View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by Royal Holloway - Pure

A Non-wellfounded, Labelled Proof System for
Propositional Dynamic Logic

Simon Docherty'* and Reuben N. S. Rowe?**

! Department of Computer Science, University College London, UK
simon.docherty@ucl.ac.uk
2 School of Computing, University of Kent, Canterbury, UK
reuben.rowe@kent.ac.uk

Abstract. We define an infinitary labelled sequent calculus for PDL,
G3PDL®™. A finitarily representable cyclic system, G3PDL®, is then
given. We show that both are sound and complete with respect to stan-
dard models of PDL and, further, that G3PDL is cut-free complete.
We additionally investigate proof-search strategies in the cyclic system
for the fragment of PDL without tests.

1 Introduction

Fischer and Ladner’s Propositional Dynamic Logic (PDL) [14], which is the
propositional variant of Pratt’s Dynamic Logic [34], is perhaps the quintessential
modal logic of action. While (P)DL arose initially as a modal logic for reasoning
about program execution its impact as a formalism for extending ‘static’ logical
systems with ‘dynamics’ via composite actions [22, p. 498] has been felt broadly
across logic. This is witnessed in extensions and variants designed for reasoning
about games [31], natural language [21], cyber-physical systems [33], epistemic
agents [19], XML [1], and knowledge representation [11], among others.

Much of the proof theoretic work on PDL, and logics extending it, focuses
on Hilbert-style axiomatisations, which are not amenable to automation. Out-
side of this, proof systems for PDL itself can broadly be characterised as one
of two sorts. Falling into the first category are a multitude of infinitary sys-
tems [35,24,16] employing either infinitely-wide w-proof rules, or (equivalently)
allowing countably infinite contexts. In the other category are tableau-based al-
gorithms for deciding PDL-satisfiability [18,20]. While these are (neccessarily)
finitary, they employ a great deal of auxillary structure tailored to the decision
procedure itself.

In the proof theory of modal logic, a high degree of uniformity and modularity
has been achieved through labelled systems. The idea of using labels as syntactic
representatives of Kripke models in modal logic proof systems can be traced back
to Kanger [25], but perhaps has been most famously deployed by Fitting [15]. A
succinet history of the use of labelled systems is provided by Negri [29]. Negri’s

* supported by EPSRC grant no. EP/S013008/1
** supported by EPSRC grant no. EP/N028759/1.

https://core.ac.uk/display/228377054?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://gow.epsrc.ukri.org/NGBOViewGrant.aspx?GrantRef=EP/S013008/1
https://gow.epsrc.ukri.org/NGBOViewGrant.aspx?GrantRef=EP/N028759/1

work [28] is the high point of the technique, giving a procedure to transform
frame conditions for Kripke models into labelled sequent calculi rules preserving
structural properties of the proof system, given they are defined as coherent
azioms.

The power of this rule generation technique is of particular interest because
it enables the specification of sound and complete systems for classes of Kripke
frames that are first-order, but not modally, definable. In the context of PDL-
type logics, this is of interest because of common additional program constructs
like intersection which have a non-modally definable intended interpretation [32].
However, even with this expressive power, such a framework on its own cannot
account for program modalities involving iteration. In short, formulae involving
these modalities are interpreted via the reflexive-transitive closure of accessibil-
ity relations, and this closure is not first-order (and therefore, not coherently)
definable. Something more must be done to capture the PDL family of logics.

In this paper we provide the first step towards a uniform proof theory of
the sort that is currently missing for this family of logics by giving two new
proof systems for PDL. We combine two ingredients from modern proof theory
that have hitherto remained separate: labelled deduction a la Negri and non-
wellfounded (in particular, cyclic) sequent calculi.

We first construct a labelled sequent calculus G3PDL®, extending that
of Negri [28], in which proofs are permitted to be infinitely tall. For this sys-
tem soundness (via descending counter-models) and cut-free completeness (via
counter-model construction) are proved in a similar manner to Brotherston and
Simpson’s infinitary proof theory for first-order logic with inductive definitions
[6]. Next we restrict attention to regular proofs, meaning only those infinite proof
trees that are finitely representable (i.e. only have a finite number of distinct sub-
trees), obtaining the cyclic system G3PDL®. This can be done by permitting
the forming of backlinks (or, cycles) in the proof tree, granted a (decidable) trace
condition guaranteeing soundness can be established. We then show that the ax-
iomatisation of PDL [23] can be derived in G3PDL®, obtaining completeness.
We finish the paper with an investigation of proof-search in the cyclic system
for a sub-class of sequents, and conjecture cut-free completeness for the test-free
fragment of PDL.

There are a number of advantages to setting up PDL’s proof theory in
this manner. Most crucially, through the cyclic system we obtain a finitary se-
quent calculus with natural, declarative proof rules, in which requirements on
Kripke models and traces are elegantly handled with the labels. Such a system
is amenable to automation through, for example, the Cyclist [5] theorem prover.
We also conjecture (see Section 5) that labels can be used to compute bounds
to determine termination of proof-search.

We believe this work can be built upon in two complementary directions.
First, towards a uniform proof theory of PDL-type logics. We conjecture the
presence of labels should facilitate the extension of the system with rules for
additional program constructs. Second, this work gives a case study for the ex-
tension of the expressivity of Negri-style modal proof theory. Our system thus

indicates the viability of constructing an analogous general framework that nat-
urally captures modal logics interpreted on classes of Kripke frames defined by
logics more expressive than first-order logic (for example, epistemic logics with a
common knowledge modality). We discuss this, and other ideas for future work,
in the conclusion.

For space reasons we elide proofs, but these can be found in an extended
version of this paper available online [13].

Related Work. Beyond the proof systems outlined above, the most significant
related work can be found in Das and Pous’ [9,10] cyclic proof systems for de-
ciding Kleene algebra (in)equalities. Das and Pous’ insight that iteration can be
handled in a cyclic sequent calculus is essential to our work here, although there
are additional complications involved in formulating a system for PDL because
of the interaction between programs (which form a Kleene algebra with tests)
and formulae. We also note that Goré and Widmann’s tableau procedure also
utilises the formation of cycles in proof trees. Our proof of cut-free completeness
of the infinitary system also follows that of Brotherston and Simpson [6] for
first-order logic with inductive definitions.

Recent work by Cohen and Rowe [8] gives a cyclic proof system for the
extension of first-order logic with a transitive closure operator and we conjecture
that our labelled cyclic system (and labelled cyclic systems for modal logics more
generally) can be formalised within it. This idea echoes van Benthem’s suggestion
that the most natural frame language for many modal logics is not first-order
logic, but in fact first-order logic with a least fixed point operator [4].

Cyclic proof systems have also been defined for some modal logics with similar
model properties to PDL, including the logic of common knowledge [40] and
Go6del-Lob logic [37]. The idea of cyclic proof can be traced to modal p-calculus
[30]. Indeed, it can be shown that the logic of common knowledge [2], G6del-Lob
logic [4,39] and PDL [4,7] can be faithfully interpreted in the modal p-calculus,
indicating that perhaps cyclic proof was the right approach for PDL all along.

2 PDL: Syntax and Semantics

The syntax of PDL formulas is defined as follows. We assume countably many
atomic propositions (ranged over by p, ¢,), and countably many atomic pro-
grams (ranged over by a, b, ¢).

Definition 1 (Syntax of PDL). The set of formulas (p, ¢, ...) and the set
of programs («, 3, ...) are defined mutually by the following grammar:

ppu=LplendleVve|e =4y
a,fyi=ala;flaUBle?]a
We briefly reprise the semantics of PDL (see [23, §5.2]). A PDL model

m = (S§,7) is a Kripke model consisting of a set S of states and an inter-
pretation function Z that assigns: a subset of S to each atomic proposition; and

a binary relation on S to each atomic program. We inductively construct an
extension of the interpretation function, denoted Z,,, that operates on the full
set of propositions and programs.

Definition 2 (Semantics of PDL). Let m = (S,Z) be a PDL model. We
define the extended interpretation function Ly inductively as follows:

In(L)=10 Zn(a) =Z(a)

Zn(p) = Z(p) Tn(a; B) = In(a) o In(B)
I AY) = Tin(p) N I (¢)) (a UB) = Zn(a) ULn(B)
('(/}) = Im((p) UIm(¢) (?) = Id(Im())

('(/}) (S\Im((p)) UIm(w) 04*) = Im
Tu([a]g) = S\ Ty (T (@) 0 1(S \ Zu () =

where o denotes relational composition, R™ denotes the composition of R with
itself n times, Il returns a set by projecting the first component of each tuple
in a relation, and 1d(X) denotes the identity relation over the set X.

We write m, s = ¢ to mean s € Zy(p), and m |= ¢ to mean that m,s |= ¢
for all states s € S. A PDL formula ¢ is valid when m |= ¢ for all models m

3 An Infinitary, Labelled Sequent Calculus

We now define a sequent calculus for deriving theorems (i.e. valid formulas) of
PDL. This proof system has two important features. The first is that it is a
labelled proof system. Thus sequents contain assertions about the structure of
the underlying Kripke models and formulas are labelled with atoms denoting
specific states in which they should be interpreted. Secondly, we allow proofs of
infinite height.

We assume a countable set £ of labels (ranged over by z, y, z) that we
will use to denote particular states. A relational atom is an expression of the
form x R, y, where x and y are labels and a is an atomic program. A labelled
formula is an expression of the form x : ¢, where x is a label and ¢ is a for-
mula. We define a label substitution operation by z{z/y} = y when = = z, and
z{x/y} = z otherwise. We lift this to relational atoms and labelled formulas by:
(z Ra 2'){z/y} = 2{x/y} Ra 2{x/y} and (2 :){z/y} = 2{z/y} : ¢

Sequents are expressions of the form I' = A, where I' and A are finite
sets of relational atoms and labelled formulas. We denote an arbitrary member
of such a set using A, B, etc. As usual, I A and A,I" both denote the set
{A}yU I, and I'{z/y} denotes the application of the (label) substitution {z/y}
to all the elements in I'. We denote by [a]I" the set of formulas obtained from
I' by prepending the modality [a] to every labelled formula. That is, we define
[@]'={zRyy|xzR,y€ltU{zx:[a]p]|x:¢ €} labs(I') denotes the set
of all labels ocurring in the relational atoms and labelled formulas in I".

I'=s A = A

(Ax): (L): (wWL): —m4m48 — (WR):
A=A z:l = A, I'=> A I'=AA
z:p,x:p, [= A I'=sAxz:p I'=>Ax: 9
(AL): —m—————— (AR):
o AP, ' = A I'=Axz:pANY
z:p, ' = A z:¢, = A I'=> A z:p,x: 9
(VL): (VR): —m8m™
VY, I'=> A I'=Azx:oVy
I'=sAx:¢ xz:¢9,I'=>A z:p, "= Az
(—L): (-»R): —————
z:p—=>P, [= A I'=Az:o—Y
y:o, I'= A z Ry y, I' = A,y
(8L): (8R): (y fresh)
z:[alp,z Ry y, " = A I' = A,z : [a]e
z: [o][Ble, I = A I' = A,z : [o][Ble
(L) ——— (R} —
z: o Ble, I = A I'= Az [a; Ble
z:[o]p,z: [Ble, = A I'=s Az:[alg I'=> A,z: [Ble
(UL): (UR):
z:[aUBle, "= A I'= A,z :[aUpBle
I'=sAzxz:¢o z:¢, = A o, = Az
(7L): (’R): ——m8m
z: [p?, [= A I'= Az [p?y
z:p,x:[a]la’]e, [= A I'=sAxz:¢ I'=> A z:[aa"]p
(+L): (*R):
z: [, [= A I'=s Az: o]
I'= A I'=AA AX=1
(Subst): ——m (Cut):
r{z/y} = Alz/y} Lo=an

Fig. 1: Inference rules of G3PDL>™

We interpret sequents with respect to PDL models using label valuations v,
which are functions from labels to states. We write m,v =« R, y to mean that
(v(z),v(y)) € Im(a). We write m,v =z : ¢ to mean m,v(z) = ¢. For a sequent
I' = A, denoted by S, we write m,v = S to mean that m,v = B for some
B € A whenever m,v = A for all A € I'. We write m,v = S whenever this is
not the case, i.e. when m,v = A for all A € I' and m,v £ B for all B € A. We
say S is valid, and write = S, when m,v = S for all models m and valuations v
that map each label to some state of m.

The sequent calculus GBPDL™ is defined by the inference rules in fig. 1. A
pre-proof is a possibly infinite derivation tree built from these inference rules.

Definition 3 (Pre-proof). A pre-proof is a possibly infinite (i.e. non-well-
founded) derivation tree formed from inference rules. A path in a pre-proof is

a possibly infinite sequence of sequents sg, 81, ... (,8,) such that sg is the root
sequent of the proof, and s;11 is a premise of s; for each v < n.

Not all pre-proofs derive sound judgements.
Ezample 1. The following pre-proof derives an invalid sequent.
=z:[a"]p =z [a*]p

(WR) (WR)
=zx:[a*|p,z:p =z : [a*]p,z : [a][a*]p R)

=z:[a’]p

Note that, since our sequents consist of sets of formulas, each instance of the
(+R) rule incorporates a contraction

To distinguish pre-proofs deriving valid sequents, we define the notion of
a trace through a pre-proof. Traces consist of trace values, which (uniquely)
identify particular modalities within labelled formulas. «, denotes a sequence
Qai, ..., 0n, and € denotes the empty sequence. We sometimes omit the subscript
indicating length, writing a, when irrelevant or evident from the context.

Definition 4 (Trace Value). A trace value 7 is a tuple (z, o, B,) consisting
of a label x, a (possibly empty) sequence o, of n programs, a program B, and
a formula ¢. We call o the spine of T, and B the focus of 7. We write [v]T
for the trace value (x,7 - o, B, @), and y : T for the trace value (y, a,, B, ¢). In
an abuse of notation we also use T to denote the corresponding labelled formula

x: [aq]. .. [an][B*]e.

Trace values in the conclusion of an inference rule are related to trace values
in its premises as follows.

Definition 5 (Trace Pairs). Let 7 and 7/ be trace values, with sequents I' = A
and I'" = A’ (respectively denoted by s and s') the conclusion and a premise,
respectively, of an inference rule r; we say that (1,7') is a trace pair for (s,s’)
when 7 € A and 7' € A’ and the following conditions hold.

(1) If T is the principal formula of the rule instance, then 7' is its immediate
ancestor and moreover if the rule is an instance of:
(OR) then T =x : [a]T’, where x is the label of the principal formula;
(?R) then T = [p?]7';
GR) then 7 =[a; B]7" and 7' = [a][B]7"" for some trace value T";
(UR) then there is some 7" such that: 7 = [aU B]7"; 7/ = [a]7” if §' is the
left-hand premise; and 7" = [B]7" if §' is the right-hand premise;
(#R) then T = [a*|7" if ' is the left-hand premise, and 7" = [T if s’ is the

right-hand premise.

(2) If T is not the principal formula of the rule then 7 = x : 7' if the rule is an

instance of (Subst) and x is the label substituted, and T = 7' otherwise.

z:[a]p = 2 [a"][a"]p

(Subst)
y:la"le =y [a"][a"]p

(WL)
z:py:fa’]e =y [a’]a]e

(OL)
z Ray,x:p,x:[a]la’]e = y:[a"][a"]e

(OR)
¢:p.a:fdla’le = o [alla’][a"]e
(Ax) (L)
zifa’le = a:falp z:[a’le = o lalla’)la"]e

z:[a"le=z:[a"][a"]p ¢---=-=---"-==------~-

z:[a"]e=x:[a";a"]p

(—R)
=z:[a"]p = [a";a]

Fig. 2: Representation of a G3PDL™ proof of [a*]¢ — [a* ; a*]p.

If 7 is the principal formula of the rule instance and the spine of T is empty,
then we say that the trace pair is progressing.

Notice that when a trace pair is progressing for (s, s'), it is necessarily the case
that the corresponding rule is an instance of (*R) and that s’ is the right-hand
premise (although, not necessarily vice versa).

Traces along paths in a pre-proof consist of consecutive pairs of trace values
for each corresponding step of the path.

Definition 6 (Trace). A trace is a (possibly infinite) sequence of trace values.
We say that a trace 11,72, ...(,7,) follows a path s1,sa,...(,Sm) in a pre-proof
when there exists some k > 0 such that each consecutive pair of trace values
(T3, Tix1) 18 a trace pair for (Siyk,Sivk+1); when k = 0, we say that the trace
covers the path. We say that the trace progresses at i if (7;,Ti+1) is progressing,
and say the trace is infinitely progressing if it progresses at infinitely many points.

Proofs are pre-proofs that satisfy a well-formedness condition, called the
global trace condition.

Definition 7 (Infinite Proof). A G3PDL®™ proof is a pre-proof in which
every infinite path is followed by some infinitely progressing trace.

Ezample 2. Figure 2 shows a finite representation of a G3PDL™ proof of the
formula [a*]¢ — [a*;a*]p. The full infinite proof can be obtain by unfolding
the cycle an infinite number of times. An infinitely progressing trace following
the (unique) infinite path in this proof is indicated by the underlined programs
highlighted in blue, which denote the focus of the trace value in each sequent.
The progression point is the (only) instance of the (xR) rule.

Figure 3 shows a finite representation of a G3PDL™ proof of the sequent
x: [a*]¢ = x : [(a*)"]p. This proof is more complex than that of fig. 2, and in-
volves two overlapping cycles. This proof contains more than one infinite path (in

i la'le =z [@l@) e

(Subst)
y:[a]lp =y [@](e)]y

(W)
z:ipy:la’le =y [@](e”) e

(On)
(TTTTTTTT ST T T m T e e N 2z Ro y,m: @2 [a][a”]e = y: [@"][(a") e
. (Ax) | (ORr)
! ripmaie ; zi i falla’le = 2 :)@]i@) T
| - v U . P g
L oigeifatllele S oo i la'le = [(a*) e 2 [a'le = 2 : [ala]le) 1o
| (+L) (*R)
: z:[a"lp=z:¢p z:fa”lp=a:[@][(a”)]pmmmmmmmm e m e m - -
1 (*R) T
A e yx:[a"]p =z [(a) e

fact, it contains an infinite number of infinite paths). However, they fall into three
categories: (1) those that eventually traverse only the upper cycle; (2) those that
eventually traverse only the lower cycle; and (3) those that traverse both cycles
infinitely often. Infinite paths of the first variety have an infinitely progressing
trace indicated by the overlined programs highlighted in red. The progression
point is the upper instance of (xR) rule, marked by (). The remaining infinite
paths have a trace indicated by the underlined programs highlighted in blue.
This trace does not progress around the upper cycle (for those paths that tra-
verse it), but does progress once around each lower cycle at the instance of the
(*R) rule marked by (t). Since these paths traverse this lower cycle infinitely
often, the trace is infinitely progressing.

Remark 1. The notion of trace in the system for Kleene Algebra of Das and Pous
[9,10] appears simpler than ours: a sequence of formulas (on the left) connected
by ancestry, with such a trace being valid if it is principal for a (left) unfolding
rule infinitely often. In fact, we can show that our definition of trace is equivalent
to an analogous formulation of this notion for our system. However, our definition
allows for a direct, semantic proof of soundness via infinite descent. In contrast,
the soundness proof in [10] relies on cut-admissibility and an inductive proof-
theoretic argument for the soundness of the cut-free fragment. It is unclear that
a similar technique can be used to show soundness of the cut-free fragment of
our system. Furthermore, the cut-free fragment of the system of Das and Pous is
notable in that it admits a simpler trace condition than the full system: namely,
that every infinite path is fair for the (left) unfolding rule [10, prop. 8]. Our
system does not satisfy this property, due to the ability to perform contraction
and weakening, as demonstrated in example 1.

The proof system is sound since, for invalid sequents, we can map traces to
decreasing sets of counter-examples in (finitely branching) models.

A path in a model m is a sequence of states s, ...,s, in m such that each
successive pair of states satisfies (s;, si41) € Zm(a) for some a. A path in m is
called loop-free if it does not contain any repeated states. If s and s’ are paths
in m, we write s C s’ to denote that s is a prefix of s’.

An m-partition of a path s, is a sequence of m increasing indices k1 < ... <
km < n. A path in m for a trace value 7 = (z,a,, 5, p) with respect to a
valuation v is a path s,, in m with s; = v(z) having an n-partition ki,...,k,
satisfying (sg;, Sk+1) € Zm(ait1) for each 0 < i < n and (sg,, Sm) € Zn(5"),
where we take kg = 1 (i.e. sg, = s1). The n-partition ky,...,k, is called a
partition of s, for 7. A counter-example in m for a trace value 7 at v is simply
a path s,, in m for 7 w.r.t. v such that m, s, = ¢.

A given path in m for 7 at v can, in general, have many different partitions.
A partition k,, of a path s,, for 7 at v is called mazimal if the length of its final
segment sg, , ..., Sy, is maximal among all such partitions. We define the weight
of a path s in m for 7 at v to be the length of the final segment(s) of its maximal
partition(s). We denote this by fi(m (8, 7). If IT is a set of paths in m for 7 at v,
we define the measure of IT, denoted pi(y, . (11, 7), to be the multiset of weights
of the paths it contains; that is p(m) (11, 7) = {fi(m)(8,7) | 8 € IT}.

The measure for trace values in a model m at a valuation v, then, is simply
the measure of the set of all of its ‘nearest’ counter-examples.

Definition 8 (Trace Value Measure). Let Ciy .)(7) denote the set of all loop-
free counter-examples s in m for T at v such that there is no counter-example

s’ inm for 7 at v with ' C s. The measure of T in m at v is defined as

H(m,v) (T) = H(m,v) (C(m,v) (7-)7 T)'

For finitely branching models m, it is clear that trace value measures are
always finite. Note that finite multisets M of elements of a well-ordering can be
well-ordered using, e.g., the Dershowitz-Manna ordering <py [12]. This means
that we have the following property.

Lemma 1 (Descending Counter-models). Let I' = A, denoted S, be the
conclusion of an instance of an inference rule, and suppose there is a finitely
branching model m and valuation v such that m,v [~ S, then there is a premise
I'" = A’ of the rule instance, denoted S’, and a valuation v’ such that m,v' = S’
and for each trace pair (7,7") for (S,8"), pmw)(T") <DM Pmw)(T) and also
H(mar) (') <21 Hman () if (7,7') is progressing.

This entails the soundness of our proof system, since PDL has the finite
model property [14, Thm. 3.2]. This property states that, if a PDL formula is
satisfiable, then it is satisfiable in a finite (and thus finitely branching) model.
Thus, if a sequent is not valid then there is a finitely branching model that
falsifies it. If a G3PDL®™ proof P were to derive an invalid sequent, then by
lemma 1 it would contain an infinite path Iy} = A, I3 = Ao, ... for which
there exists a finite model m and a matching sequence of valuations vy, vs, ...
that invalidate each sequent in the path. Moreover, these invalidating valuations
ensure that the measures of the trace values in any trace pair along the path
is decreasing, and strictly so for progressing trace pairs. However, since P is a
proof, it satisfies the global trace condition. This means that there would be an
infinitely progressing trace following the path I1 = Aq,Is = Ao, ... and thus
we would be able to construct an infinitely descending chain of (finite) trace

value measures. Because the set of finite trace value measures is well-founded,
this is impossible and so the derived sequent must in fact be valid.

Theorem 1 (Soundness). G3PDL™ derives only valid sequents.

The cyclic system G3PDLY is obtained by restricting consideration to only
those proofs of G8PDL that are regular, i.e. have only a finite number of
distinct subtrees.

Definition 9 (Cyclic Pre-proof). A cyclic pre-proof is a pair (P, f) consist-
ing of a finite derivation tree P possibly containing open leaves called buds,
and a function f assigning to each bud an internal node of the tree, called its
companion, with a syntactically identical sequent.

We usually represent a cyclic pre-proof as the graph induced by identifying
each bud with its companion (as in figs. 2 and 3). The infinite unfolding of a
cyclic pre-proof is the GBPDL pre-proof obtained as the limit of the operation
that replaces each bud with a copy of the subderivation concluding with its
companion an infinite number of times. A cyclic proof is a cyclic pre-proof whose
infinite unfolding satisfies the global trace condition. As in other cyclic systems
(e.g. [6,8,36,38]) it is decidable whether or not this is the case via a construction
involving complementation of Biichi automata. This means that decidability of
the global trace condition for G3PDL® pre-proofs is PSPACE-complete.

Since every G3PDLY is also a G3PDL™ proof, soundness of the cyclic
system is an immediate corollary of theorem 1.

Corollary 1. If I' = A is derivable in G3PDLY, then I' = A is valid.

4 Completeness

In this section, we give completeness results for our systems. We show that the
full system, G3PDL, is cut-free complete. On the other hand, if we allow
instances of the (Cut) rule, then every valid theorem of PDL has a proof in the
cyclic subsystem G3PDL".

4.1 Cut-free Completeness of G3PDL®>

We use a standard technique of defining a pre-proof that encodes an exhaustive
search for a cut-free proof (as used in, e.g., [6,8]). For invalid sequents, this
results in a pre-proof from which we can construct a counter-model, using the
formulas that occur along a particular path.

A schedule o is an enumeration of labelled non-atomic formulas in which
each labelled formula occurs infinitely often. The i*" element of o is written o;.

Definition 10 (Search Tree). Given a sequent I' = A and a schedule o,
we can define an infinite sequence D of open derivations inductively. Taking
Dy =1 = A, we construct each D;y1 from its predecessor D; by:

1. firstly closing any open leaves I = A’ for which v : L € I" for some x
or 'NA # 0 by applying weakening rules leading to an instance of (L) or an
aziom A = A for some A € I' N A (thus the antecedent of each remaining open
node is disjoint from its consequent);

2. then replacing each remaining open node I'' = A’ in which o; occurs with
applications of the rule for which o; is principal in the following way.

— Ifo; =z : [a)lp € A, then we pick a label y not ocurring in I'" = A', and
replace the open node with the following derivation.

TR,y I"=Ay: o
I'= Az ae

(OR)
— Ifo; =x: [a]p € I then, letting {y1,...,yn} be the set of all y; such that
z Ry y; € I, we replace the open node with the following derivation.
v:lae vy yn e I = A
z:[ao {y oyt oh, I = A

ooy}, " = A
z:a]p, I = A

— In all other cases, we replace the open node with an application of the appro-
priate rule (1) as follows, where I'! and A}, i € {1,2}, are the sets of left and
right immediate ancestors of o;, respectively, for the appropriate premise.

I, r= A A (Iy, 1= A A)Y)
I'= A

")

Since each D; is a prefix of D;11, there is a smallest derivation containing each
D; as a prefiz. We call this derivation a search tree for I' = A (w.r.t. o).

Notice that search trees do not contain instances of the (Cut) or (Subst)
rules. Moreover, when a given search tree D is not a valid proof, we may extract
from it two sets of labelled formulas and relational atoms that we can use to
construct a countermodel. If D is not a valid proof, then either it contains an
open node to which no schedule element applies or it contains an infinite path
that does not satisfy the global trace condition (an untraceable branch). For a
search tree D, we say that a pair (I') A) is a template induced by D when either:
(i) I' = A is an open node of D; or (ii) I" = |J,5(I3 and A = J,., As, where
It = Ay, Iy = A,,...is an untraceable branch in D. Notice that, due to the
construction of search trees, the component sets of a template are necessarily
disjoint. Given a template, we construct a PDL model as follows.

Definition 11 (Countermodel Construction). Let P = (I', A) be a template
induced by a search tree. The PDL model determined by the template P is given
by mp = (L,Zp), where Ip is the following interpretation function:

[](p —) = ([a]p — [a]P) (1) [(p AY) = ([alp Alaly) (2)
[@U Blp < [a]e A [Ble (3) [a; Bl < [A][Ble (4)
(W2 < (b — @) (5) e A la]la’]p « [a"]p (6)
e Aa™](¢ = [a]p) — [a"]p (7)
w o= I
T (MP) olp (Nec)

Fig.4: Axiomatisation of PDL.

1. Ip(p) ={x | x : p € I'} for each atomic proposition p; and
2. Ip(a) ={(z,y) | ¢ Ry y € I'} for each atomic program a.

We write v for the valuation defined by v(x) = x for each label x.
PDL models determined by templates have the following property.

Lemma 2. Let P = (I, A) be a template induced by a search tree. Then we
have mp,v = A for all A€ I' and mp,v = B for all B € A.

Lemma 2 entails the cut-free completeness of G3PDL.

Theorem 2 (Completeness of G3PDL™). If I' = A is valid, then it has
a cut-free G3PDL™ proof.

4.2 Completeness of G3PDL®” for PDL

We show that the cyclic system G3PDL® can derive all theorems of PDL by
demonstrating that it can derive each of the axiom schemas and inference rules
in fig. 4, which (along with the axiom schemas of classical propositional logic)
constitute a complete axiomatisation of PDL [23, §7.1].

The derivation of the axioms of classical propositional logic is standard, and
axioms (3) to (6) are immediately derivable via the left and right proof rules
for their corresponding syntactic constructors. Each such derivation is finite,
and thus trivially a G3PDL® proof. Axioms (1), (2), (7) and (Nec) require the
following lemma showing that a general form of necessitation is derivable.

Lemma 3 (Necessitation). For any labelled formula x : ¢, program «, and
finite set I' of labelled formulas such that labs(I") = {z}, there exists a G3PDL®
derivation concluding with the sequent [a]’ = x : [a]e and containing open
leaves of the form I = x : ¢ such that:

(i) for each trace value T = x : @, every path from the conclusion to an open
leaf is covered by a trace [a]T,...,T; and

(ii) every infinite path is followed by an infinitely progressing trace.

(Ax) — (Ax)

(Ax) (Ax) e . .
Tip=>TQ x:w:Mc:w(N =T wi) Ty =T Wi
—
;z::gp—)d)’x;@éz:w M(AL) M(AL)
: T AP =>x0 T A =>x
. lemma 3
. . lemma 3 . lemma 3
z: (o] =,z ol =z: [alyp (oR) z:[a](g’p/\w')ézz[a]tp r:[a](g&/\l[;)éx:[a]go
z: o)== [ae = [op ® z:[o)(pAY) =z : [alp Ay ()
—
=z [a](p = ¥) = ([d]e = [a]) — o @A) = (e A ale)
(a) Derivation schema for Axiom (1) (b) Derivation schema for Axiom (2)
vigo:fale = [ale = o [a’]e i
lemma 3 |
2 [loa: [alla’lp = [lp = 2 : [alla’]e i
(Ax) (WL) 1
Tip=>Ti z: o,z [ap,x: [a][a’]e = [ale = 2 [o[]e !
— (&%) . . (=L)
Tip=aigp) z:ip,a:p—[dpa:[dla’]p = [alp = 2 o]l]w(L) '
viprile o lale 5 oie vpalale s lelp >y 5
R Lo 1 [e [R e e T T '
(AL)

*

zipAatlp = [alo =2 : [0’

=z:pAa’]e— lafo = [a']p

(¢) Derivation schema for Axiom (7)

Fig.5: GBPDL" derivation schemata for the distribution and induction axioms.

Schemas for deriving axioms (1), (2) and (7) are shown in fig. 5. Any infinite
paths which exist in the schemas for deriving axioms (1) and (2) are followed
by infinitely progressing traces by lemma 3. Thus, they are G3PDL" proofs.
In the schema for axiom (7), the open leaves of the subderivation constructed
via lemma 3 are converted into buds, the companion of each of which is the
conclusion of the instance of the (¥R) rule. Condition (i) of lemma 3 guarantees
that each infinite path along these cycles has an infinitely progressing trace. We
thus have the following completeness result.

Theorem 3. If ¢ is valid then = z : ¢ is derivable in G3PDL".

It should be noted that theorem 3 is not a deductive completeness result,
i.e. it does not say that any sequent I" = A is only valid if there is a G3PDL"
proof for it. This is no major restriction, as a finitary syntactic consequence
relation cannot capture semantic consequence in PDL: due to the presence of
iteration, PDL is not compact. This can only be rectified by allowing infinite
sequents in the proof system, which yields a system that is not amenable to
automation.

5 Proof Search for Test-free, Acyclic Sequents

In this section, we describe a cut-free proof-search procedure for sequents con-
taining formulas without tests (i.e. programs of the form ¢?), and for which the
relational atoms in the antecedents do not entail cyclic models.

Our approach relies on the following notion of normal form for sequents. For
a set of relational atoms and labelled formulas, we write x-labs(I") for the set
{z | z: [a*]¢ € I'}. We call formulas of the form [a]¢ basic, those of the form
[a*]p iterated, and the remaining non-atomic formulas composite.

Definition 12 (Normal Sequents). A sequent I' = A is called normal when:
(1) 'NA=0; (2) A contains only labelled atomic and iterated formulas; and
(8) I’ contains only relational atoms, labelled atomic formulas, and labelled basic
formulas x : [a]p for which there is no y such that also x Ry y € I'.

We say that x reaches y (or y is reachable from x) in I" when there are labels
Z1,...,%2n and atomic programs ai,...,a,_1 such that x = z; and y = z,, with
% Rq, zn41 € I' for each i < n. We say that a sequent I' = A is cyclic if there
is some z € labs(I") such that z reaches itself in I'; otherwise it is called acyclic.

Crucially, the following forms of weakening are validity-preserving.

Lemma 4 (Validity-preserving Weakenings). The following hold.

(1) If I' = A,z R, z is valid and © R, z & I, then I’ = A is valid.

(2) If normal I' = A, x : p is valid with x & *-labs(A), then I' = A is valid.

(8) If normal I'yx : ¢ = A is valid with x ¢ labs(A), then I’ = A is valid.

(4) If normal I'yx Ry y = A is valid, z € labs(A) for all z : ¢ € T', x & labs(A)
and x not reachable in I’ from any z € labs(A), then I' = A is valid.

An unwinding of a sequent I' = A is a possibly open derivation of I" =
A obtained by applying left and right logical rules as much as possible, and
satisfying the properties that: no trace progresses more than once; and all rule
instances consume the active labelled formula of their conclusion, but preserve
in the premise any relational atoms. A capped unwinding is an unwinding for
which: (a) weakening rules and (Ax) and (L) have been applied to all open leaves
I' = Awith L € I'or I'NA # (); and (b) the sequence of weakenings in lemma 4
have been exhaustively applied to all other open leaves.

Lemma 5. Let D be a capped unwinding for I' = A (denoted S) and I'" = A’
an open leaf (denoted S’) of D. The following hold: (1) I = A’ is normal; (2) if
I' = A is valid, then so are all the open leaves of D; and (3) For every trace T,
covering the path from S to S, if 11 = (x,e,8,¢) is a sub-formula of T,, then
the trace is progressing.

We call a sequent test-free if it does not contain any programs of the form
¢?. A crucial property for termination of the proof-search is the following.

Lemma 6. Let D be a capped unwinding for a test-free, acyclic sequent; then D
is finite, and labs(I"") C labs(A’) C x-labs(A’) for all open leaves I'" = A’ of D.

Both cyclicity and the presence of tests can cause lemma 6 to fail, since then
it is possible for there to be a path of ancestry between two occurrences of an
antecedent formula z : [o*]¢ that traverses an instance of the (xL) rule. That is,
antecedent formulas may be infinitely unfolded. Moreover, in the presence of tests
or cyclicity, the weakenings of lemma 4(4) do not result in labs(I"") C labs(A’)
for open leaves I = A'.

We define a function *-max on test-free sequents (details are given in the
appendix), whose purpose is to provide a bound ensuring termination of proof-
search. We have conjectured that it satisfies the following property.

Congecture 1. Let D be a capped unwinding of test-free, acyclic I" = A. Then:
1. {z: ¢ € A" | ¢ non-atomic}| < x-max(I" = A).
2. x-max(I"” = A") < x-max(I" = A) for all open leaves I'"" = A’ of D.

Proof-search proceeds by iteratively building capped unwindings for open
leaves. All formulas encountered in the search are in the (finite) Fischer-Ladner
closure of the initial sequent, and validity and acyclicity are preserved through-
out the procedure. Lemma 6 and Conjecture 1 will ensure that the number
of distinct open leaves (modulo relabelling) encountered during proof-search is
bounded, so we may apply substitutions to form back-links during proof-search.
Lemma 5(3) ensures that the resulting pre-proof satisfies the global trace con-
dition. For invalid sequents, proof-search produces atomic sequents that are not
axioms. We thus conjecture cut-free regular completeness for test-free PDL.

6 Conclusion

In this paper we have given two new non-wellfounded proof systems for PDL.
G3PDL® allows proof trees to be infinitely tall, and G3PDL" restricts to the
proofs of G3PDL®™ that are finitely representable as cyclic graphs satisfying
a trace condition. Soundness and completeness of both systems was shown, in
particular, cut-free completeness of G3PDL™ and a strategy for cut-free com-
pleteness of GBPDL® for test-free PDL.

There is much further work to be done. Of immediate interest is the verifica-
tion of cut-free regular completeness for test-free PDL, and the extension of the
argument to the full logic. We would also like to consider additional program
constructs. Some, like converse, can already be treated through De Giacomo’s
[17] efficient translation of Converse PDL into PDL. It may be more desirable,
however, to represent the program construct directly, to aid in the modular com-
bination of different constructs. One construct that is particularly notorious is
Intersection. Despite the modal definability of its dual, Choice, the intended in-
terpretation of Intersection is not modally definable, and the completeness (and
existence) of an axiomatisation for it remained open until Balbiani and Vakarelov
[3]. An earlier, and significantly simpler, solution to this problem was the aug-
mentation of PDL with nominals, denoted Combinatory DL [32]. We conjecture
that the presence of labels in our system enables us to perform a similar trick,
without contaminating the syntax of the logic itself. However we should note

that a key prerequisite of our soundness proof, namely that we can restrict at-
tention to finitely branching models (guaranteed by the finite model property of
PDL), is an assumption that may no longer hold for particular combinations of
program constructs. Weakening this assumption will aid in the goal of giving a
truly uniform proof theory for PDL-type logics.

Our work should be seen as a part of a wider program of research to give a uni-
form and modular proof theory for a larger group of modal logics, including what
we have denoted PDL-type logics. One source of modularity and uniformity is
the existing Negri labelled system our calculi extend. This allows us to freely add
proof rules corresponding to first-order frame axioms defining Kripke models. A
wider class of modal logics than those directly covered by Negri’s framework are
those with accessibility relations that are defined to be wellfounded or arise as
transitive closures of other accessibility relations (we note Negri is able to treat
the specific case of Godel-Lob logic due to its special interpretation of [, but not
the general class we describe). We believe an appropriate framework to uniformly
capture these logics as well is cyclic labelled deduction. We are encouraged in
this pursuit by recent work of Cohen and Rowe [8] in which first-order logic
with a transitive closure operator is given a cyclic proof theory. We may think of
labelled deduction as a way of giving a proof theoretic analysis of the first-order
theory of Kripke models and their modal satisfaction relations. Labelled cyclic
deduction, we conjecture, can capture the first-order-with-least-fixpoint theory
of Kripke models and modal satisfaction relations.

Finally, and somewhat more speculatively, with the cyclic system in hand we
intend to investigate the hitherto open problem of interpolation for PDL. This
has seen no satisfactory resolution in the years since PDL was first formulated,
with the only attempted proofs strongly disputed [27] or withdrawn [26]. It would
be interesting to see if the existence of a straightforward proof system for the
logic opens up any new lines of attack on the problem. For example, Lyndon
interpolation has been proved for Godel-Léb logic using a cyclic system [37].

References

1. Loredana Afanasiev, Patrick Blackburn, Ioanna Dimitriou, Bertrand Gaiffe, Evan
Goris, Maarten Marx, and Maarten de Rijke. PDL for ordered trees. Journal of
Applied Non-Classical Logics, 15(2):115-135, 2005.

2. Luca Alberucci. The Modal p-calculus and the Logic of Common Knowledge. PhD
thesis, Universitat Bern, 2002.

3. Philippe Balbiani and Dimiter Vakarelov. PDL with intersection of programs: a
complete axiomatization. Journal of Applied Non-Classical Logics, 13(3-4):231—
276, 2003.

4. Johan Van Benthem. Modal frame correspondences and fixed-points. Studia Logica,
83(1):133-155, Jun 2006.

5. James Brotherston, Nikos Gorogiannis, and Rasmus L. Petersen. A generic cyclic
theorem prover. In Ranjit Jhala and Atsushi Igarashi, editors, Programming Lan-
guages and Systems, pages 350-367, Berlin, Heidelberg, 2012. Springer Berlin Hei-
delberg.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

James Brotherston and Alex Simpson. Sequent calculi for induction and infinite
descent. J. Log. Comput., 21(6):1177-1216, 2011.

Facundo Carreiro and Yde Venema. PDL inside the p-calculus: A syntactic and
an automata-theoretic characterization. In Rajeev Goré, Barteld Kooi, and Agi
Kurucz, editors, Advances in Modal Logic, Volume 10, pages 74-93. CSLI Publi-
cations, 2014.

Liron Cohen and Reuben N. S. Rowe. Uniform inductive reasoning in transitive
closure logic via infinite descent. In 27th FEACSL Annual Conference on Computer
Science Logic, CSL 2018, September 4-7, 2018, Birmingham, UK, pages 17:1—
17:16, 2018.

Anupam Das and Damien Pous. A cut-free cyclic proof system for Kleene algebra.
In Automated Reasoning with Analytic Tableaux and Related Methods - 26th Inter-
national Conference, TABLEAUX 2017, Brasilia, Brazil, September 25-28, 2017,
Proceedings, pages 261-277, 2017.

Anupam Das and Damien Pous. Non-wellfounded proof theory for
(Kleene+action)(algebras+lattices). In 27th EACSL Annual Conference on Com-
puter Science Logic, CSL 2018, September 4-7, 2018, Birmingham, UK, pages
19:1-19:18, 2018.

Giuseppe De Giacomo and Maurizio Lenzerini. Boosting the correspondence be-
tween description logics and propositional dynamic logics. In Proceedings of the
Tuwelfth National Conference on Artificial Intelligence (Vol. 1), AAAI '94, pages
205-212, Menlo Park, CA, USA, 1994. American Association for Artificial Intelli-
gence.

Nachum Dershowitz and Zohar Manna. Proving termination with multiset order-
ings. Commun. ACM, 22(8):465-476, August 1979.

Simon Docherty and Reuben N. S. Rowe. A non-wellfounded, labelled proof system
for propositional dynamic logic. CoRR, abs/1905.06143, 2019.

Michael J. Fischer and Richard E. Ladner. Propositional dynamic logic of regular
programs. Journal of Computer and System Sciences, 18(2):194 — 211, 1979.
Melvin Fitting. Proof Methods for Modal and Intuitionistic Logics. Synthese Li-
brary. Springer Netherlands, 1983.

Sabine Frittella, Giuseppe Greco, Alexander Kurz, and Alessandra Palmigiano.
Multi-type display calculus for propositional dynamic logic. Journal of Logic and
Computation, 26(6):2067-2104, 11 2014.

Giuseppe De Giacomo. Eliminating ”converse” from converse PDL. Journal of
Logic, Language, and Information, 5(2):193-208, 1996.

Giuseppe De Giacomo and Fabio Massacci. Combining deduction and model check-
ing into tableaux and algorithms for converse-PDL. Information and Computation,
162(1):117 — 137, 2000.

Patrick Girard, Jeremy Seligman, and Fenrong Liu. General dynamic dynamic
logic. In Thomas Bolander, Torben Braiiner, Silvio Ghilardi, and Lawrence Moss,
editors, Advances in Modal Logic, Volume 9, pages 239—260. CSLI Publications,
2012.

Rajeev Goré and Florian Widmann. An optimal on-the-fly tableau-based deci-
sion procedure for PDL-satisfiability. In Renate A. Schmidt, editor, Automated
Deduction — CADE-22, pages 437-452, Berlin, Heidelberg, 2009. Springer Berlin
Heidelberg.

Jeroen Groenendijk and Martin Stokhof. Dynamic predicate logic. Linguistics and
Philosophy, 14(1):39-100, Feb 1991.

22.

23.

24.

25.

26.

27.

28.

29.
30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

David Harel. Dynamic logic. In Dov. Gabbay and Franz. Guenthner, editors,
Handbook of Philosophical Logic: Volume II: Extensions of Classical Logic, pages
497-604. Springer Netherlands, Dordrecht, 1984.

David Harel, Jerzy Tiuryn, and Dexter Kozen. Dynamic Logic. MIT Press, Cam-
bridge, MA, USA, 2000.

Brian Hill and Francesca Poggiolesi. A contraction-free and cut-free sequent cal-
culus for propositional dynamic logic. Studia Logica: An International Journal for
Symbolic Logic, 94(1):47-72, 2010.

Stig Kanger. Provability in Logic. Almqvist & Wiksell, 1957.

Tomasz Kowalski. Retraction note for “PDL has interpolation”. Journal of Sym-
bolic Logic, 69(3):935-936, 2004.

Marcus Kracht. Dynamic logic. In Tools and Techniques in Modal Logic, volume
142 of Studies in Logic and the Foundations of Mathematics, pages 497 — 533.
Elsevier, 1999.

Sara Negri. Proof analysis in modal logic. Journal of Philosophical Logic, 34(5):507,
Oct 2005.

Sara Negri. Proof theory for modal logic. Philosophy Compass, 6(8):523-538, 2011.
Damian Niwinski and Igor Walukiewicz. Games for the p-calculus. Theoretical
Computer Science, 163(1):99 — 116, 1996.

Rohit Parikh. Propositional game logic. In Proceedings of the 24th Annual Sympo-
sium on Foundations of Computer Science, SFCS 83, pages 195-200, Washington,
DC, USA, 1983. IEEE Computer Society.

Solomon Passy and Tinko Tinchev. An essay in combinatory dynamic logic. In-
formation and Computation, 93(2):263 — 332, 1991.

André Platzer. Differential dynamic logic for hybrid systems. Journal of Automated
Reasoning, 41(2):143-189, Aug 2008.

Vaughan R. Pratt. Semantical consideration on Floyd-Hoare logic. In 17th Annual
Symposium on Foundations of Computer Science (SFCS 1976), pages 109-121, Oct
1976.

Gerard Renardel de Lavalette, Barteld Kooi, and Rineke Verbrugge. Strong com-
pleteness and limited canonicity for PDL. Journal of Logic, Language and Infor-
mation, 17(1):69-87, Jan 2008.

Reuben N. S. Rowe and James Brotherston. Automatic cyclic termination proofs
for recursive procedures in separation logic. In Proceedings of the 6th ACM SIG-
PLAN Conference on Certified Programs and Proofs, CPP 2017, Paris, France,
January 16-17, 2017, pages 53-65, 2017.

D. S. Shamkanov. Circular proofs for the Godel-L6b provability logic. Mathematical
Notes, 96(3):575-585, Sep 2014.

Gadi Tellez and James Brotherston. Automatically verifying temporal properties
of pointer programs with cyclic proof. In Automated Deduction - CADE 26 - 26th
International Conference on Automated Deduction, Gothenburg, Sweden, August
6-11, 2017, Proceedings, pages 491-508, 2017.

Albert Visser. Léb’s Logic Meets the p-Calculus, pages 14-25. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2005.

Ricardo Wehbe. Annotated systems for common knowledge. PhD thesis, Universitét
Bern, 2010.

	A Non-wellfounded, Labelled Proof System for Propositional Dynamic Logic

