS was originally proposed for scaling the
output of SVMs, but has been shown to be an effective calibration technique for
a range of models [30]. Usually, PS is applied to the log-odds (sometimes called
logits) of the positive class, rather than the probability.

Matrix and Vector Scaling are simple extensions of PS for multiclass prob-
lems [I7]. In matrix scaling (MS), instead of single parameters o and 3, a matrix
‘W and bias vector b are learned:

1
o(z) = T wars
where z; is the vector of the log-odds of each class for instance i. MS is equiv-
alent to a standard multiple logistic regression model applied to the log-odds.
It is expensive for datasets with many classes, as the weight matrix W grows
quadratically with the number of classes. Vector scaling (VS) is designed to
overcome this. It is a variant where W is restricted to be a diagonal matrix to
achieve scaling that is linear in the number of classes.
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Isotonic Regression is a non-parametric technique for probability calibra-
tion [36]. It fits a piecewise constant function to minimise the mean squared
error between the estimated class probabilities and the true labels. IR is a more
general method than PS because no assumptions are made about the function
used to map classifier outputs, other than that the function is non-decreasing
(isotonicity). IR has been found to work well as a calibration model, but the
flexibility of the fitted function means it can overfit on small samples.

Other related work. In this paper, efficiency is a concern as there are many
models to be calibrated. For this reason, we opt for the simple calibration meth-
ods mentioned above in our experiments. However, there are several more expres-
sive (and expensive) calibration methods in the literature. Zhong and Kwok [38]
and Jiang et al. [19] propose methods for creating a smooth spline from the
piecewise constant function produced in IR. Naeini et al. [29] propose a method
for performing Bayesian averaging over all possible binning schemes—schemes
that split the probability space into several bins and establish a calibrated prob-
ability value per bin. Leathart et al. [2I] split the feature space into regions using
a decision tree and build a localised calibration model in each region.

3.2 Measuring Miscalibration

The level of probability calibration that a model exhibits is frequently measured
by the negative log-likelihood (NLL):

1 n
NLL = —— 3y log p;
= _vilogp

i=1

where n is the number of examples, y; is the one-hot true label for an instance
7 and P; is the estimated probability distribution. NLL heavily penalises proba-
bility estimates that are far from the true label. For this reason, models which
optimise NLL in training tend to be well calibrated, although interestingly it
has been shown recently that the kinds of architectures used in modern neural
networks can also produce poorly calibrated models [I7]. NLL is also commonly
used as a general measure of model accuracy.

Probability calibration for classification tasks can be visualised through relia-
bility diagrams [28]. In reliability diagrams, the probability range [0, 1] is discre-
tised into K bins Bj,..., Bi. These bins are chosen such that they have equal
width, or equal numbers of examples. The confidence of each bin is given as
the average estimated probability of examples that fall inside the bin, while the
accuracy of each bin is the empirical accuracy:

conf(By) = |B ‘ sz, acc(By) = |B | ZH Ui = Yi)
1€EBy, i€ By

where y; is the true binary label, §; is the predicted label, and p; is the esti-
mated probability for an instance ¢ [I7]. Intuitively, a well calibrated classifier
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should have comparable confidence and accuracy for each bin. The confidence
and accuracy are plotted against each other for each bin, producing a straight
diagonal line for a well calibrated classifier.

Naeini et al. applied the same idea to give a direct quantitative measure
of calibration [29], called the expected calibration error (ECE). This is simply
a weighted average of the residuals in a reliability diagram, weighted by the
number of instances that fall inside each bin.

4 Internal Calibration

In this section, we investigate the effect of calibrating the internal models of
NDs. Our hypothesis is that by improving the quality of the binary probability
estimates, the final multiclass predictive performance will be improved. This is
due to the fact that multiclass probability estimates are produced by computing
the product of a series of binary probability estimates. If the binary probability
estimates are not well calibrated, then these errors will accumulate throughout
the calculation.

4.1 Theoretical Motivation

It seems reasonable that improving the calibration of internal models will result
in superior probability estimates for the ND, but can we theoretically quantify
this improvement? It turns out that reducing the binary NLL of any internal
model by some amount § strictly reduces the multiclass NLL of the ND, and
depending on the depth of the internal model being calibrated, the reduction in
multiclass NLL can be as high as J.

Proposition 1. The NLL of an instance under an ND is equal to the sum of
NLLs of the instance under the binary models on the path from the root node to
the leaf node.

Proof. The NLL of an instance ¢ is given by

NLL = —y; log p; = — log p\”) (1)

K3

where f)gc) is the probability estimate for the true class c. Let P, be the set of
internal nodes on the path from the root to the leaf corresponding to class c.

Then, f)z(-c) can be expressed as
p\” = [T G + (1 — Gi) (1 — pin) (2)
kEP.

where g € {0,1} is the binary meta-label and p;r € [0,1] is the estimated
probability of the positive meta-label for instance i for the binary model at node
k respectively. Because g, € {0,1}, it is equivalent to write

i = [T (1 —pu) 7. (3)
kEP.
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Plugging this into yields

NLL = —log [] p:8* (1 — par) ' 9% (4)
keP.
== 3 tog (7 (1= pu) 7)) (5)
keP.
== Girlog i + (1 — Jix) log(1 — pix), (6)
keP.
the sum of NLLs from the models k € P,. O

It directly follows that reducing the binary NLL for the model at internal
node k by some amount § results in a reduction of the multiclass NLL by 6
for each class corresponding to the leaf nodes that are descendants of node k.
This means that a calibration resulting in a binary NLL reduction of § for some
internal node k reduces the multiclass NLL by §(nx/n), where nj is the number
of examples in classes whose corresponding leaf nodes are descendants of k.

5 External Calibration

As well as calibrating each internal model, we also consider external calibration
of the entire ND. Even models like logistic regression are usually not perfectly
calibrated in practice. We hypothesise that these minor miscalibrations accumu-
late as the ND gets deeper, which can be rectified by an external calibration
model. More specifically, the accumulated miscalibration is likely to be realised
as under-confident predictions. This is because the final multiclass probability
estimates are established by computing a product of probability estimates along
the path from the root to the leaf. For example, consider an ND of depth six for
some multiclass problem. If each binary model on the path is highly confident
with a probability estimate of 0.9, the correct class will be assigned a relatively
low probability estimate of 0.95 = 0.531. Naturally, this effect is greater for
problems with more classes, as the paths to leaf nodes will be longer.

As an illustrative investigation into the effect of ND depth on their cali-
bration, we built an ND with logistic regression base learners for the ALOI
dataset (see Tab. . Figure 1| shows reliability plots for versions of this ND that
have been “cut-off” at incrementally increasing depths. A test example is con-
sidered to be classified correctly at depth d if its actual class is in the subset of
classes Cy, of the node k with highest probability and maximum depth d. Limited
to a depth of one, the ND is simply a single binary logistic regression model,
which exhibits good calibration. However, as the depth cut-off limit increases, it
is clear that the ND becomes increasingly under-confident, i.e., bins that have
high accuracy often have low confidence (Fig. [1} top row). This corresponds to
the curve sitting above the diagonal line. The ECE increases linearly with the
depth of the tree.
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Fig. 1. Reliability plots for an ND with logistic regression base learners, cut off at
increasing depth. Top: no external calibration. As the depth increases, the ND becomes
increasingly under-confident because of the effect of multiplying probabilities together.
Bottom: externally calibrated using vector scaling.

Table 1. Datasets used in our experiments.

Name Instances Features Classes Name Instances Features Classes
optdigits® 5,620 64 10 RCV1?2 15,564/518,571 47,236 53
micromass® 571 1,301 20 sector? 6,412/3,207 55,197 105
letter? 20,000 16 26 ALOTI? 97,200/10,800 128 1,000
devanagari' 92,000 1,000 46 ILSVR2010%1,111,406/150,000 1,000 1,000

ODP-5K*  361,488/180,744 422,712 5,000
1 UCI Repository [24] , 2 LIBSVM Repository [7], ® ImageNet [34], * ODP [4]

This is adequately and efficiently compensated for by applying VS (Fig.
bottom row). VS exhibits low complexity in the number of classes—only two
parameters per class—making it suitable for problems with many classes typi-
cally handled by NDs. For externally calibrated NDs, the ECE initially increases
linearly with the depth of the tree (although for d > 1, the ECE values are much
lower than their uncalibrated counterparts). However, at d = 5, the ECE levels
off and even begins to decrease slightly.

6 Experiments

In this section, we present experimental results of calibration of NDs using dif-
ferent base classifiers on a series of datasets. The datasets we used in our ex-
periments are listed in Table [I} and were chosen to span a range of numbers of
classes. Optdigits, letter and devanagari [I] are character recognition datasets for
digits, latin letters, and Devanagari script respectively. Micromass [25] is for the
identification of microorganisms from mass spectroscopy data. RCV1, sector and
ODP-5K are text categorisation tasks, while ALOI and ILSVR2010 are object
recognition tasks. We use the visual codewords representation for ILSVR2010.
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Table 2. NLL (left) and classification accuracy (right) of NDs with logistic regression,
before and after external calibration.

Dataset Baseline Ext. VS Dataset Baseline Ext. VS

optdigits  0.30 (0.07) 0.30 (0.08) optdigits  90.5 (0.02) 90.6 (0.03)
micromass 5.92 (1.83) 1.88 (0.51) micromass 80.4 (0.06) 77.2 (0.05)
letter 1.50 (0.06) 1.44 (0.08) letter 51.2 (0.03) 53.6 (0.03)
devanagari 2.43 (0.11) 2.03 (0.05) devanagari 42.8 (0.02) 42.8 (0.02)
RCV1 1.00 (0.02) 0.58 (0.01) RCV1 81.4 (0.01) 85.5 (0.00)
sector 2.86 (0.01) 1.25 (0.02) sector 84.8 (0.01) 86.7 (0.00)
ALOI 3.60 (0.02) 3.05 (0.03) ALOI 27.4 (0.01) 33.1 (0.01)
ILSVR2010 6.44 (0.01) 5.78 (0.01) ILSVR2010 6.3 (0.00) 5.3 (0.00)
ODP-5K  5.80 (0.01) 4.97 (0.01) ODP-5K  18.9 (0.00) 22.8 (0.00)

In order to obtain performance estimates, we performed 10 times 10-fold
cross-validation for the datasets from the UCI repository, while adopting the
standard train/test splits for the larger datasets with a larger number of classes
(m > 50). The number of instances stated in Table [1] for the larger datasets is
split into number of training and test instances. Note that in each fold and run of
10 times 10-fold cross-validation, a different random ND structure is constructed.
In the case of the larger datasets, the average of 10 randomly constructed NDs is
reported. Standard deviations are given in parentheses, and the best result per
row appears in bold face. The original ODP dataset contains 105,000 classes—
we took the subset of the most frequent 5,000 classes to create ODP-5K for the
purposes of this investigation. We also reduce the dimensionality to 1,000 when
evaluating NDs with boosted trees, by using a Gaussian random projection [6].

We implemented VS [I7] and NDs in Python, and used the implementations
of the base learners, IR and PS available in scikit-learn [3I]. Our implemen-
tations are available online at https://github.com/timleathart/pynd.

6.1 Well Calibrated Base Learners

As shown in Figure [1} overall calibration of NDs can degrade to systematically
under-confident predictions as the depth of the tree increases, even if the base
learners are well calibrated. To further investigate the effects of ND depth on
predictions, we performed experiments with external calibration to determine
the extent to which the classification accuracy and NLL are affected as well.

Table [2| shows the NLL and accuracy of NDs with logistic regression, before
and after external calibration is applied. Logistic regression models are known
to be well-calibrated [30]. VS [I7] is used as the external calibration model. We
use a 10% sample of the training data to train the external calibration model,
and the remaining 90% to build the ND including the base models.

Discussion. Table [2] shows that, for all datasets, a reduction in NLL is ob-
served after applying external calibration with VS (Ext. VS). For some of the
datasets with fewer classes (optdigits and letter), the reduction is modest, but
the larger datasets see substantial improvements. Interestingly, for some datasets
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a large improvement in classification accuracy is also observed, especially for the
datasets with more classes. A surprising finding is that the accuracy degrades
for ILSVR2010 and micromass, despite a large improvement in NLL.

6.2 Poorly Calibrated Base Learners

Tables [3] and [4 show the NLL and classification accuracy respectively of NDs
trained with poorly calibrated base learners, when different calibration strate-
gies are applied. Specifically, we considered NDs with naive Bayes and boosted
decision trees as the base learners. The calibration schemes compared are inter-
nal PS (Int. PS), internal IR (Int. IR) and external VS (Ext. VS), as well as
each internal calibration scheme in conjunction with external VS (Both PS and
Both IR, respectively). Three-fold cross validation is used to produce the train-
ing data for the internal calibration models, rather than splitting the training
data. This is to ensure that each internal calibration model has a reasonable
amount of data points to train on. When external calibration is performed, 10%
of the data is held out to train the external calibration model. Note that this
means 10% less data is available to train the ND and (if applicable) perform
internal calibration. Gaussian naive Bayes is applied for optdigits, micromass,
letter and devanagari, and multinomial naive Bayes is used for RCV1, sector,
ALOI, ILSVR2010 and ODP-5K as they have sparse features. We use 50 decision
trees with AdaBoost [18], limiting the depth of the trees to three.

Discussion. Tables |3 and [4| show that applying internal calibration is very
beneficial in terms of both NLL and classification accuracy. There is no combi-
nation of base learner and dataset for which the baseline gives the best results,
and there are very few cases where the baseline does not perform the worst out
of every scheme. When naive Bayes is used as the base learner, applying internal
calibration with IR always gives better results than the baseline, and when an
ensemble of boosted trees is used as the base learner, applying internal PS al-
ways outperforms the uncalibrated case. It is well known that these calibration
methods are well-suited to the respective base learners [30], and this appears to
also apply when they are used in an ND.

External calibration also has a positive effect on both NLL and classifica-
tion accuracy in most cases compared to the baseline. However, the best results
are usually obtained when both internal and external calibration are applied
together. For naive Bayes, the smaller datasets as well as the two object recog-
nition datasets (ALOI and ILSVR2010) generally see the best performance for
both NLL and classification accuracy when applying internal IR in conjunc-
tion with external calibration. Interestingly, the best results for the three text
categorisation datasets were obtained through external calibration only.

Performing both internal PS and external calibration gives the best NLL
performance for NDs with boosted trees in most cases, although the improvement
compared to IR is usually small. However, performance in terms of classification
accuracy is less consistent, often being greater when only calibrated internally.
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Table 3. NLL of NDs with poorly calibrated base classifiers.

Model Dataset Baseline Ext. VS Int. PS Both PS Int. IR Both IR
optdigits 4.25 (0.92) 0.84 (0.13) 0.85 (0.11) 0.80 (0.09) 0.71 (0.12) 0.64 (0.09)
micromass  8.66 (1.72) 1.62 (0.42) 0.92 (0.08) 0.75 (0.12) 0 76 (0.12) 0.71 (0.15)
letter 2.33 (0.08) 2.15 (0.08) 2.16 (0.06) 2.06 (0.07) 2.05 (0.07) 1.95 (0.06)

Naive devanagari 13.14 (0.59) 3.31 (0.16) 2.98 (0.05) 2.60 (0.02) 2.75 (0.07) 2.44 (0.05)

Bayes RCV1 1.69 (0.19) 0.86 (0.01) 1.14 (0.07) 0.94 (0.03) 0.99 (0.04) 0.91 (0.02)
sector 3.79 (0.36) 1.40 (0.09) 2.07 (0.20) 1.51 (0.10) 1.91 (0.21) 1.77 (0.09)
ALOI 32.9 (0.43) 6.84 (0.02) 5.53 (0.02) 4.33 (0.03) 4 85 (0.03) 4.13 (0.01)
ILSVR2010 32.3 (0.20) 6.81 (0.00) 6.16 (0.00) 6.12 (0.01) 6.17 (0.00) 6.11 (0.00)
ODP-5K 8.49 (0.31) 5.16 (0.05) 6.10 (0.00) 5.51 (0.02) 6.05 (0.11) 5.36 (0.01)
optdigits 3.86 (0.57) 0.63 (0.07) 0.40 (0.04) 0.29 (0.04) 0.39 (0.03) 0.30 (0.04)
micromass 10.01 (2.05) 2.51 (0.52) 1.26 (0.11) 1.00 (0.14) 1.23 (0.27) 0.95 (0.19)
letter 4.86 (0.27) 0.92 (0.04) 0.56 (0.02) 0.44 (0.03) 0.55 (0.02) 0.44 (0.03)

Boosteq devanagari 3.42 (0.28) 1.03 (0.04) 2.26 (0.17) 0.71 (0.02) 1.97 (0.12) 0.73 (0.02)

Trees RCV1 1.96 (0.02) 1.02 (0.00) 0.93 (0.01) 0.71 (0.01) 0.86 (0.00) 0.74 (0.01)
sector 3.63 (0.20) 2.91 (0.11) 2.67 (0.03) 2.03 (0.03) 2.59 (0.05) 2.20 (0.07)
ALOI 4.44 (0.26) 2.51 (0.05) 4.88 (0.03) 1.05 (0.02) 4.28 (0.04) 1.17 (0.03)
ILSVR2010 6.55 (0.10) 5.86 (0.00) 5.64 (0.00) 5.21 (0.00) 5.45 (0.00) 5.20 (0.00)
ODP-5K 7.73 (0.04) 7.19 (0.00) 7.12 (0.00) 6.60 (0.00) 6.98 (0.00) 6.57 (0.00)

Table 4. Accuracy of NDs with poorly calibrated base classifiers.

Model Dataset Baseline Ext. VS Int. PS Both PS Int. IR Both IR
optdigits ~ 71.9 (0.05) 74.9 (0.04) 71.9 (0.05) 73.5 (0.04) 77.4 (0.04) 79.5 (0.04)
micromass 74.9 (0.05) 72.4 (0.05) 77.0 (0.05) 76.2 (0.05) 77.2 (0.05) 75.6 (0.05)
letter 32.9 (0.02) 36.4 (0.03) 31.8 (0.03) 36.5(0.03) 37.6 (0.03) 41.2 (0.03)

Naive devanagari 20.2 (0.02) 22.4 (0.04) 16.7 (0.02) 26.9 (0.01) 26.5 (0.04) 34.0 (0.01)

Bayes RCV1 64.4 (0.04) 78.1 (0.00) 69.1 (0.03) 75.6 (0.00) 73.4 (0.01) 76.5 (0.01)
sector 33.7 (0.07) 77.2 (0.01) 63.3 (0.04) 73.7 (0.03) 69.2 (0.04) 69.0 (0.01)
ALOI 2.4 (0.00) 2.9 (0.00) 1.9 (0.00) 12.4 (0.00) 9.4 (0.00) 16.6 (0.01)
ILSVR2010 0.9 (0.00) 1.5 (0.00) 1.4 (0.00) 1.9 (0.00) 2.1 (0.00) 2.6 (0.00)
ODP-5K 4.3 (0.01) 21.0 (0.00) 9.1 (0.00) 16.1 (0.00) 13.5 (0.01) 18.0 (0.00)
optdigits ~ 88.8 (0.02) 88.3 (0.02) 92.2 (0.01) 91.7 (0.01) 92.1 (0.01) 91.5 (0.01)
micromass 71.0 (0.06) 65.0 (0.06) 74.1 (0.06) 72.9 (0.06) 73.7 (0.06) 72.7 (0.05)
letter 85.9 (0.01) 85.1 (0.01) 88.8 (0.01) 88.3 (0.01) 89.0 (0.01) 88.4 (0.01)

Boosted devanagari 10.3 (0.06) 71.0 (0.01) 48.8 (0.11) 79.3 (0.01) 63.6 (0.04) 78.3 (0.01)

Trees RCV1 68.1 (0.06) 74.8 (0.01) 81.0 (0.00) 81.4 (0.01) 81.0 (0.00) 80.7 (0.00)
sector 17.4 (0.08) 40.9 (0.02) 60.3 (0.01) 57.6 (0.01) 57.8 (0.01) 55.2 (0.01)
ALOI 7.1 (0.03) 45.1 (0.01) 16.1 (0.01) 74.3 (0.01) 36.8 (0.01) 72.3 (0.00)
ILSVR2010 1.9 (0.00) 4.0 (0.00) 9.3 (0.00) 10.2 (0.00) 9.7 (0.00) 10.0 (0.00)
ODP-5K 3.2 (0.00) 3.8 (0.00) 5.5 (0.00) 6.8 (0.00) 6.2 (0.00) 7.2 (0.00)

7 Conclusion

In this paper, we show that the predictive performance of NDs can be sub-
stantially improved by applying calibration techniques. Calibrating the internal
models increases the likelihood that the path to the leaf node corresponding to
the true class is assigned high probability, while external calibration can correct
for the systematic under-confidence exhibited by NDs. Both of these techniques
have been empirically shown to provide large performance gains in terms of ac-
curacy and NLL for a range of datasets when applied individually. Additionally,
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when both internal and external calibration are applied together, the perfor-
mance often improves further, especially so when the number of classes is high.

Future work in this domain includes evaluating alternative external calibra-
tion methods. In our experiments, we applied VS as it is an efficient and scalable
solution for large multiclass tasks. However, when resources are available, it is
possible that employing a more complex method such as matrix scaling, or IR
with one-vs-rest, could provide superior results. It would also be interesting to in-
vestigate whether such calibration measures are as effective for other methods of
constructing NDs than random subset selection [I323/22126/35]. We expect that
the calibration techniques discussed in this paper will transfer to such methods.
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